VARDHAMAN COLLEGE Of ©NGINGERING
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11) MICROPROCESSORS AND INTERFACING
(Common to Computer Science and Engineering \& Information Technology)

Answer ONE question from each Unit

All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - 1

1. a) What is the function of bus interfacing unit in 8086 architecture? Explain. 8 M
b) With an example explain the direct addressing mode in 8086 . 7M
2. a) List the features of 8086 microprocessor. 8M
b) What are segment registers? Explain the purpose of segment registers. 7M

Unit - 2

3. a) What is the function of assembler directives? Explain. 7M
b) Explain the structure of macro with the help of an example. 8M
4. a) Write a sample program to convert 4-digit hex into its decimal and then ASCII equivalent 7M and display it.
b) Explain the following assembler directives: ALIGN, EXTRN, PROC and PUBLIC 8M
Unit - 3
5. a) Write a program to initialize 8255 in the configuration given below: 5M
PortA: Simple input; Port B: Simple output; Port CL: output; Port CH: input.
Assume address of the control word register of 8255 is 83 H .
b) Design an 8086 based system with the following specifications.
i. $\quad 8086$ in minimum mode
ii. 64 K Byte EPROM
iii. 64 K Byte RAM
Draw the complete schematic of the design indicating address map.
6. a) Explain the interfacing of ADC to 8086 . 7M
b) With a schematic, explain the interfacing of keyboard to 8086 . 8M

Unit - 4

7. a) Describe the purpose of the 8086 interrupt pointer table.
b) With a block diagram explain the operation of DMA controller in a microcomputer 8 M system.
8. a) Explain the difference between BIOS and DOS interrupts. 8M
b) Explain the interfacing and refreshing of DRAM in the IBM PC. 7M
Unit - 5
9. a) Explain the bit format used for sending asynchronous serial data. 7M
b) Explain how MC3488A driver and MC3486 receiver used for RS-423 signal transmission. 8M
10. a) List the salient features of 80386 . 7M
b) Write a short notes on RS-232c serial data standard. 8M

VARDHAMAN COLLEGE Of ENGINGERING
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
 (Regulations: VCE-R11)

 Time: 3 Hours

 OBJECT ORIENTED PROGRAMMING THROUGH JAVA

 OBJECT ORIENTED PROGRAMMING THROUGH JAVA (Common to Electronics and Communication Engineering \& (Common to Electronics and Communication Engineering \& Electrical and Electronics Engineering)} Electrical and Electronics Engineering)
}

Date : 3 December, 2013
Max. Marks : 75
Answer ONE question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - 1

1. a) "Object oriented development helps manage complexity of massive software intensive systems". How?
b) Write a Java program to accept a number, reverse it and check if the number is palindrome or not. Print suitable message.
2. a) "Java is a simple, 2- stage system", discuss.
b) Explain with examples, any two character extraction functions of String class. Write a program to accept a full name and compute initials from that full name. (e.g: "Peter Pan" - initial is PP).

Unit - 2
3. a) Write a program to maintain the office database. The Employee class should contain the information as follows- Emp_code, Emp_name, Address, Ph_no, Da-10\%, Hra-20\%. Create three subclasses namely Manager, Typist, officer each class having their own basic pay. The DA and HRA remain same for all employees.
b) Explain the concept of interfaces in java.
4. a) Design a class Balance which keeps track of customers balance in a bank. Write a test driver program to validate the class designed. Note: The test driver should work when placed in any folder.
b) Write a Java program to demonstrate reading contents from a file.

Unit - 3

5. a) How do you create user defined exceptions in Java? Give example.
b) Write a multithreaded Java program to implement a synchronized buffer (queue). Create "Supplier" - a threaded object that makes entries into the queue, and a "Consumer" - a threaded object that consumes queue entries. Demonstrate the creation of buffer, Supplier and Consumer that operates in synchronized manner.
6. a) What is the need for Inter-thread communication mechanism? How does Java support inter - thread communication?
b) Write a simple program in Java to collect data about the student like name, dob, three test marks. The program must handle a customized exception "Entry of negative marks" upon the entry of negative number for test marks.

Unit - 4

7. a) Write a Java program for handling mouse events. 12M
b) List few components in java and what are the events it generates. 3M
8. a) Write a code snippet to demonstrate TextFiled AWT Control. 7M
b) Create a new KeyAdapter instance. Override the keyPressed method to customize the 8 M handling of that specific event. Now every time the user presses a key this method should be launched.

Unit - 5

9. a) What is an applet? List any two advantages and disadvantages of applets. 5M
b) Write a program to demonstrate JList with a DefaultListModel. 10M
10. Write a java program to create the following table using JTree of Swings 15M

VARDHAMAN COLLEGE Of $\operatorname{\in NGIN\in \in RING~}$
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
 (Regulations: VCE-R11)
 MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

(Mechanical Engineering)
Date : 3 December, 2013
Time : 3 Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) What is meant by demand? Explain the important determinants of demand. 8M
b) State and explain the laws of demand with an example. 7M
2. a) Compute 3-day moving average from the following daily sales data. 5M

Date and month	Daily sales (Lakhs of tones)
Jan 1	40
Jan 2	44
Jan 3	48
Jan 4	45
Jan 5	53

b) Explain in detail the barometric technique of forecasting.

Unit - 2
3. a) What are isoquants? What are their features?
b) Write a note on Cobb-Douglas production function. 5 M
c) Outline the basis of distinctions among cost concepts. 5 M
4. a) Explain the different types of internal economies. 9M
b) Explain the laws of returns that govern production function. 6M

Unit - 3

5. a) Explain the term monopolistic competition and explain the characteristics of 6 M monopolistic competition
b) State the types of competition. Discuss the importance of advertising in the case of 9 M monopolistic competitive firm
6. a) Can a monopolist suffer losses? If so, when. When will he decide to shut down in the 8 M short run. Explain
b) Show that under monopoly price is higher and output smaller than under perfect 7M competition.

Unit - 4

7. Write short notes on the following with examples
a) Joint stock company
b) Partnership
c) Sole Proprietorship
8. a) Define the term capital and capital budgeting. Explain the features of capital budgeting 7M proposals.
b) Write short notes on
i. Payback method
ii. Accounting rate of return
:: 2 ::
Unit - 5
9. a) Differentiate between trial balance and balance sheet. 5M
b) What are the advantages of trading accounts? 5M
c) What is the difference between trading account and profit and loss account? 5M
10. The following trial balance was taken from the books of Habib-ur-Rehman on December 31, 15M 1980:

Cash	13,000	
Sundry debtors	10,000	
Bills receivable	8,500	
Opening stock	45,000	
Buildings	50,000	
Furniture and fittings	10,000	
Investment (Temporary)	5,000	
Plant and machinery	15,500	
Bills payable		9,000
Sundry Creditors	1,000	
Habib's capital	40,000	
Habib's drawings	30,000	
Sales	1,000	
Sales discount		
Purchases	5,000	
Fright in	4,000	
Purchase discount	500	
Sales, salary expenses	8,000	
Advertising expenses	1,000	
Miscellaneous sales expenses	800	
Office salary expenses	$2,08,700$	$2,08,700$
Miscellaneous general expenses		
Interest income		
Interest expenses		

Closing stock on December 31, 1980 was Rs.10,000
Prepare income statement / trading and profit and loss account and balance sheet from the above trial balance in report form.

VARDHAMAN COLLEGE OF ENGINEERING
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
 (Regulations: VCE-R11)

AIR TRANSPORTATION SYSTEMS

(Aeronautical Engineering)
Date : 3 December, 2013
Time: 3 Hours
Max. Marks : 75

Answer ONE question from each Unit

All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - 1

1. Define 'oligopoligy'. Why is the airline industry characterized as an oligopoligy? Briefly 15M explain.
2. Write a note on history of aviation evolution, growth and its development.

Unit - 2
3. Discuss the economical and technical aspects of regulation. What is the role of ICAO and IATA in the industry?
4. What is deregulation revolution? Was the airline industry benefited or thrown to loss after deregulation? Comment and support your answer.

Unit - 3

5. What are the various costs involved in airline industry? What is meant by direct and 15M indirect operating costs? Elaborate.
6. Explain the following with help of neat diagrams:
a) Wake vortices
b) Cabin dimensions
c) Flight deck

Unit - 4

7. Explain briefly the process of route selection and development carried out in setting up the 15 M airline industry.
8. Explain in brief
a) Runway characteristics 7M
b) Runway capacity. 8M

Unit - 5
9. Write a note on the categories of airspace and separation minima. 15M
10. Explain Future air navigation systems and air navigation service providers as business. 15M

VARDHAMAN COLLEGE Of ©NGINGERING
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
 (Regulations: VCE-R11)
 DESIGN OF REINFORCED CONCRETE STRUCTURE

(Civil Engineering)

Date : 3 December, 2013
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) Write the principles of limit state of design. List the different limit states and explain. 7M
b) Define effective cover, effective span, total tension and total compression. 8M
2. a) Explain the necessity of partial safety factor in the limit state of design and mention 7M the codal provision for materials and loads.
b) Define moment of resistance, neutral axis, lever arm and clear cover for a beam 8 M section.

Unit - 2

3. a) Draw a standard T section with usual notations labelling its parts and codal requirements.
b) A reinforced concrete beam has width equal to 300 mm and total depth equal to 700 mm , with a cover of 40 mm to the centre of the reinforcement. Design the beam if it is subjected to a total bending moment of $150 \mathrm{kN}-\mathrm{m}$. Use M 20 concrete and HYSD bars of grade 415.
4. a) List the circumstances under which doubly reinforced section is provided.
b) A reinforced concrete beam 250 mm wide and 400 mm effective depth is subjected to ultimate design shear force of 150 kN at the critical section near supports. The tensile reinforcement at the section near supports is 0.5 percent. Design the shear stirrups near the supports. Also, design the minimum shear reinforcement at the mid span. Assume concrete of grade M 20 and mild steel bars of Fe 250 grade.Span of beam is 4.5 m .

Unit - 3

5. A reinforced concrete beam of rectangular section 300 mm wide is reinforced with four bars of 25 mm diameter at an effective depth of 600 mm . The beam has to resist a factored shear force of 400 KN at support section. Adopt M_{25} concrete and Fe 415 steel and design vertical stirrups for the section. Sketch the details of reinforcement.
6. Design a simply reinforced concrete beam to suit the following data: clear span $=3 \mathrm{~m}$; width of support $=200 \mathrm{~mm}$; live load $=6 \mathrm{KN} / \mathrm{m} ; \mathrm{M}_{20}$ grade concrete; Fe 415 HYSD bars. Sketch the details of reinforcement.

