Program : M.A./M.Sc. (Mathematics) M.A./M.Sc. (Previous) Paper Code:MT-02 Real Analysis and Topology Section – B (Short Answers Questions)

- 1. Describe cantor set.
- A. (P. 6)
- 2. Prove that every open interval is a Barel set.
- A. (P. 16)
- 3. Prove that a σ -ring R of subset of a set X is a σ -algebra iff $X \in R$.
- A. (P. 16)
- 4. Show that outer measure is translation invariant.
- A. (P. 20)
- 5. If $\{E_n : n \in N\}$ is a sequence of disjoint measurable sets, then :

$$m^*\left(\bigcup_{i=1}^{\infty}E_i\right) = \sum_{i=1}^{\infty}m^*(E_i)$$

A. (P. 32)

6. Let $\langle E_i \rangle$ be an infinite increasing sequence of measurable sets, then :

$$m^*\left(\bigcup_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} m(E_n)$$

A. (P. 39)

- 7. Give an example to show that the function |f| is measurable but f is not measurable.
- A. (P. 50)
- 8. A function f defined on a measurable set E is measurable iff for any open set $G \subset R, f^{-1}(G)$ is a measurable et.
- A. (P. 53)
- 9. If $< f_n >$ is a sequence of measurable functions defined on a measurable set E, then $sup_n < f_n >$ and $inf_n < f_n >$ are also measurable on E.
- A. (P. 59)
- 10. Let f be a measurable function defined on a set E. Then there exist a sequence $\langle g_n \rangle$ of continuous functions on R such that $\langle g_n \rangle$ converges to f a.e. on E.
- A. (P. 72)

- 11. The lower Lebesgue Darboux sums of any bounded measurable function f on a measurable set E can not exceed its upper Lebesgue Darboux sums.
- A. (P. 83)
- 12. Show that every bounded measurable functions f defined on a measurable set E is L-integrable on E.
- A. (P. 87)
- 13. If f is a bounded measurable function defined on a measurable set E, then |f| is L-integrable over E and

$$\left|\int_{E} f(x)dx\right| \leq \int_{E} |f(x)|dx$$

A. (P.)

14. Let f be a bounded measurable function on a measurable set E and $f(x) \ge 0$ a.e. on E.

If $\int_{F} f(x) dx = 0$, then show that f(x) = 0 a.e. on E.

- A. (P. 98)
- 15. Let $\langle f_n \rangle$ be a sequence of measurable functions defined on a measurable set E, and $\lim_{n\to\infty} f_n(x) = f(x)$ a.e. on E. Then f is measurable on E.
- A. (P. 105)
- 16. Let $\langle f_n \rangle$ be a sequence of non-negative measurable functions. If $\lim_{n\to\infty} f_n(x_0) = f(x_0)$ at a point x_0 then for each $m \in N$ $\lim_{n\to\infty} \left[f(x_0) \right] = \left[f(x_0) \right]$

$$\lim_{n \to \infty} [f_n(x_0)]_m = [f(x_0)]_m$$

A. (P. 113)

17. Let f be a summable function on set E, then for given $\in > 0$, there exst a $\delta > 0$ such that $\left| \int_{e} |f(x)| dx \right| < \epsilon$

Where e is a measurable subset of E with $m(e) < \delta$.

- A. (P. 120)
- 18. Show that the space L_2 of a square summable function is a linear space.
- A. (P. 125)
- 19. State and prove Minkowski's inequality in L_2 space.
- A. (P. 127)
- 20. Let $\langle f_n \rangle$ be a sequence in L_2 . If $\langle f_n \rangle$ converges in the mean square to a function $f \in L_2$, then $\langle f_n \rangle$ converges in measurable to f.
- A. (P. 128)
- 21. The scalar product in L_2 is a continuous function of its argument i.e. if $\{f_n\}$ and $\{g_n\}$ are two convergent sequences in L_2 with $\lim_{n\to\infty} f_n = f$ and $\lim_{n\to\infty} g_n = g$ then

$$\lim_{n \to \infty} \langle f_n, g_n \rangle = \langle f, g \rangle$$

- A. (P. 135)
- 22. Let a set $D \subset L_2$ be everywhere dense in L_2 . If Parseval's identity holds for all functions in D, then the system $\{\emptyset_i\}$ is closed.
- A. (P. 142)

