Program : M.A./M.Sc. (Mathematics) M.A./M.Sc. (Previous) Paper Code:MT-02 Real Analysis and Topology Section – A (Very Short Answers Questions)

- 1. Define a denumerable set.
- A. A set S is said to be a denumerable set if it is equipotent to the set N of natural numbers.
- 2. Define an algebra of sets.
- A. A non-void collections & of subsets of a set X is said to be an algebra of sets if & is closed under finite intersections and complementation.
- 3. The outer measure of the set of natural number is :
- A. Zero
- 4. Define measurable sets.
- A. A set E is said to be Lebesque measurable or simply measurable if for each set $A \subset R$,

$$n^{*}(A) = m^{*}(A \cap E) + m^{*}(A \cap E^{c})$$

- 5. If E_1 and E_2 are two measurable sets, then, $m^*(E_1 \cup E_2) + m^*(E_1 \cap E_2) =$
- A. $m^*(E_1) + m^*(E_2) =$
- 6. What is measurable function?
- A. An extended real valued function f on a measurable set E is said to be Lebesgue measurable on E if the set $\{x \in E : f(x) > x\}$ is a measurable set for each $x \in R$.
- 7. What is step function?
- A. A real valued function f defined on an interval (a, b) is said to be a step function if there exists a partition $a = x_0 < x_1 < x_2 < \cdots \ldots < x_n = b$ such that the function f assumes one and only one value in each sub interval.
- 8. Define uniform convergence.
- A. Let $\langle f_n \rangle$ be a sequence of measurable functions defined on measurable set. Then $\langle f_n \rangle$ is said to converge pointwise to a measurable function f on E if for any $\in \rangle 0$ and $x \in E, \exists n_0 \in N$ s.t.

$$n > n_0 \implies |f_n(x) - f(x)| < \in$$

- 9. What is Bernstein polynomial?
- A. Let f be a finite function defined on the closed interval [0, 1]. The polynomial $B_n(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) C_k^n x^k (1-x)^{n-k}$

is called the Bernstein polynomial of degree for the function f.

- 10. What is Lebesgue integral function.
- A. Let f be a bounded function defined on a measurable set E, then f is said to be Lebsgue integrable on $E = [a, b]if L \int_a^b f(x)dx = L \int_a^{\overline{b}} f(x)dx$
- 11. Let $\langle f_n \rangle$ be a sequence of measurable functions defined on a measurable set E and $\lim_{n\to\infty} f_n(x) = f(x)a.e.$ on E then
- A. f is measurable on E.

12. Let
$$f(x) = \frac{1}{\sqrt{x}} fo \ x \in [0, 1] and \ f(0) = 0$$
. Then define $[f(x)]_n$
A. $[f(x)]_n = \begin{cases} \frac{1}{\sqrt{x}} & \text{, when } \frac{1}{n^2} \le x \le 1 \\ n & \text{, when } 0 \le x \le \frac{1}{n^2} \\ 0 & \text{, when } x = 0 \end{cases}$

- 13. Define square summable function.
- A. A measurable function f defined on a measurable set $E \subset R$ is said to be square summable function of :

$$\int_{E} f^{2}(x) dx \text{ exist finitely}$$

- 14. Define Cauchy sequence in L_2 .
- A. A sequence $\langle f_n \rangle$ in L_2 is a Cauchy sequence is L_2 if for each $\in \langle 0, \exists n_0(\in) \in N \text{ s. t. } m, n \ge n_0 \implies ||f_m f_n|| < \in$.
- 15. Define scalar product in L_2 .
- A. The scalar product of two functions $f \in L_2, f \in L_2$ denoted as $\langle f, g \rangle$ is defined as $\langle f, g \rangle = \int_a^b f(x)g(x)dx$
- 16. What is closed orthonormal system?
- A. An orthonormal system $\{\phi_i\}$ is said to be closed if it satisfies Parseval's identity $\sum_{i=1}^{\infty} a_i^2 = ||f||^2$ for the function f, where ai are fourier coefficients for f with respect to ϕ_i .
- 17. The inequality $\sum_{i=1}^{\infty} a_i^2 \leq ||f||^2$ is known as:
- A. Bessel's inequality.
- 18. Define convergence in norm in L^p space.
- A. Let $\langle f_n \rangle$ be sequence of functions in L^p , $1 \leq p, \infty$. Then $\langle f_n \rangle$ is said to converge in norm to $f \in L^p$ if for each $\epsilon > 0$, there exist $n_0 \in N$ such that $||f_n f|| p < e, \forall n \ge n_0$
- 19. State Minkowski's inequality.
- A. $||f + g||_p \le ||f||_p + ||g||_p$; $f, g \in L^p, p > 1$
- 20. Define co-countable topology.
- A. Let X be a non-void set. Let J be the family consisting of ϕ and all those non-void subsets of X, where complements are countable. Then J is a topology, known as co-countable topology.
- 21. What is comparable topologies?
- A. Two topologies J_1 and J_2 on a non-void set X are comparable of either $J_1 \subset J_2$ or $J_2 \subset J_1$.