Unit - 4

7. a) Define the terms effective length, pedestal, column and wall and classify the columns based on types of reinforcement.
b) Design the reinforcement in a column of size 400 mmX 600 mm subjected to a axial load of 2000 KN under service load and live load. The column has an unsupported length of 3 m and effectively held in position and restrained against rotation at both ends. Use M_{25} concrete and Fe 415 steel. Sketch the details of reinforcement.
8. Design an isolated footing for a square column $400 \mathrm{~mm} \times 400 \mathrm{~mm}$ with $12-20 \mathrm{~mm}$ diameter longitudinal bars carrying service loads of 1500 KN with M_{20} and Fe 415. The safe bearing capacity of soil is $250 \mathrm{KN} / \mathrm{m}^{2}$ at a depth of 1 m below the ground level. Use M_{20} and Fe 415. Sketch the details of reinforcement.

Unit - 5

9. a) Differentiate one way slab and two way slab.
b) Design a two way slab for a room of size $4 \mathrm{~m} \times 5 \mathrm{~m}$ with discontinuous and simply 10 M supported edges on all the sides with corners prevented from lifting to support a live load of $4 \mathrm{kN} / \mathrm{m}^{2}$. Adopt M-20 grade of concrete and Fe-415 HYSD bars.
10. a) How do you prevent crack in RC structural member?
b) A rectangular section beam 200 mm wide by 450 mm overall depth is reinforced with 3 bars of 16 mm diameter at an effective depth of 420 mm . Two hanger bars of 12 mm diameter are provided at the compression face. The effective span of the beam is 5 m . The beam supports a service live load of $10 \mathrm{kN} / \mathrm{m}$. If $\mathrm{f}_{\mathrm{ck}}=20 \mathrm{~N} / \mathrm{mm}^{2}$ and $f_{y}=415$ $\mathrm{N} / \mathrm{mm}^{2}$, compute the short-term deflection.

VARDHAMAN COLLEGE Of $\operatorname{\in NGIN\in \in RING~}$
(AUTONOMOUS)
B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)
SOFTWARE ENGINEERING
(Common to Computer Science and Engineering \& Information Technology)
Date : 15 December, 2013
Time : 3 Hours
Max. Marks : 75

Answer ONE question from each Unit

All Questions Carry Equal Marks
All parts of the question must be answered in one place only

$$
\text { Unit - } 1
$$

1. a) Although the industry is moving towards component based construction most software continues to be custom built. Comment.
b) How does Boehmn describe the spiral model? List two main distinguishing features of8M
it. Describe briefly how spiral model is a realistic approach to the development of largescale systems and software.
2. a) For the given Myths, comment on the reality

- Software requirements continually change, but change can be easily accommodated because software is flexible.
- The only deliverable work product for a successful project is the working program.
b) Explain briefly Level 0 to Level 3 capacity levels of Capability Maturity Model Integration.

Unit - 2

3. a) Online cloths shop is a service provided by a cloth store, which enables customers to buy cloth and shoes online via the internet. Assume that you are asked to develop an online cloth shop. List any five functional and nonfunctional requirements for the same.
b) What is a design pattern? List any thee intents of design patterns.
4. a) What is the purpose of domain analysis? How is it related to the concept of requirements patterns?
b) Briefly discuss the different techniques used in requirements elicitation.

$$
\text { Unit - } 3
$$

5. a) Explain briefly when alpha, beta and customer acceptance testing are performed.
b) Draw the Use case diagrams, class diagrams, sequence diagrams and collaboration diagrams for Simple Auto-Teller Machine.
6. a) Explain any four design principles suggested by Mandel that enable an interface to reduce the users memory load.
b) Draw the Use case diagrams, class diagrams, sequence diagrams and collaboration diagrams for Library Management System.

$$
\text { Unit - } 4
$$

7. a) Explain any five metrics used to measure the software project.
b) Why should some software metrics be kept "Private"? Provide examples of three metrics that should be private. Provide examples of three metrics that should be public.
8. a) Describe the different metrics that are to be considered while measuring the web 10 M applications.
b) Discuss the difference between process and project metrics.
:: 2 ::
Unit - 5
9. a) Describe the terms quality control and quality assurance.
b) Identify any two attributes and their corresponding metrics for achieving following 8 M software quality goals.

- Requirement quality
- Design quality
- Code quality
- QC effectiveness

10. a) What does phrase "cost of quality" mean? Explain briefly prevention, appraisal and 10 M failure cost with respect to cost of quality.
b) Software quality assurance encompasses a broad range of concerns and activities that 5 M focus on the management of software quality. Comment.

VARDHAMAN COLLEGE Of ©NGINGERING
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
 (Regulations: VCE-R11)
 ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

(Electronics and Communication Engineering)
Date : 15 December, 2013
Time: 3 Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) Explain static characteristics of instrument and measurement systems in brief. 8M
b) Describe the principle of operation of a thermocouple instrument. Give advantages and 7M disadvantages of this type over the other types.
2. a) With a neat circuit diagram, explain the working of multi range voltmeter.
b) The expected value of the voltage across a resistor is 80 v , however the measurement gives a value of 79 v . Calculate
i. Absolute error
ii. Percentage of error
iii. relative accuracy
iv. Percentage of accuracy

Unit - 2

3. a) Explain function of Cathode Ray Tube with a neat block diagram.
b) The sketches shown in fig. 1 display Lissajous patterns for cases where voltages of same frequency out of different phase are connected to Y and X plates of the oscilloscope. Find the phase difference in each case. The spot generating the patterns moves in the anticlockwise direction.

(i)

(ii)

(iv)
fig. 1
4. a) With neat diagram, explain the delay of vertical signal allows the horizontal sweep to start prior to vertical deflection.
b) Explain how a frequency of waveform is measured using Cathode Ray Oscilloscope.

Unit - 3

5. a) Explain the operation of sampling oscilloscope with the help of block diagram and necessary waveforms.
b) Sketch the deflection system for dual-trace oscilloscope. Explain its operation. Also, explain the use of a system in chopped mode and in alternate mode with waveforms.
6. a) What are the different problems associated with measurement of low resistance?

Explain the principle of working a Kelvin's double bridge. Draw the circuit of a Kelvin's double bridge used for the measurement of low resistances. Write the condition for balance.
b) Derive the equations of balance for an Anderson's bridge. Draw the phasor diagram for conditions under balance.

Unit - 4
7. a) With a circuit diagram, explain the operation of bridge circuit with a resistance 10 M thermometer as one of the bridge elements.
b) A resistance strain gage with a gage factor of 2 is fastened to a steel member, subjected to a stress of $1050 \mathrm{~kg} / \mathrm{cm}^{2}$, the modulus of elasticity of steel is approximately 2.1×10^{6} $\mathrm{kg} / \mathrm{cm}^{2}$. Calculate the change in resistance $\Delta \mathrm{R}$ of the strain gage element due to applied stress.
8. a) With a neat circuit diagram, explain the wheat stone bridge employing two RTD's.
b) With a neat diagram, explain the elements of piezoelectric transducer.

Unit - 5
9. a) A strain gauge is used for measurement of dynamic strain as shown in fig.2. The strain gauge has a resistance of $1 \mathrm{~K} \Omega$ when unstrained. A resistance of $1 \mathrm{~K} \Omega$ is connected in the arm adjacent to strain gauge. The resistances of other two arms are $10 \mathrm{~K} \Omega$ each. The strain gauge is bonded to structural member and is subjected to a sinusoidal time varying strain. As a result of this strain, the resistance value of strain gauge between extremes of 999Ω and 1001』. The bridge output is connected to an amplifier. Determine the equivalent circuit. The supply voltages is 10 V .

fig. 2
b) What is a data acquisition system and describe the function of each component?
10. a) Where are sample and hold circuit used? Sketch the circuit arrangement along with 7M output waveform and discuss briefly the operation of the circuit.
b) Explain the following methods of measurement of torque.
i. Digital methods
ii. Magnetostrictive methods

VARDHAMAN COLLEGE Of $\operatorname{\in NGIN\in \in RING~}$
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
 (Regulations: VCE-R11)
 SIGNAL ANALYSIS AND TRANSFORM TECHNIQUES
 (Electrical and Electronics Engineering)

Date : 15 December, 2013
Time: 3 Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) Given $x[n]=\{2,6,3,5,0,8\}$

Sketch

i. $x[n+2]+x[n-2]$
ii. $\quad x[2 n+1]+x[2-n]$
b) Find the exponential Fourier series representation of the signal $x(t)$ shown in fig. 1 below

fig. 1
2. a) Given $x[n]=u[n]-u[n-4]$, and $y[n]=n\{u[n+1]+u[n]-2 u[n-2]\}$
sketch
i. $y[2-n] x[2+n]$
ii. $\quad\{y[n-3]+x[n+2]\} u[-n+2]$
b) Determine Fourier series coefficients of the signal shown in fig. $2, \mathrm{x}(\mathrm{n})$ has amplitude A , and length N
$\mathrm{x}(\mathrm{n})$
A

fig. 2

$$
\text { Unit - } 2
$$

3. a) State and prove time scaling property of Fourier Transform 6M
b) Find the inverse FT of $X(\omega)=2 \cos \omega$ for $|\omega| \leq \pi$

$$
X(\omega)=\text { zero , otherwise. }
$$

4. a) Determine Fourier transform of the following signals:
i. $\quad x(t)=e^{-3 t} \cos \pi t u(t)$
ii. $\quad x(t)=|\sin 2 \pi t|$
b) Compute the $8-$ point DFT of the following signal
$x(n)=\{111111$ \}

Unit - 3

5. a) A system is described the following input-output relation $y[n]=T\{x[n]\}=x\left[n-n_{0}\right]$.