- 23. An orthonormal system $\{\emptyset_i\}$ is complete iff it is closed.
- A. (P. 144)
- 24. Show that L^p -space is a linear space.
- A. (P. 149)
- 25. Show that a sequence of functions in L^p -space has a unique limit.
- A. (P. 157)
- 26. Let $\langle f_n \rangle$ be a sequence of functions belonging to L^p -space. If this sequence is convergent, then it is a Cauchy sequence.
- A. (P. 157)
- 27. Let X be a non void set. Let J be the family, consisting of \emptyset and all those non-void subsets of X, whose complements are finite, then show that J is a topology for X which is known as cofinite topology.
- A. (P. 162)
- 28. (Usual topology for R) Let R be he set of all real numbers. Let U be the family consisting of \emptyset and all non-void subsets G of R having the property that for each $x \in G \exists$ an open interval $I_x s.t.x \in I_x \subset G$. then U is a topology for R.
- A. (P. 162)
- 29. If A be a subset of a topological space (X, J) then $\overline{A} = A \cup A'$.
- A. (P. 170)
- 30. Let $J = \{\emptyset, X, \{a\}, \{a, b\}, \{a, b, e\}, \{a, c, d, \{a, b, c, d\}\}$ be a topology on $X = \{a, b, c, d, e\}$, then
 - (i) List all J-open subsets of X.
 - (ii) List all J-closed subsets of X.
- A. (P. 175)
- 31. In $\overline{A \cup B} = \overline{A} \cap \overline{B}$? Give reason in support of your answer.
- A. (P. 177)
- 32. Let $J = \{\emptyset, X, \{1\}, \{1, 2\}, \{1, 2, 5\}, \{1, 2, 3, 4\}, \{1, 3, 4\}\}$ be the topology on $X = \{1, 2, 3, 4, 5\}$. Determine limit points closure, interior of the set $A = \{3, 4, 5\}$.
- A. (P. 178)
- 33. Let B be a collection of subsets of a non-void set X. Then B is a base for some topology on X iff it satisfying the following conditions:-
 - (i) $X = \cup \{B : B \in B\}$
 - (ii) For any $B_1, B_2 \in B$ if $x \in B_1 \cap B_2$ then $\exists B_3 \in B$ s.t. $x \in B_3 \subset B_1 \cap B_2$.
- A. (P. 184)
- 34. A function $f : X \to Y$ is continuous iff the inverse image of every closed set of Y is a closed subset of X.
- A. (P. 190)
- 35. A function $f : X \to Y$ is continuous iff for every subset $A \subset X$.

$$f(\overline{A}) \subset \overline{f(A)}$$

A. (P. 191)

- 36. Show that homeomorphism is an equivalence relation in the family of topological spaces.
- A. (P. 193)
- 37. A one-one onto continuous map $f : (X, J) \to (\gamma, \xi)$ is a homeomorphism of f is either open or closed.
- A. (P. 197)
- 38. Let $X = \{0, 1, 2\}, J = \{\emptyset, X, \{0\}\{0, 1\}\}$. Let f be continuous map of X into itself such that f(1) = 0 and f(2) = 1, What is f(0)?
- A. (P. 197)
- 39. A topological space (X, J) is a T_1 -space iff $\{x\}$ is closed, $\forall x \in X$.
- A. (P. 201)
- 40. A finite subset of a T_1 -space has no limit point.
- A. (P. 203)
- 41. The property of a space being a Hausdroff space is a hereditary property.
- A. (P. 208)
- 42. Show that every T_3 -space is a T_2 -space.
- A. (P. 210)
- 43. Show that regularity is a topological property.
- A. (P. 212)
- 44. Show that a closed sub space of normal space is a normal space.
- A. (P. 214)
- 45. A closed subset of a compact space is compact.
- A. (P. 220)
- 46. Show that a compact space has Bolzano-Weiers trass property.
- A. (P. 227)
- 47. A compact Hausdorff space if normal.
- A. (P. 228)
- 48. Show that every compact topological space is locally compact, but converse is not necessarily true.
- A. (P. 229)
- 49. Every open continuous image of a locally compact space is locally compact.
- A. (P. 229)
- 50. Let (X_{∞}, J_{∞}) be the one-point compactification of a topological space (X, J), then (X, J) is uniquely embedded into (X_{∞}, J_{∞}) such that $X_{\infty} \sim X$ is a singleton.
- A. (P. 235)
- 51. Let (X_{∞}, J_{∞}) be the one-point compactification of a topological space (X, J) then X is a subspace of X_{∞} .
- A. (P. 235)
- 52. The one point compactification of the plane is homeomorphic to the sphere. (P. 237)