- 22. What is closed set?
- A. A subset F of a topological space $\{X, J\}$ is closed if its complement F^c ins open.
- 23. Define neighbourhood.
- A. Let (X, J) be a topological space and $x \in X$. A subset N of X is said to be a neighbourhood of x if \exists an open set G such that $X \in G \subset N$.
- 24. Define Hereditary property.
- A. A property of a topological space is said to be a hereditary property, if it is satisfied by every sub space of the given space.
- 25. Define base for a topology.
- A. Let (X, J) be a topology. A sub family B of J is said to form a base for J, if for each open set G and each $x \in G \exists$ a member B of B such that $x \in B \subset G$.
- 26. What is first countable?
- A. A topological space (X, J) is said to be first countable, if each point of X possesses a countable local base.
- 27. What is an open mapping?
- A. If (X, J) and (γ, ξ) be topological spaces and $f : X \to Y$ then f is said to be an open iff the image of each open set is open.
- 28. If $f : (X, J) \rightarrow (\gamma, \xi)$ be one one onto such that:

 $\overline{f(A)} = f(\overline{A}), for any A \subset X$ then.

- A. F is a homeomorphism.
- 29. Define topological property.
- A. A property which when satisfied by a topological space is also satisfied by every homeomorphic image of this space, is called a topological property.
- 30. Define second countable space.
- A. A topological space (X, J) is said to be second countable space if there exist a countable base for J.
- 31. Define T_1 space.
- A. A topological space $\{X, J\}$ is said to be a T_1 space iff for any two distinct points $x, y \in X, \exists open set G and H s.t. x G, y \notin G and y \in H, x \notin H$.
- 32. Define T_2 space.
- A. A topological space $\{X, J\}$ is said to be a T_2 space iff for any two distinct points $x, y \in X, \exists G, H \in J s. t. x \in G, y \in H, G \cap H = \phi$.
- 33. Every singletion set in T_2 space is:
- A. Closed
- 34. What is a regular space?
- A. A toplogical space (X, J) is said to be a regular space iff for every closed subset F of X and each $x (\not\in F) \in X$, ther \exists open sets G and H s.t. $F \subset G$, $x \in H$ ang $G \cap H = \emptyset$.
- 35. What is a T_2 space?
- A. A normal T_1 space is called T_4 space.
- 36. What is an open cover of a set?

- A. Let A be a subset of a topological space. A collection $C = \{G_k\}$ of open subsets X is aid to be an open cover of A if $A \subset U_\alpha G_\alpha$
- 37. Define a compact space.
- A. A topological space (X, J) is called compact iff every open cover of X is reducible to a finite sub-cover.
- 38. Define locally compact space.
- A. A topological space (X, J) is said to be locally compact iff every point in X has at least one neighbourhood whose closure is compact.
- 39. What is Bolazano weirstrass property?
- A. Every infinite subset of the space has a limit point.
- 40. What is finite intersection property?
- A. A family J of sets is said to have the finite intersection property if every finite sub family of J has a non-void intersection.
- 41. The one point compactification of the interval (0, 1) is :
- A. [0, 1]
- 42. The one point compactification of the set complex numbers is called:
- A. Extended complex plane.
- 43. Let $Y = X \cup \{\infty\}$ be the one point compactification of X then $\overline{X} =$
- A. Y
- 44. If (X_{∞}, T_{∞}) be the one point compactification of a topological space (X, J) and X is Hausdarff and locally compact the X_{∞} :
- A. Is a Hausdraff space
- 45. What is separated sets?
- A. Let (X, J) be a topological space. Two non-void subsets A and B of X are said to be separated iff $A \cap \overline{B} = \emptyset$ and $\overline{A} \cap B = \emptyset$.
- 46. What is a disconnected set ?
- A. A subset E of a topological space (X, J) is said to be disconnected off \exists two non-void seoarates sets A and B s.t. $E = A \cup B$.
- 47. If $X = \{1, 2, 3\}$ and $J = \{\emptyset, \{1\}, \{2, 3\}, X\}$ then X is:
- A. Disconnecter as $\{1\}$ is a proper subset of X which is both open and closed.
- 48. Define locally connected space at a point.
- A. A topological space $\{X, J\}$ is said to be locally connecter at a point $x \in X$ iff every open set containing x contains a connecter open set containing x.
- 49. What is a disconnection?
- A. A subset γ of a topological space (X, J) is called disconnecter iff \exists two non-void sets G and H open in X s.t.