Check for the following system properties.
i. Stability
ii. Causality
iii. Linearity
iv. Time-invariance
v. Memory
b) Show that
i. $\quad x[n] * \delta[n]=x[n]$
ii. $\quad x[n] * \delta\left[n-n_{0}\right]=x\left[n-n_{0}\right]$
iii. $\quad x[n] * \delta\left[n-n_{0}\right]=\sum_{k=-\infty}^{n-n_{0}} x[k]$
6. a) State and prove Associative property for convolution integral.
b) Determine whether the following systems are time invariant or not and prove 6 M Associative not
i. $y(t)=t x(t)$
ii. $y(t)=x(t) \cos 50 \pi t$
iii. $y(t)=x\left(t^{2}\right)$
iv. $y(t)=x(-t)$
v. $y(t)=e^{x(t)}$
vi. $y[n]=x[n]+n x[n-1]$

Unit - 4

7. a) Find the Laplace transform of $x(t)=e^{-b|t|} \quad 8 \mathrm{M}$
b) State and prove time shift property for Laplace transform (unilateral). 7M
8. a) Find the inverse Laplace transform of 7M
$X(s)=\frac{2}{(s+4)(s-1)}$
If the region of convergence is
i. $\quad-4<\operatorname{Re}(s)<1$
ii. $\quad \operatorname{Re}(s)>1$
b) Find the impulse response of the system as shown in fig.3.

fig. 3

$$
\text { Unit - } 5
$$

9. a) State sampling theorem. If $g_{s}(t)$ is the sampled version of signal $g(t)$, then show that the spectrum of sampled signal is

$$
G_{s}(f)=\sum_{m=-\infty}^{\infty} G\left(f-m f_{s}\right)
$$

b) Find the Z transform of the sequence 8M
$x[n]=\sin \left(\omega_{0} n\right) u[n]$
10. a) The signal $x(t)=2 \cos (400 \pi t)+6 \cos (640 \pi t)$ is ideally sampled at $\mathrm{fs}=500 \mathrm{~Hz}$. If the sampled signal is passed through an ideal low pass filter with cut off frequency of 400 Hz . Determine and sketch the spectrum of the sampled signal. What frequency components will appear in the filter output?
b) Find the inverse Z transform of the sequence 9M
$X(z)=\frac{z}{3 z^{2}-4 z+1}$
i. $|z|>1$
ii. $\quad|z|<1 / 3$

VARDHAMAN COLLEGE Of ENGINEGRING

(AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)
DYNAMICS OF MACHINERY
(Mechanical Engineering)
Date : 15 December, 2013
Time: $\mathbf{3}$ Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) What is a gyroscope? Mention the applications of gyroscope. With usual notations, obtain an expression for the gyroscopic couple.
b) A ship is propelled by a turbine rotor which has a mass of 5000 kg and has a speed of 2100 rpm . The rotor has a radius of gyration of 0.5 m and rotates in clockwise direction when viewed from the stern. Find the gyroscopic couple and its effect when;
i. The ship pitches 6° above and 6° below the horizontal position. The bow descends with its maximum velocity. The pitching motion is SHM with a periodic time of 20 seconds.
ii. The ship rolls at a certain instant with an angular velocity of 0.03 seconds clockwise when viewed from the stern.
2. a) A load of 15 KN is raised by means of a screw jack. The mean diameter of the square threaded screw is 42 mm and the pitch is 10 mm . A force of 120 N is applied at the end of a lever to raise the load. Determine the length of the lever to be used and also the mechanical advantage obtained. Is the screw self-locking? Take $\mu=0.12$.
b) A conical pivot with angle of cone 100° supports a load of 80 KN . The external radius is 2.5 times the internal radius. The shaft rotates at 150 rpm . If the intensity of uniform pressure is to be 300 Kpa and the coefficient of friction is 0.05 , what is the power lost in friction?

$$
\text { Unit - } 2
$$

3. a) A multi-disc clutch has three discs on the driving shaft and two on the driven shaft. The outside diameter of the contact surfaces is 240 mm and inside diameter 120 mm . Assuming uniform wear and coefficient of friction as 0.3 , find the maximum axial intensity of pressure between the discs for transmitting 25 kW at 1575 rpm .
b) A centrifugal clutch is to transmit 15 kW at 900 rpm . The shoes are four in number. The speed at which the engagement begins is $3 / 4$ th of the running speed. The inside radius of the pulley rim is 150 mm and the centre of gravity of the shoe lies at 120 mm from the centre of the spider. The shoes are lined with Ferrodo for which the coefficient of friction may be taken as 0.25 . If angle subtended by the shoes at the centre of the spider is 60° and the pressure exerted on the shoes is $0.1 \mathrm{~N} / \mathrm{mm}^{2}$, determine:
i. Mass of the shoes and
ii. Size of the shoes
4. a) With a neat sketch, explain the principle of operation of Bevis-Gibson flash light torsion dynamometer.
b) The block type hand brake shown in fig. 1 has a face width of 45 mm . The friction material permits a maximum pressure of 0.6 Mpa and a coefficient of friction of 0.24 . Determine:
i. Effort F
ii. Maximum torque absorbed by the brake
iii. Heat generated if the speed of the drum is $100 \mathrm{rpm} \&$ the brake is applied for 5 sec to stop the drum.

fig. 1

$$
\text { Unit - } 3
$$

5. a) Draw a neat sketch of a Watt governor and explain its working.
b) In a porter governor each of the four arms is 400 mm long. The upper arms are pivoted on the axis of the sleeve whereas the lower arms are attached to the sleeve at a distance of 45 mm from the axis. Each ball has a mass of 8 kg and the load on the sleeve is 60 kg . What will be the equilibrium speeds for the two extreme radii of 250 mm and 300 mm of rotation of the governor balls?
6. a) What is a turning moment diagram? Mention its uses.
b) The torque required for a machine is shown in fig. 2 The motor driving the machine has a mean speed of 1500 rpm and develop constant torque. The flywheel on the motor shaft is of rim type with mean diameter of 40 cm and mass 25 kg . Determine;
(i) Power of motor
(ii) \% variation in motor speed per cycle.

fig. 2

Unit - 4

7. a) Write short notes on balancing of rotating masses
b) Explain the following concepts in balancing of locomotives
i. Hammer blow
ii. Variation of tractive force
iii. Swaying couple
8. The fig. 3 shows a system of four unbalanced masses. Determine the dynamic force (reaction) at the bearings if the rotor speed is 600 rpm . Take the masses in planes A, B, C \& D as $20 \mathrm{~kg}, 10 \mathrm{~kg}, 10 \mathrm{~kg} \& 15 \mathrm{~kg}$ respectively. Their radii of rotation are $50 \mathrm{~mm}, 50 \mathrm{~mm}, 30$ $\mathrm{mm} \& 40 \mathrm{~mm}$ respectively.

fig. 3

$$
\text { Unit - } 5
$$

9. a) Define the following terms:
i. Free vibrations
ii. Damped vibrations
iii. Forced vibrations
b) A rotor has a mass of 12 kg and is mounted midway on a 24 mm diameter horizontal shaft supported at the ends of the two bearings. The bearings are 1 m apart. The shaft rotates at 2400 rpm . If the center of the mass of the rotor is 0.11 m away from the geometric center of the rotor due to a certain manufacturing defect, find the amplitude of vibration and the dynamic force transmitted to the bearing $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$.
10. a) What is critical speed of shafts? With usual notations, obtain an expression for the dynamic amplitude of vibrations due to eccentricity of a rotating shaft.
b) A shaft 40 mm diameter and 2.5 m long has a mass of 15 kg per meter length. It is simply supported at the ends and carries three masses $90 \mathrm{~kg}, 140 \mathrm{~kg}$ and 60 kg at 0.8 m , $1.5 \mathrm{~m}, 2 \mathrm{~m}$ respectively from the left support. Take $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$, find the frequency of the transverse vibrations.

VARDHAMAN COLLEGE Of $\operatorname{\in NGIN\in \in RING~}$
(AUTONOMOUS)
B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)
AEROSPACE PROPULSION-I
(Aeronautical Engineering)
Date : 15 December, 2013
Time: 3 Hours
Max. Marks : 75

Answer ONE question from each Unit

All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - 1

1. a) With neat sketch explain the working principle of gas turbine.

8M
b) A gas turbine plant operates on the brayton cycle between minimum and maximum temperature 300 K and 1073 K respectively. Determine the maximum work done and cycle efficiency.
2. a) With block diagram explain the working procedure of turbo jet engine.

8M
b) Draw the schematic of turbofan engine. Explain its working principle with the 7 M significance of bypass ratio and indicate its advantages and limitations.

$$
\text { Unit - } 2
$$

3. a) Explain the boundary layer development in diffuser and types of flow in straight walled diffuses with relevant sketches.
b) What are the types of inlets? Explain the starting problems in supersonic inlets.
4. a) Explain the concept of external compression and internal compression in supersonic 8M inlets with relevant sketches.
b) Explain on the following: 7M
i. Thrust reversing
ii. Thrust vectoring

$$
\text { Unit - } 3
$$

5. a) What are the various steps of combustion process involved in combustion chamber?
b) What are the different operating variables which affect the performance of gas turbine engine an explain them.
6. a) Give the different types of combustion theory as applied in combustion chambers. What are the functions of combustion chamber?
b) Explain the following:
i. Pressure losses.
ii. Combustion intensity.
iii. Combustion efficiency.

$$
\text { Unit - } 4
$$

7. a) What are the functions of exhaust nozzle and explain over expanded and under expanded nozzle.
b) What are the different types of thrust reversal control (TVC) applied in aircraft? 8M
8. a) Write a note on convergent nozzle, nozzle chocking. 8M
b) Explain about types of losses in nozzle. 7 M

Unit - 5

9. a) Explain the working principle of a centrifugal compressor with a neat schematic 7M diagram.
b) Define degree of reaction for an axial flow compressor and obtain the expression of 8M 50% degree of reaction.
10. a) Draw a velocity triangle of a single stage turbine and derive the expression for working 10 M output.
b) A 10 stage axial flow compressor provides an overall pressure ratio of $5: 1$ with an 5M overall isentropic efficiency of 87% when the temperature of air at inlet is $15^{\circ} \mathrm{C}$. The work is equally divided between the stages. A 50% reaction is used with a blade speed of $210 \mathrm{~m} / \mathrm{sec}$ and constant axial velocity of $170 \mathrm{~m} / \mathrm{sec}$. Estimate the blade angles. Assume the work done factor is 1.

VARDHAMAN COLLEGE Of $\operatorname{\in NGIN\in \in RING~}$
(AUTONOMOUS)
B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)
GEO TECHNICAL ENGINEERING-I
(Civil Engineering)
Date : 15 December, 2013 Time: 3 Hours

Max. Marks : 75
Answer ONE question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

$$
\text { Unit - } 1
$$

1. a) Explain the various corrections applied for hydrometer reading.
b) Following are the results obtained from a liquid limit test on a clay sample whose plastic limit is 20% plot the flow curve and obtain the liquid limit flow index, plasticity index and toughness index.