- 53. Let (X, J) be a topological space and (γ, J_{γ}) be its subspace. Let A and B be two subsets of γ then A and B are J_{γ} -separated iff A and B are J-separated.
- A. (P. 240)
- 54. Two closed subsets of a topological space are separated iff they are disjoint. A. (P. 241)
- 55. A topological space X is disconnected iff A is the union of two non-void disjoint open (closed) sets.
- A. (P. 244)
- 56. Let G be a connected subset of a topological space (X, J). H is a subset of X s.t. $G \subset H \subset \overline{G}$, then H is connected.
- A. (P. 246)
- 57. Give an example of a locally connected space which is not connected.
- A. (P. 251)
- 58. The image of a locally connected space under a open continuous mapping is locally connected.
- A. (P. 252)
- 59. Let (X, J) and (γ, ξ) be two topological spaces and $(X \times \gamma, (P))$ be the product space of X and γ . Then the projection mappings π_x and π_y are continuous and open mappings.
- A. (P. 257)
- 60. The product space $(X \times \gamma, P)$ is Hausdorff if the space (X, J) and (γ, ξ) are Hausdorff.
- A. (P. 259)
- 61. The product space $(X \times \gamma, P)$ is connected if X and γ are connected.
- A. (P. 259)
- 62. Let X be a product space of an arbitrary collection $\{(X_{\lambda}, J_{\lambda}) : \lambda \in \Lambda\}$ of topological spaces. Then J s the topology for X iff J is the smallest topology for which the projections are continuous.
- A. (P. 263)
- 63. Let F be a finitely short family of open sets of a topological space (X, J). then \exists a maximal finitely short sub family M of J such that $F \subset M$.
- A. (P. 267)
- 64. A subset A of γ is closed in the quotient topology J_f relative to $f : X \to Y$ iff $f^{-1}(A)$ is closed in X.
- A. (P. 269)
- 65. Let (X, J) be a topological space such that X/R is Hausdorff quotient space, then R is a closed subset of the product space $X \times X$ relative to product topology P.
- A. (P. 272)
- 66. Let (X, J) be a topological space and let $x \in X$. Let N_x be the collection of all nbds of x. the show that N_x is directed by the inclusion relation <u>C</u>.
- A. (P. 277)
- 67. Let γ be subset of topological space (X, J). The set γ is J-open iff no net in X- γ converges to a point in γ .

- A. (P. 278)
- 68. Let $X_0 \in X$ and J is the collection of all those subsets of X which contains X_0 . Then show that J is a filter on X.
- A. (P. 284)
- 69. Let $X = \{1, 2, 3, 4\}$ and $C = \{\{1, 2\}, \{1.3\}\}$, then find base and filter taking C as a sub-base.
- A. (P. 287)
- 70. Show that every filter J on a non-void set X is contained in an ultrafilter on X.
- A. (P. 288)
- 71. Show that every subnet of an ultranet if an ultranet.
- A. (P. 291)
- 72. Let J be a filter on a non-void set X and Let A is a subset of X, the \exists a filter J^* finer that J such that $A \in J^*$ if $A \cap F \neq \emptyset \forall F \in \exists^*$.
- A. (P. 291)