 $\gamma \cap G = \emptyset$, $\gamma \cap H = \emptyset$, $\gamma \cap (G \cap H) = \emptyset$ and $\gamma \cap (G \cup H) = \gamma$ In such case we say that $G \cup H$ forms a disconnection.

- 50. Define a component?
- A. A maximal connection subspace C of a topological space (X, J) is called a component of X.
- 51. Define product topology.

- A. Let (X, J) and (γ , ξ) be any two topological spaces. Then the topology P for $X \times Y$ whose base is the collection $B = \{G \times H : G \in J, H \in \xi\}$ is called a product topology.
- 52. What is the projection mappings?
- A. The mappings $\pi_x: X \times \gamma \to X \text{ s.t. } \pi_x(x, y) = x, \forall (x, y), \in X \times \gamma$ and $\pi_y: X \times \gamma \to \gamma \text{ s.t. } \pi_y(x, y) = y, \forall (x, y) \in X \times \gamma$ are called the projection mappings or projections of $X \times \gamma$ om X and γ respectively.
- 53. Define finitely short family.
- A. Let (X, J) be a topological space then a collection C of substes of X is said to be short iff C does not cover X. Also C is said to be finitely short iff no finite sub family of C covers X.
- 54. What is a Quotient space?
- A. Let (X, J) be a topological space and Let R be an equivalence relation on X. Let $\pi: X \to \frac{X}{R} s. t. \pi(x) = [x], \forall x \in X$ then, the family X/R with quotient topology is called the quotient space.
- 55. What is Embedding?
- A. A mapping $f : X \to Y$ which defines a homeomorphism of X onto f(x) is said to be an embedding of a space X into another space Y.
- 56. Define a residual set.
- A. Let (A, \geq) be a directed set and Let $E \subset A$. Then E is said to be a residual subset of A iff $\exists n \in A \text{ s. t. } m \geq n \Longrightarrow m \in E$.
- 57. Define eventually net.
- A. Let (f, X, A, \ge) be a net in X and Let $Y \subset X$. Then the net f is said to be eventually in Y iff \exists a residual subset E of A s.t. $f(E) \subset Y$, ie. if $f \exists n \in A$ s.t. $\forall m \in A, m \ge n \implies f_a \in Y$.
- 58. What is Ultranet?
- A. Let (f, X, A, \ge) be in a set X is said to be an ultranet or universal net iff for each subset y of X, the net is eventually in Y or eventually in Y^c .
- 59. What is filter?
- A. Let X be a non-void set, then a non-void family J of subsets of X is called a filter on X iff the following axions are satisfied :
 - (i) $\emptyset \not\in J$
 - (ii) If $F \in J$ amd $H \supset F$, then $H \in J$
 - (iii) If $F_1 \in J, F_2 \in J$, then $F_1 \cap F_2 \in J$
- 60. Define subbase of a filter.
- A. Let J be a filter on X, then a sub family B^* of J is called a subbase of J iff the family of all finite ntersections of membered of B^* is a base for J.
- 61. Describe adherent point of a filter.
- A. Let J be a filter on a topological space (X, J). A point $x \in X$ is called an adherent point if J iff J is frequently in every *nbd of x*.
- 62. Define a σ -ring.
- A. A ring R is said to be a σ -ring if R is closed under countable unions and intersections of the collections of subsets in R.
- 63. A ring R an algebra of sunsets of X iff:

- A. $X \in R$
- 64. Every super set of an uncountable set is :
- A. Uncountable
- 65. The outer measure of an interval is:
- A. Its length
- 66. If E_1 and E_2 are measurable sets then $m^*(E_1) m^*(E_2) =$
- A. $m^*(E_1 E_2)$
- 67. If $\langle f_n \rangle$ is a convergent sequence of measurable functions defined on a measurable set E, then the limit function of $\langle f_n \rangle$ is:
- A. Measurable
- 68. If $f : R \to R$ is measurable and $g : R \to R$ is continuous then gof is :
- A. Measurabe.
- 69. Define partition of a measurable set.
- A. Let E be a measurable set. Then a finite collection $P = \{E_1, E_2, \dots, E_n\}$ of measurable subsets of E, where $E = \bigcup_{i=1}^n E_i$ and $E_i \cap E_j = \emptyset$, $\forall i, j, i \neq j$ is said to be a measurable partition of E.
- 70. If f is a measurable function on the measurable set E. Then U (f, P) and L (f, P) can be defined only when :
- A. F is bounded on E.
- 71. If f is Lebsegue integrable then $-\int f(-x)dx =$
- A. $\int f(x)dx$
- 72. L_2 space is not a Banach space. It is true or false.
- A. False.