No. of blows	12	18	22	34
Water content \%	56	52	52	45

2. a) Explain Atterberg's limits and state their importance.
b) A fully saturated soil sample has a wager content of 27% and bulk unit weight of $19.5 \mathrm{KN} / \mathrm{m}^{3}$. Compute γ_{d}, e and G of soil. What will be the unit weight of the soil sample when degree of saturation goes down to 80% without change in void ratio.

$$
\text { Unit - } 2
$$

3. a) Differentiate between co-efficient of permeability and co-efficient of percolation. Derive the relationship between them .
b) A canal is running parallel to a stream at a distance of 300 m . There is a permeable stratum of 1 m thickness connecting the two for a length of 100 m . If the water level in the stream is 4 m higher than that in the canal, calculate the seepage into the canal in m^{3} / day, given $\mathrm{k}=7.5 \times 10^{-4} \mathrm{~cm} / \mathrm{s}$ for the permeable soil.
4. a) Write a note on quick sand condition.
b) In a falling head permeometer test, the initial head $(t=0)$ is 40 cm . The head drops by 5 cm in 10 minutes. Calculate the time required to run the test for the final head to be at 20 cm . if the sample is 6 cm in height and $50 \mathrm{~cm}^{2}$ in cross-sectional area, calculate the coefficient of permeability, area of stand pipe $=0.5 \mathrm{~cm}^{2}$.

$$
\text { Unit - } 3
$$

5. a) Define compaction. How does compaction differs from consolidation?
b) The following results refer to a standard compaction test on soil. Plot the compaction curve and determine OMC and MDD. Calculate the relative compaction if the dry unit weight of given soil is $18.63 \mathrm{KN} / \mathrm{m}^{3}$. Also plot ZAV line. Take $\mathrm{G}=2.7$.

Water content	6.8	8.5	9.4	10.2	11.3	12.5	13.6
Bulk unit wt. $\mathrm{KN} / \mathrm{m}^{3}$	20.3	20.97	21.44	21.69	21.85	21.68	21.51

6. a) How is classification of soil done based on consolidation? Explain Casegrande method of determination of pre-consolidation pressure.
b) A stratum of clay 8 m deep has $\mathrm{W}_{\mathrm{L}}=45 \%$, the surface of clay is at 10 m below the GL. The natural water content is 40%, specific gravity is 2.78 for clay. The GWT is at 4.5 m below the GL. The average submerged unit weight of sand is $10.4 \mathrm{KN} / \mathrm{m}^{3}$ and unit weight of sand above GWT is $17 \mathrm{KN} / \mathrm{m}^{3}$. The clay is normally consolidated. The weight of the structure coming on top of sand above clay increases the over burden pressure on clay by $40 \mathrm{KN} / \mathrm{m}^{3}$. Estimate the settlement of the building.

$$
\text { Unit - } 4
$$

7. a) Discuss the construction of Newmark's influence chart for vertical stress distribution.
b) A load of 1000 kN acts as a point load at the surface of a soil mass. Estimate the stress at a point 3 m below and 4 m away from the point of action of the load by Boussinesq's formula. Compare the value with the result from westergaard's theory.
8. a) State the assumptions made in the Boussinesq's and westergaard's theory.
b) A rectangular area 2 mX 4 m carries a uniform load of $80 \mathrm{kN} / \mathrm{m} 2$ at the ground surface. Find the vertical pressure at 5 m below the centre and corner of the loaded area by equivalent load method.

Unit - 5

9. a) Explain Mohr-coulomb's failure theory.
b) A remoulded specimen of soil was used for consolidated undrained triaxial test with pore pressure measurements. The results are as follows:

Cell pressure $\mathrm{kN} / \mathrm{m}^{2}$	500	750
Deviator stress at failure $\mathrm{kN} / \mathrm{m}^{2}$	300	455
Pore pressure $\mathrm{kN} / \mathrm{m}^{2}$	250	350

Plot the strength envelope and determine the values of effective shear strength parameter. Check the values using analytical method.
10. a) What are the advantages and limitations of direct shear test over triaxial test?
b) Unconfined compressive strength of soil is $150 \mathrm{KN} / \mathrm{m}^{2}$. A sample of same soil failed at a derivator stress of $200 \mathrm{KN} / \mathrm{m}^{2}$ when it is tested in triaxial compression test with a cell pressure of $50 \mathrm{KN} / \mathrm{m}^{2}$. Determine the shear strength parameters of soil.

VARDHAMAN COLLEGE Of ©NGINGERING
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)
UNIX PROGRAMMING
(Common to Computer Science and Engineering \& Information Technology)
Date : 7 December, 2013
Time : 3 Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) Outline the history of UNIX.
b) Write Unix command(s) for 8M
i. Create a cpio archive only with *.c files.
ii. copy the files and sub-directories of objects directory into /mnt/out directory using cpio
iii. connect to ftp.netscape.com
iv. querying the information on currently logged in users
v. searching the word "this" in a file h.txt
2. a) Explain briefly grep, egrep and fgrep
b) Assume that the umask value is 0027. Explain briefly how to compute actual permissions using this value.

Unit - 2

3. a) Write shell program to find the largest of three numbers.
b) Write the syntax of case statement. Write a shell program to create a menu which displays the list of files, current users, and process status of system based on the user choice.
4. a) Write syntax and File Access Functions for open, create, write, read, and close system calls.
b) Define shell. Describe the different types of shell available in UNIX. How do you confirm which shell you are currently working?

Unit - 3
5. a) Assume that you have been asked to write a code snippet to execute a command say Is -aF using the concept of process. The program requirement states that the main process should create a child process which in turn will execute the Is program, running the "Is -aF /" command. Five seconds later, the parent should print a message saying, I'm still here!.
b) Write a C function to lock or unlock a region of a file.
6. a) Explain briefly how record locking can be done in Unix using fontl(). 7M
b) Write a C program to trap a ctrl-c but not quit on this signal. Define a function sigproc() that is executed when you trap a ctrl-c. Design another function to quit the program if it traps the SIGQUIT signal so that you can terminate your program.

Unit - 4

7. a) Explain briefly the concept of shared memory with respect to IPC in Unix. Give 10M prototypes for shmat and shmctl.
b) What is a FIFO? What are the two uses of FIFO?
8. What is a message queue? Discuss the System limits that affect message queues and write the syntax of msgctl function and list the cmd argument specified by the command to be performed on the queue specified by msqid.

Unit - 5

9. a) What is a socket? What are the steps followed by client and server to establish 7M communication using sockets.
b) Explain briefly bind system call. 8M
10. Using TCP/IP sockets, write a client-server program in C to make client send the file name 15M and the server to send back the contents of the requested file if present.

VARDHAMAN COLLEGE Of $\operatorname{\in NGIN\in \in RING~}$
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)
INTEGRATED CIRCUITS APPLICATIONS
(Common to Electronics and Communication Engineering \& Electrical and Electronics Engineering)
Date : 7 December, 2013
Time: 3 Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) With a neat circuit diagram and suitable input and output waveforms, explain the working of a non-inverting and inverting Operational amplifier.
b) Explain the following DC characteristics of an Op-amp: input offset current, input offset voltage and total output offset voltage.
2. a) List any five ideal op-amp characteristics.
b) In the basic differential amplifier, given $R_{c}=2 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{e}}=4.3 \mathrm{~K} \Omega, \mathrm{~V}_{c \mathrm{c}}=\left|\mathrm{V}_{\mathrm{ee}}\right|=5 \mathrm{~V}, \beta_{0}=200$, 10M
$\mathrm{V}_{\mathrm{be}}=0.7 \mathrm{~V}$. Determine for $\mathrm{V}_{1}=\mathrm{V}_{2}=0, \mathrm{I}_{\mathrm{BQ}}, \mathrm{I}_{\mathrm{CQ}}, \mathrm{V}_{01}, \mathrm{~V}_{02}, \mathrm{~V}_{\mathrm{CEQ}}, \mathrm{A}_{\mathrm{DM}}, \mathrm{A}_{\mathrm{CM}}, C M R R$.

Unit-2

3. a) Explain the working of an Inverting summing amplifier and subtractor with a neat circuit diagram.
b) Explain the working of a Logarithmic amplifier.
4. a) With suitable input and output waveforms explain the working of an inverting and noninverting Comparator.
b) Explain the working of a Schmitt trigger with relevant input and output waveforms.

Unit - 3

5. a) With a neat circuit diagram, explain the working principles of " All Pass filter". Mention 7M its applications.
b) List the applications of PLL.
c) Design a pulse generator using 555 timer for pulse width $T_{p}=1 \mathrm{~ms}$. Draw the circuit with designed values.
6. a) Design a second order butterworth high pass filter for the following specifications:

$$
A_{V}=5 ; \quad f_{L}=1.5 \mathrm{KHz}
$$

Draw the circuit diagram and insert the values.
b) Draw the internal architecture of 555 timer and explain.

Unit - 4

7. a) Draw the circuit schematic of a DC power supply showing rectifier with filter and a dc 8M voltage regulator. Define the following performance parameters.
i. Line regulation
ii. Load regulation
iii. Ripple rejection
b) With a neat circuit diagram of R-2R ladder DAC, obtain the expression for output voltage. 7M
8. a) Design a voltage regulator using IC LM723

$$
\text { Given data: } \begin{aligned}
& \mathrm{V}_{0, \max }=10 \mathrm{~V} \\
& I_{\max }=150 \mathrm{~mA}
\end{aligned}
$$

Draw the designed circuit.
b) What are integrating type ADCs? Explain the working principles of Dual slope ADC with diagram and waveforms.

Unit - 5

9. a) Implement a full adder using IC 74138 and two OR gates. Show the realization of 4:16 8M decoder using two 3:8 decoder ICs.
b) Draw the circuit diagrams for CMOS NAND and NOR and explain with function table. 7M
10. a) Draw the circuit of a CMOS inverter and explain its operation. Define noise margin and 10M power dissipation.
b) Explain the working of 1 to 4 line De-Multiplexer.

VARDHAMAN COLLEGE Of $\operatorname{\in NGIN\in \in RING~}$
(AUTONOMOUS)
B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)
MACHINE TOOLS
(Mechanical Engineering)
Date : 7 December, 2013
Time: 3 Hours
Max. Marks : 75

Answer ONE question from each Unit

All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - 1

1. a) Draw a neat sketch and explain the nomenclature of single point cutting tools. 10 M
b) Write short notes on coolants used in metal cutting. 5M
2. a) In orthogonal turning of a 50 mm diameter mild steel bar on a lathe, the following data 10 M were obtained. Rake angle $=15^{\circ}$, cutting speed $=100 \mathrm{~m} / \mathrm{min}$, feed $=0.2 \mathrm{~mm} / \mathrm{revl}$, cutting force $=180 \mathrm{~kg}$, feed force $=60 \mathrm{~kg}$. Calculate the shear plane angle, coefficient of friction, cutting power, chip flow velocity, shear force, if the chip thickness $=0.3 \mathrm{~mm}$.
b) Write a short note on chip breakers.

Unit - 2

3. a) Illustrate the neat block diagram of lathe \& label the parts.
b) Explain the following operation in lathe:
i. Eccentric turning
ii. Facing
4. a) List out the different operation which can be performed on automatics, turret \& capstan 8M lathes and its requirement which carry specifications.
b) Describe the consideration while planning the process sheet for a particular job during 7M manufacturing.

