DIPLOMA IN MEDICAL RADIOLOGY - DIAGNOSIS

(New Regulations)

Paper I - MEDICAL RADIATION PHYSICS AS APPLIED TO RADIODIAGNOSIS

Time: Three hours

Max.marks:100

Answer All Questions

- Discuss the physical principles of medical ultrascund. Highlight some of the important uses of ultrasound in diagnosis and truatment. (25)
- What do you understand by digital substraction angiography? Describe the uses. (25)
- 3. Write briefly on:

- (a) Non-ionic contrast media
- (b) Construction of X-ray films
- (c) Methods of limiting radiation from your X-ray tube
- (d) Rapid film developer
- (e) Angiographic catheters.

OCTOBER 1997

MS 312

DIPLOMA IN MEDICAL RADIOLOGY - DIAGNOSIS

(New Regulations)

Paper I - MEDICAL RADIATION PHYSICS AS APPLIED TO RADIODIAGNOSIS

Time: Three hours Max.marks:100

Answer All Questions

- Describe the construction of the dark room of your department. (25)
- Discuss the physical principles involved in a C.T. scan equipment. (25)
- 3. Write briefly on: (5x10=50)
 - (a) I ₁₃₁
 - (b) Interaction of X-rays with matter
 - (c) Gamma rays
 - (d) Dental film
 - (e) Standard development of X-ray films.

APRIL 1998

[SV 333]

DIPLOMA IN MEDICAL RADIOLOGY - DIAGNOSIS.

(New Regulations)

Paper I — MEDICAL RADIATION PHYSICS AS APPLIED TO RADIODIAGNOSIS

Time : Three hours Maximum : 100 marks

Answer ALL questions.

- Describe the various radiation protection devices used in diagnostic radiology. (25)
- What are the components of X-Ray developer?
 Describe the action of each component. (25)
- Write briefly on :

 $(5 \times 10 = 50)$

- (a) Rectifiers.
- (b) Linear tomography.
- (c) PET.*
- (d) X-Ray film.
- (e) Transformers.

APRIL 1999

[SG 1514]

Sub. Code: 3019

DIPLOMA IN MEDICAL RADIOLOGY – DIAGNOSIS EXAMINATION.

(New Regulations)

Paper I — MEDICAL RADIATION PHYSICS AS APPLIED TO RADIO DIAGNOSIS

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

- What is fluorescence? Describe in detail the designing of image intensifier. (25)
- Discuss in detail the principles of Helical Computed Tomography and its applications. (25)
- 3. Write briefly on :

- (a) Intensifying screens.
- (b) Air gap technique.
- (c) Principles of DSA.
- (d) Developer.
- (e) Spinecho technique.

OCTOBER 1999

[KA 1514]

Sub. Code: 3019

DIPLOMA IN MEDICAL RADIOLOGY – DIAGNOSIS EXAMINATION.

(New Regulations)

Paper I — MEDICAL RADIATION PHYSICS AS APPLIED TO RADIODIAGNOSIS

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

- Draw a labelled diagram of Modern Rotating Anode X-ray tube. Discuss the major parts of the X-ray tube in production of X-rays. (25)
- Describe the components of a Manual X-ray film processing unit. Discuss the stages involved in film processing. (25)
- Write briefly on :

- (a) Negative contrast materials
- (b) Parts of an X-ray cassette
- (c) Bucky
- (d) Hounsfield number
- (e) Radiation Badge

APRIL 2000

[KB 1514]

Sub. Code: 3019

DIPLOMA IN MEDICAL RADIOLOGY -DIAGNOSIS EXAMINATION.

(New Regulations)

Paper I — MEDICAL RADIATION PHYSICS AS APPLIED TO RADIO DIAGNOSIS

Time: Three hours Maximum: 100 marks

Answer ALL questions.

- Discuss the construction of image intensifier. Add a note on cine radiography? (25)
- Draw the cross section of photographic X-ray film.
 Explain the chemical changes taken on exposure to X-rays. Mention briefly the details of processing a film.(25)
- 3. Write short notes on the following: $(5 \times 10 = 50)$
 - (a) Focussing grid
 - (b) Heel effect in radiography
 - (c) Electron
 - (d) Transformer
 - (e) Isotope.

OCTOBER 2000

[KC 1514]

Sub. Code: 3019

DIPLOMA IN MEDICAL RADIOLOGY — DIAGNOSIS EXAMINATION.

(New Regulations)

Paper I — MEDICAL RADIATION PHYSICS AS APPLIED TO RADIODIAGNOSIS

Time: Three hours

Maximum: 100 marks

- Describe briefly the structure and working of a modern diagnostic X-ray tube. (25)
- 2. Discuss the various methods used to reduce radiation hazard in diagnostic radiology. (25)
- 3. Write briefly on:

- (a) Grid.
- (b) Film contrast.
- (c) Film Badge.
- (d) Automatic X-ray film processor.
- (e) Safe Light.