Unit - 3

5. a) Describe the main parts of a shaper with neat sketch. 8M
b) What is planning? Explain the working principle of a planer. 7 M
6. a) Mention the different types of milling machine. Explain vertical milling machine with 8 M neat sketch.
b) Explain the following milling methods with neat sketch:
i. Up or conventional milling
ii. Down or climb milling

Unit - 4

7. a) Draw a neat sketch of a twist drill and explain the nomenclature. 8M
b) Draw a neat sketch and explain the following operations on a drilling machine: 7M
i. Boring
ii. Tapping
8. a) Draw a neat sketch of a surface grinding machine and explain its working. 8M
b) What are the materials used in the manufacture of grinding wheels? What properties 7 M do they impart to the wheels?

Unit - 5
9. a) What is the use of fixtures? List out the different types of broaching machines. 8M
b) Explain with neat sketch of continuous broaching machine. 7M
10. a) List out the difference between jigs and fixtures. 7M
b) What are the important considerations in jigs and fixtures? 8M

VARDHAMAN COLLEGE OF ENGINGERING (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11
AERODYNAMICS-II
(Aeronautical Engineering)
Time : 3 Hours

Date : 7 December, 2013
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) Define isentropic process. Derive general isentropic relations for static temperature 8 M rise and Static pressure rise of gas flow.
b) Draw the propagation of disturbance waves for subsonic and supersonic condition.
2. a) Derive relationship between the ratio of stagnation pressure to static pressure and

Mach number for an isentropic flow. Derive similar relations for temperature and density ratios.
b) Define static and stagnation pressure.

Unit - 2

3. a) Derive the relation for velocity change and pressure change in terms of area change $d A / A$, assuming 1-D isentropic flow.
b) Explain the phenomenon of choking in a nozzle.
4. a) Derive an expression for choked mass flow rate through a converging diverging nozzle 9M in terms of total pressure, total temperature and throat area.
b) Discuss the principle of wave reflection from a free boundary.

Unit - 3

5. a) Obtain the relation relating wave angle (β), deflection angle (θ) and mach number (M) for an oblique shock wave and hence plot the graph between them and explain the various oblique shock solution.
b) Write short notes on
i. Critical mach number
ii. Drag divergence mach number
6. a) Based on small perturbation theory, obtain the expression for velocity potential equation for compressible flow.
b) Consider the supersonic flow over an expansion corner. The deflection angle $\theta=23.38$. If the flow upstream of the corner is given by $M_{1}=2, P_{1}=0.7 \mathrm{~atm}, T_{1}=305 \mathrm{k}$, calculate M_{2}, $P_{2}, T_{2}, \rho_{2}, P_{02}$ and T_{02} downstream of the corner. Also obtain the angles the forward and rearward mach lines make with respect to upstream direction.

Unit - 4

7. a) Consider an infinitely thin flat plat at 5° angle of attack in mach 2.6 free stream. 8 M Calculate the lift and drag coefficient.
b) Derive the expression $\left(M_{\infty}{ }^{2}-1\right) \phi_{x x}+\phi_{r r}+\frac{1}{r} \phi_{r}+\frac{1}{r^{2}} \phi_{\theta \theta}=0$

The governing equation for supersonic flows in cylindrical coordinates.

:: 2 ::

8. Consider a hypersonic vehicle with a spherical nose flying at mach 20 at a standard altitude 15 M of 45.72 km , where the ambient temperature and pressure are 277.8 k and $146.5 \mathrm{~N} / \mathrm{m}^{2}$ respectively. At the point on the surface of the nose located 20° away from the stagnation point, estimate:
i. Pressure
ii. Temperature
iii. Mach number
iv. Velocity of flow

Assume an isentropic flow from the stagnation point to point A.

Unit - 5

9. a) With neat sketch, discuss the working of low speed wind tunnel. 9M
b) What are the measurement errors induced in wind tunnel? 6M
10. a) Discuss the principle of hot wire anemometer. 5M
b) With neat sketch explain the pressure measurement in wind tunnel for open section 10 M and closed section.

VARDHAMAN COLLEGE Of ©NGINGERING
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
 (Regulations: VCE-R11)
 WATER RESOURCES ENGINEERING-I

(Civil Engineering)
Date : 7 December, 2013
Time: 3 Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) Explain types of precipitation.
b) A catchment has five rain gauge stations. In a year, the annual rainfall recorded by the gauges are $78.8 \mathrm{cms}, 90.2 \mathrm{cms}, 98.6 \mathrm{cms}, 102.4 \mathrm{cms}$ and 70.4 cms , for a 6% error in the estimation of the mean rainfall, determine the additional number of gauges required in the catchment.
2. a) Define Infiltration capacity, Infiltration rate. What are the factors affecting Infiltration?
b) Explain Infiltration Indices.

Unit - 2

3. a) What are the factors affecting Hydrograph. How the shapes of the catchment basin 8 M influences the spaces of the hydrograph.
b) The flood data and base flow in a storm are estimated for a storm in a catchment of area of 60 Sq.km. plot the resulting hydrograph.

Time in days	0	1	2	3	4	5	6	7	8	9
Discharge (Cumecs)	20	63	151	133	90	63	44	29	20	20
Base flow (Cumecs)	20	22	28	28	26	26	23	21	20	20

4. a) What are the procedures for designing silt free channels using Lacey's theory? 6M
b) Design a regime channel for a discharge of 50 cumecs, with a silt factor of 1.0 using theory.

Unit - 3
5. a) Define the following :
i. Porosity.
ii. Specific yield.
iii. Permeability.
iv. Transmissibility.
v. Storage coefficient.
b) At station A, the water table elevation is 642 m above the mean sea level, and at B, the
elevation is 629 m . The stations are 1100 m apart. The aquifer has a permeability of $1.5 \times 10^{-6} \mathrm{~m} / \mathrm{s}$ and a porosity of 24 percent. What is the actual velocity in the aquifer?
6. a) Write any five advantages and ill effects of irrigation. 5M
b) Briefly explain surface and subsurface irrigation methods. 10M

:: 2 ::

Unit - 4

7. a) The mean annual flood of a river is $600 \mathrm{~m}^{3} / \mathrm{s}$ and the standard deviation of the annual flood time series is $150 \mathrm{~m}^{3} / \mathrm{s}$. What is the probability of a flood of magnitude $1000 \mathrm{~m}^{3} / \mathrm{s}$ occurring in the river within next 5 years? Use Gumbel's method and assume the sample size to be very small.
b) Distinguish between:
i. Hydraulic and hydrologic method of flood routing.
ii. Prism storage and wedge storage.
8. a) Derive the Muskingum channel routing equation $Q 2=C_{0} I_{2}+C_{1} I_{1}+C_{2} Q_{1}$ with usual notations.
b) In a 350 ha watershed the CN value was assessed as 70 for AMC-III. Estimate the value of direct runoff volume for the following 4 days of rainfall. The AMC on July $1^{\text {st }}$ was of category III. Use standard SCS-CN equations.

Date	July 1	July 2	July 3	July 4
Rainfall (mm)	50	20	30	18

Unit - 5

9. a) How do you classify soil water? Explain.
b) Find the field capacity of a soil for the following: Root Zone Depth -2 m ; Existing water constant -5%; Dry density of soil- $15 \mathrm{KN} / \mathrm{m}^{3}$; Water applied to the soil $-500 \mathrm{~m}^{3}$; Water loss due to evaporation and percolation-10\%; Area of plot-1000m².
10. a) Define Duty, Delta and Base Period. Establish a relationship between Duty, Delta and Base Period.
b) The left branch canal carrying a discharge of 20 cumecs has culturable command area of 20,000 hectares. The intensity of Rabi is 80%, and base period is 120 days. The right branch canal carrying discharge of 8 cumecs has culturable command area of 12,000 hectares, intensity of irrigation of Rabi crop is 50% and the base period is 120 days. Compare the efficiencies of the two canal systems.

VARDHAMAN COLLEGE Of $\in \mathbb{N G}$ IN \in ERING

(AUTONOMOUS)
B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)
COMPUTER NETWORKS
(Common to Computer Science and Engineering \& Information Technology)
Time : 3 Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit-1

1. a) What is OSI Model? Explain all the layers of OSI model in detail. 9 M
b) Suppose two hosts, A and B, are separated by 10,000 kilometers and are connected by 6 M a direct link of $\mathrm{R}=1 \mathrm{Gbps}$. Suppose the propagation speed over the link in $2.5 \bullet 10^{8}$ meters/sec.
Calculate the bandwidth-delay product, $R \bullet t_{\text {prop }}$
Consider sending a file of 400,000 bits from Host A to Host B. Suppose the file is sent continuously as one big message. What is the maximum number of bits that will be in the link at any given time?
2. a) What advantages does a circuit-switched network have over a packet-switched 6M network? What advantages does TDM have over FDM in a circuit-switched network? Explain in detail.
b) What are the five layers in the Internet Protocol Stack? What are the principal 9 M responsibilities of each of these layers?

$$
\text { Unit - } 2
$$

3. a) Explain the Ethernet Frame Structure in detail. 10M
b) What do you mean by Connectionless and Connection Oriented Service? Explain in 5M
detail with example.
4. a) Explain slotted ALOHA protocol in detail. 10 M
b) What's the difference between error detection and error correction techniques? 5 M Explain in detail.

Unit - 3

5. a) Explain IPv6 datagram format with diagram in detail.
b) Describe how packet loss can occur at input ports. Describe how packet loss at input 3M ports can be eliminated (without using infinite buffers).
6. a) What do you mean by congestion control? Explain the various approached of 10 M congestion control?
b) Describe how packet loss can occur at output ports.

Unit - 4

7. a) Explain UDP segment format with a neat diagram. 8M
b) Compare UDP and TCP. Also mention at least two applications which use 7M TCP and UDP.
8. a) Explain how connection establishment and termination happen in TCP. 10M
b) Explain multiplexing and demultiplexing with respect to UDP. 5M

Unit-5

9. a) With an example explain how the name resolution takes place in DNS. 10M
b) With a neat diagram explain DN hierarchy. 5M
10. Describe with an example how does a HTTP request retrieves the document 15M usr/users/doc/doc1. Use atleast two general headers, two request headers and one entity header. Show the response if the document has moved to usr/reads/doc/doc1 and if there is a syntax error in the request.

VARDHAMAN COLLEGE Of ©NGINGERING

(AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
 (Regulations: VCE-R11)
 DIGITAL DESIGN THROUGH VERILOG HDL
 (Electronics and Communication Engineering)
 Time: 3 Hours

Date : 10 December, 2013
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

Unit - 1

1. a) What is the need for synthesis? Briefly discuss the two common approaches for 5 M hardware realization using synthesis tool.
b) Discuss different levels of design description in Verilog with suitable examples.
2. a) Discuss the different driving strengths in Verilog with strength level, keyword and 12 M element modeled.
b) Write the structure of typical simulation module and explain.

$$
\text { Unit - } 2
$$

3. a) For AOI gate write Verilog module and test bench module.
b) Draw a 3-to-8 decoder using 2-to-4 decoder and write the Verilog module for the same.
4. a) Draw the gate level circuit of edge-triggered flip-flop and write the Verilog module. 7M
b) Explain 'wand' and 'wor' types of nets with examples. 8M

$$
\text { Unit - } 3
$$

5. a) With an example explain the blocking and non-blocking assignments in Verilog. 8M
b) Design a module for 4-bit four functions ALU and also a test bench for the same by using 7M behavioral modeling.
6. a) Design a module for a 2-bit priority encoder using the 'casez' statement and test bench 8M for the same.
b) Design a 2:4 demultiplexer module and test bench using the if-else-if construct in a 7 M Verilog.

$$
\text { Unit - } 4
$$

7. a) Design $B C D$ adder module and test bench using data flow level. 8M
b) Design a CMOS inverter formed by connecting NMOS and PMOS transistors in series. 7M
8. a) Write a Verilog design description module of a CMOS NOR gate. 8M
b) Design a module for a ring counter and write a test bench for the same. 7M

$$
\text { Unit - } 5
$$

9. a) With an example explain how 'specparam' statements used in Verilog. 8M
b) Write a module for parity generation through a 'function'. 7M
10. a) With an example explain the use of path delay assignments in Verilog. 7M
b) Design a module for 32-bit adder with the addition done in successive clock pulses. 8M

VARDHAMAN COLLEGE OF ENGINEGRING
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
 (Regulations: VCE-R11)
 POWER SYSTEM TRANSMISSION AND DISTRIBUTION
 (Electrical and Electronics Engineering)

Date : 10 December, 2013
Time: 3 Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) Derive expression for the inductance of a symmetrical three phase line.
b) A $50 \mathrm{~Hz}, 123 \mathrm{kV}$ overhead line has conductors placed in a horizontal plane 4.56 m apart. Radius of conductor is 1.12 cm and line length is 100 km . Calculate the charging current per phase assuming complete transposition.
2. a) Derive the expression for capacitance of a two wire line. What is the effect of ground on the capacitance?
b) A three phase 50 Hz line consists of three conductors each of diameter 21 mm . The spacing is $a-b: 3 m ; b-c: 5 m ; c-a: 3.6 \mathrm{~m}$. Find the inductive reactance per phase per km.

Unit - 2

3. a) The per phase quantities of a $60 \mathrm{~Hz}, 200 \mathrm{~km}$ line are $R=2.07 \Omega, L=310.8 \mathrm{mH}$ and $\mathrm{C}=1.4774 \mu \mathrm{~F}$. The line supplies 100 MW , star connected load at $215 \mathrm{kV}(\mathrm{L}-\mathrm{L})$ and 0.9 pf lag. Calculate sending end voltage using nominal T representation.
b) A 3-phase , 50 Hz transmission line is 250 km long. The load is 125 MW operating at 220 kV upf. Evaluate the incident and reflected voltages at receiving end.
$R=0.172 \Omega / \mathrm{km}, \mathrm{L}=2.1 \mathrm{mH} / \mathrm{km}$ and $\mathrm{C}=0.01 \mu \mathrm{~F} / \mathrm{km}$.
4. a) A single phase 50 Hz system supplies an inductive load of 5000 kW at 0.8 pf lag through a line $25 \mathrm{~km} . \mathrm{R}=0.0195 \Omega / \mathrm{km}$ and $\mathrm{L}=0.63 \mathrm{mH} / \mathrm{km}$. $\mathrm{VR}=10 \mathrm{kV}$. Find the sending end voltage, regulation and transmission efficiency.
b) A $60 \mathrm{~Hz}, 250 \mathrm{~km}$ line has an impedance of (33+j104) Ω and admittance of $10^{-3} \mathrm{mho}$. 8 M The receiving end load is 50 MW at 208 kV with 0.8 pf lag. Find the sending end voltage, current, power and power factor using ABCD constants for a nominal π model.

Unit - 3

5. a) Define skin effect, proximity factor, and Ferranti effect.
b) Derive an expression for the sag when supports are at unequal levels.
6. a) Distinguish between disruptive critical voltage and visual critical voltage. Give 8M expressions for the same.
b) Calculate the sag for a span of 200 m if the ultimate tensile strength of conductor is 7 M 5788 kg . Factor of safety is 2 . Weight of conductor is $604 \mathrm{Kg} / \mathrm{km}$.

Unit - 4
7. a) Show that the most economical size of the conductor in a cable is obtained when its 7 M sheath diameter is 2.718 times the core diameter.
b) A string of 4 insulators has a self capacitance equal to 10 times pin to earth 8 M capacitance. Find
i. Voltage distribution of various units as a \% of total voltage across the string.
ii. String efficiency.
8. a) Obtain expressions for the voltages across 4 units of an insulator string in terms of voltage across its top most unit.
b) A single core lead covered cable has a conductor diameter of 3 cm with insulation diameter of 8.5 cm . The cable is insulated with 2 dielectrics with permittivities 5 \& 3 respectively. The maximum stresses in the two dielectrics are $38 \mathrm{kV} / \mathrm{cm}$ and $26 \mathrm{kV} / \mathrm{cm}$ respectively. Calculate the radial thickness of insulating layers and the working voltage of the cable.

Unit - 5

9. a) Four power loads $A B C D$ are connected to a ring distributor and take 20A, 30A, 25A and 30A respectively. The ring is supplied from a substation at ' E ' between A and D. An interconnector cable joins the points B and D. At ' F ' on the interconnector, a load of 20 A is connected. The resistances of different sections are $A B=0.03 \Omega, C D=0.03 \Omega$, $\mathrm{EA}=0.04 \Omega, \mathrm{FB}=0.02 \Omega, \mathrm{BC}=0.02 \Omega, \mathrm{DE}=0.04 \Omega$ and $\mathrm{DF}=0.01 \Omega$. Find the current in all sections of distributor and interconnector.
b) Prove that the volume of copper required for single phase 2 wire system is more than three phase 4 wire system.
10. a) A single phase ring distributor $A B C$ is fed at point ' A ' with 230 V . The impedances of sections $A B, B C, A C$ are $2+j 1 \Omega, 2+j 3 \Omega$ and $1+j 2 \Omega$ respectively. Load at ' B ' is $40 A$ at 0.8 pf lagging while at ' C ' is 60 A at 0.9 pf lagging both with respect to voltage at ' A '. Find current in the three sections of the distributor with respect to voltage at ' A '.
b) Discuss why open loop feeders are better than radial feeders.

VARDHAMAN COLLEGE Of $\operatorname{\in NGIN\in \in RING~}$
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)
THERMAL ENGINEERING-II
(Mechanical Engineering)
Date : 10 December, 2013
Time: 3 Hours
Max. Marks : 75

Answer ONE question from each Unit

All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - 1

1. a) Explain reheat cycle and compare it with simple Rankine cycle.
b) A steam turbine plant operates on Rankine cycle with steam entering turbine at $40 \mathrm{bar}, 350^{\circ} \mathrm{C}$ and leaving at 0.05 bar. Determine the network per kg of steam and thermal efficiency of cycle.
2. a) What do you mean by stoichiometric air-fuel ratio?
b) Calculate the amount of theoretical air required for the combustion of 1 kg of acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.

Unit - 2

3. a) What is the function of boiler mountings? Can boiler work without mountings? 5 M
b) Calculate the height of chimney required to produce a draught equivalent to 1.7 cm of water if the fuel gas temperature is $270^{\circ} \mathrm{C}$ and ambient temperature is $22^{\circ} \mathrm{C}$ and minimum amount of air per kg of fuel is 17 kg .
4. a) Define the term steam nozzle? Explain various types of nozzles.
b) Dry saturated steam enters a steam nozzle at a pressure of 15 bar and is discharged at a pressure of 2 bar, if the dryness fraction of discharge steam is 0.96 . What will be the final velocity of steam? Neglect the initial velocity of steam. If 10% of heat drop is lost in friction find the percentage reduction in the final velocity.

Unit - 3

5. a) List any five reasons for inefficiency in surface condensers.
b) The air leakage into the condenser operating in conjunction with a steam turbine is estimated at 0.681 Kg per minute. The vacuum near the outlet to the air pump is 710 mm when the barometer reads 760 mm and temperature at this point is $18{ }^{\circ} \mathrm{C}$. Find
i. The minimum capacity of air pump in $\mathrm{m}^{3} / \mathrm{min}$
ii. The mass of vapour extracted with the air/min
6. a) Write a short note on impulse turbine.
b) The velocity of steam exiting the nozzle of the impulse stage of a turbine is $400 \mathrm{~m} / \mathrm{s}$, the blades operate close to the maximum blading efficiency. The nozzle angle is 20° considering equiangular blades and neglecting blade friction, calculate for a steam flow of $0.6 \mathrm{~kg} / \mathrm{s}$, the blade power and blade efficiency.

Unit - 4

7. a) Draw a neat velocity diagram of a reaction turbine and label it.
b) In a reaction turbine, the fixed blades and moving blades are of the same shape but reversed in direction. The angles of the receiving tips are 35° and of the discharging tips is 20°. Find the power developed per pair of blades for a steam consumption of $2.5 \mathrm{~kg} / \mathrm{s}$, when the blade speed is $50 \mathrm{~m} / \mathrm{s}$. if the heat drop per pair is $10.04 \mathrm{~kJ} / \mathrm{kg}$, find the efficiency of the pair.
8. a) Draw a neat sketch and explain the process of intercooling to improve the thermal 10 M efficiency of an open cycle gas turbine plant.
b) Draw a neat sketch of an open cycle gas turbine plant 5M

- A Unit - 5

9. A turbo jet engine consumes air at the rate of $60.2 \mathrm{~kg} / \mathrm{s}$ when flying at a speed of 15M $1000 \mathrm{~km} / \mathrm{hr}$. Calculate
i. Exit velocity of the jet when the enthalpy change for the nozzle is $230 \mathrm{~kJ} / \mathrm{kg}$ and velocity coefficient is 0.96 .
ii. Fuel flow rate in kg / s when air fuel ratio is 70:1.
iii. Thrust specific fuel consumption.
iv. Thermal efficiency of the plant when the combustion efficiency is 92% and calorific value of the fuel used is $42000 \mathrm{~kJ} / \mathrm{kg}$.
v. Propulsive power.
vi. Propulsive efficiency.
vii. Overall efficiency.
10. a) List the requirements of an ideal rocket propellant. 5M
b) Draw a neat sketch and explain the working of any one type of a rocket propellant 10 M engine

VARDHAMAN COLLEGE Of ©NGINGERING
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11
FLIGHT MECHANICS - II
(Aeronautical Engineering)
Date : 10 December, 2013
Time : 3 Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) Discuss the categories of aircraft flight?
b) What is the purpose to control system in airplanes? Explain inherently stability 8M of airplanes?
2. a) Explain static and dynamic stability of airplanes.
b) Discuss the equations governing the translation and rotational motion of an airplane.

Unit - 2

3. a) Differentiate between stability derivative and control derivative.
b) Explain flight configuration.
4. a) Discuss any two method of determining the derivative values.
b) With block diagram explain aircraft sizing.

Unit - 3

5. a) Derive an expression for angle of attack and elevator angle required for a flight at 10 M steady cruise, descent condition.
b) Write short notes on trim tabs.
6. a) With neat sketch explain the concept of pitch damping. 10M
b) Write short notes on total aerodynamic forces.

Unit - 4

7. a) Obtain an expression for tail contribution to the longitudinal stability in the form
$\left(\frac{d c_{m}}{d e_{L}}\right)_{\text {tail }}=-\eta_{t} \cdot V_{H} \cdot \frac{a_{t}}{a_{w}}\left(1-\frac{d \in}{d \alpha}\right)$
b) A general aviation air plane has the following characteristics
Gross weight $=2750 \mathrm{~kg}, \bar{c}=5.7 \mathrm{~m}, \mathrm{~B}=33.4 \mathrm{~m}, \mathrm{~S}=184 \mathrm{~m} 2, \mathrm{~S}_{\mathrm{t}}=43 \mathrm{~m} 2, \mathrm{~L}_{\mathrm{t}}=16 \mathrm{~m}$,
$\mathrm{X}_{\mathrm{C} . \mathrm{G}}=0.295 \bar{c}, \mathrm{~V}=176 \mathrm{~m} / \mathrm{sec}$. The pitching moment coefficient curve for the most forward C.G is given as $C_{m \alpha}=-0.20-0.035 \alpha$. Estimate the size of the elevator to trim the air plane at angle of attack of 10° and assume that the elevator angle constrained to $+20^{\circ}$ and -25^{0}.
8. a) Define stick fixed neutral point and obtain the expression for the same and also discuss the effect of C.G shift on the stability with relevant graphs.
b) Describe the effects of power on the stability of jet air plane and obtain the stability equation
$\left(\frac{d c_{m}}{d e_{L}}\right)_{j e t}$.

::2::

Unit - 5

9. a) What is meant by coupling effect and derive the expression for rolling moment with rudder.
b) Consider an airplane in rolling moment with yaw rate and derive the expression in the form

$$
C_{l_{r}}=\frac{C_{L}}{6}\left(\frac{1+3 \lambda}{1+\lambda}\right)+C_{y_{r}} \frac{Z_{v}}{b}
$$

10. Write short notes on the following:
i) Phugoid mode and short period mode.
ii) Spiral approximation.
iii) Dutch roll approximation.

VARDHAMAN COLLEGE Of ©NGINGERING (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)
STRUCTURAL ANALYSIS-II
(Civil Engineering)
Time: 3 Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) Differentiate between two hinged and three hinged arches. 3M
b) A three hinged parabolic arch hinged at the supports and at the crown has a span of 24 m and central rise of 4 m . It carries concentrated loads of 75 KN at 18 m from left support and a uniformly distributed load of $45 \mathrm{KN} / \mathrm{m}$ over the left half of the portion. Determine the moment, normal thrust and radial shear at a section 6 m from left support.
2. a) Explain the effect of temperature changes on a two hinged arch.
b) A two hinged parabolic arch of span 30 m and rise 6 m carries two point loads each 60 KN acting at 7.5 m and 15 mfrom the left end respectively. The moment of inertia varies as the secant of slope. Determine the horizontal thrustand maximum positive and negative bending moment.

Unit - 2

3. a) Explain the step by step procedure to analyse a structure by Slope Deflection method. 5M
b) Find the support moments for the frame shown in fig. 1 by Kani's method. 10M

fig. 1
4. a) Explain stiffness factor and rotation factor.
b) Determine the support moments for the continuous girder shown in fig. 2 .Support B 10M sinks by $2.5 \mathrm{~mm} . \mathrm{I}=3.5 \times 10^{7} \mathrm{~mm}^{4}$ and $\mathrm{E}=200 \mathrm{KN} / \mathrm{mm}^{2}$ Use S D Method.

fig. 2

Unit - 3

5. Analyse the continuous beam loaded as shown in the fig. 3 by slope deflection method and sketch the bending moment diagram, given $2 \mathrm{I}_{\mathrm{AB}}=\mathrm{I}_{\mathrm{BC}}=2 \mathrm{I}_{\mathrm{CD}}=2 \mathrm{I}$

fig. 3
6. a) Explain Distribution factor with an example
b) A continuous beam $A B C$ is supported on an elastic column $B D$ and is loaded as shown in the fig.4. Treating joint B as rigid, analyze the frame and draw the B.M.D and also sketch the deflected shape of the structure. Use moment distribution method.

fig. 4

Unit - 4

7. a) Differentiate between Flexibility Method and Stiffness method of analysis.
b) Analyze the continuous beam shown in fig. 5 by flexibility method and draw the bending moment diagram.

fig. 5
8. a) Explain briefly the procedure involved in the analysis by flexibility method.
b) A Continuous beam ABC has two spans and is loaded as shown in the fig.6. Determine 10M the moments at supports and plot the bending moment diagram. Use flexibility method.

Unit - 5
9. Analyse the continuous beam shown in fig. 7 by stiffness matrix method.

fig. 7
10. Analyse the frame shown in fig. 8 by stiffness matrix method.

fig. 8

VARDHAMAN COLLEGE Of $\operatorname{\in NGIN\in \in RING~}$
(AUTONOMOUS)
B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)
SYSTEMS PROGRAMMING
(Computer Science and Engineering)
Date : 12 December, 2013 Time: 3 Hours

Max. Marks : 75
Answer ONE question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - 1

1. a) Explain the architecture of Simplified Instruction Computer machine.
b) List the various data structures used in the assembling process. With an algorithm,

8M explain the usage of these data structures in pass-one of a two-pass assembler.
2. a) Compare a two pass assembler with a single-pass assembler. How are forward 6 M references handled in one-pass assembler?
b) What is program block? How are multiple program blocks handled by assembler?

Unit - 2

3. a) With a neat block diagram, explain the process of dynamic linking. Discuss its 6M advantages.
b) What is a loader? List the functions of a loader. Develop an algorithm for a bootstrap 9 M loader.
4. a) With neat diagrams, explain and differentiate between linkage editor and linking 9M loader.
b) Explain with an example, how program relocation is accomplished in SIC and SIC/XE.

Unit - 3

5. a) Explain the process of macro definition and expansion. Discuss different data 7M structures used by a macro processor
b) Explain the following macro processor features
i. Concatenation of Macro Parameters
ii. Generation of unique labels
6. a) Explain the concept of Recursive Macro Expansion in detail.
b) Explain the various Macro Processors design options.

Unit - 4

7. a) Write the algorithm for processing an I/O interrupt. 5M
b) Explain three-level scheduling system. Discuss different job scheduling algorithms with examples.
10M
8. a) What is a process? Write algorithms for Wait and Signal functions for efficient process 7M
scheduling.

b) Explain the process of dynamic address translation and demand paging.

Unit - 5

9. a) What do you mean by embedded system software? Explain in detail. 5M
b) What is cloud computing? Explain the public and private cloud computing in detail. 10M
10. a) Explain the Android system architecture in detail. 10M
b) Explain the concept of virtualization in cloud computing. 5M

No

VARDHAMAN COLLEGE OF ENGINEGRING
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)
THEORY OF COMPUTATION
(Information Technology)
Date : 12 December, 2013
Time : 3 Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

 All parts of the question must be answered in one place onlyUnit - 1

1. a) Find Finite Automata for the following languages on $\Sigma=\{a, b\}$
$L=\{w: n a(w) \bmod 5>1\}$ and show that string aaaa is accepted by the automata.
b) Convert the following NFA to a DFA

δ	0	1
$\rightarrow p$	$\{p, q\}$	$\{p\}$
q	$\{r\}$	$\{r\}$
r	$\{s\}$	Φ
*s $^{\prime}$	$\{s\}$	$\{s\}$

2. a) Convert the following ε - NFA to DFA

b) Minimize the states of the following DFA using table-filling algorithm.

δ	0	1
$\rightarrow \mathrm{~A}$	B	E
B	C	F
${ }^{*} \mathrm{C}$	D	H
D	E	H
E	F	I
${ }^{*} \mathrm{~F}$	G	B
G	H	B
H	I	C
${ }^{*} \mathrm{I}$	A	E

Unit - 2

3. a) Obtain a Regular expression for the finite automata shown below:

b) Define the Language of Finite Automata. Convert the following regular expression to ε-NFA. $\quad R E=(00+1) * 011$
4. a) Prove that there exists a finite automata to accept the language $L(R)$ corresponding to the regular expression R.
b) Convert the following DFA to a regular Expression using the state elimination method.

	0	1
$*_{p}$	S	P
Q	P	S
R	R	Q
S	Q	R

Unit-3
5. a) Obtain a CFG to generate strings of a's and b's consisting of equal number of a's and b's. Also justify
b) Define leftmost and rightmost derivations. Also obtain LMD and RMD for the string aabbbb and grammar G is

$$
\mathrm{S} \rightarrow \mathrm{AB} \mid \varepsilon \quad \mathrm{A} \rightarrow \mathrm{aB} \quad \mathrm{~B} \rightarrow \mathrm{Sb} \quad \text { Also construct the parse trees }
$$

6. a) Define ambiguous grammar. Also show that the grammar is ambiguous for the string abababa and the grammar is

$\mathrm{S} \rightarrow \mathrm{SbS} \mid \mathrm{a}$

b) Convert the following CFG to Chomsky normal form:

$$
\mathrm{S} \rightarrow 0 \mathrm{~A} \mid 1 \mathrm{~B}
$$

$A \rightarrow O A A|1 S| 1$
$\mathrm{B} \rightarrow 1 \mathrm{bb}|\mathrm{OS}| 0$

Unit-4

7. a) Design PDA for the following language accepted by final state. Also write its transition diagram and instantaneous description on the string "aacccbb".
$L=\left\{a^{n} c^{m} b^{n}: m \geq 1, n \geq 1\right\}$
b) Write the procedure to convert CFG to PDA and also convert the following CFG to PDA.
$\mathrm{S} \rightarrow \mathrm{aABB} \mid \mathrm{aAA}$
$A \rightarrow a B B \mid a$
$\mathrm{B} \rightarrow \mathrm{bBB} \mid \mathrm{A}$
$C \rightarrow a$
8. a) Design PDA for the following language accepted by final state. Also write its transition diagram and instantaneous description on the string "aaabb". $L=\left\{w \mid w \in(a, b)^{*}\right.$ and $\left.n_{a}(w)>n_{b}(w)\right\}$
b) Design PDA for the following language accepted by final state. Also write instantaneous description for the string "aabbbbbccc". $L=\left\{a^{n} b^{n+m} c^{m}: n \geq 0, m \geq 1\right\}$

Unit-5
9. a) Explain the working of a Turing machine with a diagram.
b) Design a Turing Machine that accepts the language $L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$. 10M
10. a) Write a note on Modified PCP and Multi stack Turing machine. 5M
b) Obtain a Turing machine to accept the language $L=\{w \mid w$ is even and $\Sigma \in\{a, b\}$. 10M

No

VARDHAMAN COLLEGE Of ENGINEERING
(AUTONOMOUS)
B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)
ANALOG COMMUNICATIONS
(Electronics and Communication Engineering)
Date : 12 December, 2013
Time: 3 Hours
Max. Marks:
Answer ONE question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - 1

1. a) Explain the demodulation of an $A M$ wave using an envelope detector. 8 M
b) When a broadcast AM Transmitter is 50 percent modulated its antenna current is 7 M 12A. What will be the current when the modulation depth is increased to 0.9 ?
2. a) With a neat block diagram explain the synchronous receiving system for receiving 8 M DSBSC modulated wave.
b) A 360W carrier is simultaneously modulated by two sin waves with waves with 7M modulation percentage of 55 and 65 respectively what is the total sideband power radiated.

Unit - 2

3. a) Explain SSB wave generation using phase shift method with relevant diagrams and equations.
b) In a coherent detection of SSBSC, if the carrier applied is $\operatorname{Cos}\left(2 \pi f_{c} t+\phi\right)$ prove that there is a phase error in the output i.e output consists not only the message signal but also its Hilbert transform.
4. a) Explain vestigial side band modulation. Represent the VSB modulated wave in time domain.
b) Calculate the percentage power saving when the carrier and one of the side bands 7M are suppressed in an AM wave modulated to a depth of
i) 100%
ii) 50%

Unit - 3

5. a) Derive the equation for FM wave, derive Modulation Index and Frequency Deviation for single tone.
b) Describe with necessary diagram generation of Narrow Band Frequency Modulation and also compare Narrow Band FM and Single tone AM.
6. a) an angle modulated signal is defined by $s(t)=10 \operatorname{Cos}\left[2 \pi .10^{6} t+0.2 \sin 2000 \pi t\right]$ volts find the following:
i. The power in the modulated signal
ii. The frequency deviation Δf
iii. Phase deviation Δ
iv. Approximate transmission bandwidth
b) Explain with a block diagram the phase locked loop for the demodulation of FM 7M
signal.

Unit - 4

7. a) Clearly explain the improvement in SNR for frequency modulation using preemphasis 8 M and de-emphasis.
b) With the help of a neat wave forms explain the principle of PWM and PPM 7M generation. Briefly explain the demodulation of PWM and PPM.
8. a) Find the figure of merit of Double side band suppressed carrier signal. 8M
b) Write the expressions for signal to Noise ratio in case of SSB-SC and DSB-SC signals. A 7M received DSB-SC signal of strength 1 mW has a power spectrum which extends over the frequency range $f_{c}=1 \mathrm{MHz}$ to $f_{c}-f_{m}=0.995 \mathrm{MHz}, f_{c}+f_{m}=1.005 \mathrm{MHz}$. The accomplished noise has uniform power spectral density $10^{-9} \mathrm{~W} / \mathrm{Hz}$. This is multiplied by a local oscillator of frequency 1 MHz and followed by a base band filter of cut off frequency fm to get message signal. Find the signal and energy at the output of baseband filter and calculate the SNR.

Unit - 5

9. a) Explain different methods of tracking which will overcome the tracking error. 8M
b) Explain automatic gain control which prevents the signal overloading in super 7M heterodyne receiver.
10. a) In a super heterodyne receiver having no RF amplifier the loaded Q of the antenna 8 M coupling circuit is 60 if the intermediate frequency is 455 kHz , calculate the image frequency and its rejection ratio at 1500 kHz .
b) Explain FM transmitters which use frequency multiplier and mixer to increase 7 M frequency deviation.

VARDHAMAN COLLEGE Of ENGINEGRING
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)
AC MACHINES-II
(Electrical and Electronics Engineering)
Date : 12 December, 2013 Time : 3 Hours

Max. Marks : 75
Answer ONE question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - 1

1. a) Discuss in brief about armature reaction of an alternator. 8M
b) Find the synchronous impedance, synchronous reactance, and the terminal voltage when full load is thrown off, of a 250 Amp, $6600 \mathrm{~V}, 0.8$ power factor alternator, in which, given field current produces an armature current of 250 Amp on short circuit and a generated EMF of 1500 V on open circuit. The armature resistance is 2 Ohm .
2. a) From the basics, derive an expression for generated EMF/Ph equation of an alternator.
b) Discuss in brief about the effect of distribution applicable to distributed winding of an Alternator.

Unit - 2

3. a) Describe the procedure to compute the voltage regulation of a synchronous machine through EMF method.
b) The data obtained on $100 \mathrm{kVA}, 1100 \mathrm{~V}$, 3-phase alternator is: DC resistance test, E between line 6 V dc , I in lines = 10 Adc . Open test, field current 12.5 A dc , line voltage 420 V ac. Short circuit test, field current $=12.5 \mathrm{~A}$, line current =rated value. Calculate the voltage regulation of alternator at 0.8 power factor lagging. Assume alternator is star connected.
4. a) With relevant characteristics, describe how voltage regulation of a synchronous machine can be found through zero power factor method.
b) A 3-phase star connected alternator is rated at 100 kVA . On a short-circuit a field current of 50 Amp gives the full load current. The EMF generated on open circuit with the same field current is $1575 \mathrm{~V} /$ phase. Calculate the voltage regulation at
i. 0.8 power factor lagging
ii. 0.8 power factor leading

Assume armature resistance is 1.5Ω.

Unit - 3
5. a) What are the conditions to be fulfilled for parallel operation of two synchronous machines? Explain with diagram two dark and one bright lamp method.
b) A 3MVA, 6-pole alternator runs at 1,000 rpm on 3.3 kV bus bars. The synchronous reactance is 25%. Calculate the synchronising power and torque per mechanical degree of displacement when the alternator is supplying full-load at 0.8 pf lag.
6. a) Two alternators are running in parallel and sharing a load in desired proportion. Explain what will happen if the excitation of alternators are changed while their prime mover inputs are fixed.
b) Two identical, three-phase alternators operating in parallel share equally a load of 1000 kW at 6600 V and 0.8 lagging power factor. The field excitation of the first machine is adjusted so that the armature current is 50 A at lagging power factor. Determine (i) the armature current of the second alternator, and (ii) the power factor at which each machine operates.

Unit - 4

7. a) What do you understand by a synchronous condenser? Explain with the help of phasor diagrams its operation and application.
b) A $1000 \mathrm{kVA}, 11000 \mathrm{~V}$, 3-phase star connected synchronous motor has an armature resistance and reactance per phase of 3.5Ω and 40Ω respectively. Determine the induced emf and angular retardation of the rotor when fully loaded at
i. Unity power factor
ii. 0.8 power factor lagging
8. a) Write short notes on V and inverted V curves. 8M
b) A 3-phase, 400 V synchronous motor takes 52.5 A at a power factor of 0.8 leading. 7M Determine the induced e.m.f. and the power supplied. The motor impedance per phase is $(0.25+\mathrm{j} 3.2) \Omega$.

Unit - 5

9. a) With a neat sketch and phasor diagram, explain the operation of resistance split phase motor.
b) With a neat sketch, explain the principle of operation of a 1-phase series motor.
10. a) Describe in detail about the revolving field theory of single-phase induction motor. 7M
b) With a neat sketch, explain the principle of operation of shaded pole motor. 8M

VARDHAMAN COLLEGE Of ©NGINGERING
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
 (Regulations: VCE-R11)
 DESIGN OF MACHINE MEMBERS-I

(Mechanical Engineering)
Date : 12 December, 2013
Time: 3 Hours
Max. Marks : 75
Answer ONE question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - 1

1. a) List the factors which govern the selection of a material for a machine element. 7M
b) Draw the stress strain diagram for mild steel material and show the salient points on 8 M them.
2. a) A steel shaft is subjected to a bending moment of $9 \mathrm{kN}-\mathrm{m}$ and a twisting moment of $12 \mathrm{kN}-\mathrm{m}$. The yield strength of steel is 360 mpa in tension and compression and the Poisson's ratio is 0.3 . if the factor of safety is 2 with respect to failure determine the permissible diameter of the shaft according to
i. Maximum shear stress theory of failure
ii. Maximum normal stress theory of failure
iii. Maximum distortion theory of failure
b) Write a short notes on theories of failure.

Unit - 2

3. a) Write a note on approximate estimation of endurance limit.
b) A rotating beam specimen made of steel $45 \mathrm{C} 8\left(\mathrm{~S}_{\mathrm{ut}}=630 \mathrm{~N} / \mathrm{mm}^{2}\right)$ is subjected to a completely reversed bending stress. Calculate the endurance strength of the specimen for a life of 90,000 cycles.
4. a) A transmission shaft of cold drawn steel $27 \mathrm{Mn} 2\left(\mathrm{~S}_{\mathrm{ut}}=500 \mathrm{~N} / \mathrm{mm}^{2}\right.$ and $\mathrm{S}_{\mathrm{yt}}=300 \mathrm{~N} / \mathrm{mm}^{2}$) is subjected to a fluctuating torque which varies from $-100 \mathrm{~N}-\mathrm{m}$ to $+400 \mathrm{~N}-\mathrm{m}$. The factor of safety is 2 and the expected reliability is 90%. Neglecting the effect of stress concentration, determine the diameter of the shaft. Assume the distortion energy theory of failure.
b) Write short notes on reduction of stress concentration.

Unit - 3
5. a) Explain the various possible modes of failure of riveted joint.
b) A single riveted lap joint is to be made of 8 mm plates. Find the diameter of rivets, pitch, shank length, margin and efficiency of the joint. The allowable tensile stress of the plate is 124 MPa , the allowable shear stress of the rivet is 93 MPa and the allowable crushing stress of rivet or plate is 165 MPa .
6. a) Explain the stresses considered in designing of bolts with static loading. 10M
b) Define the following i) pitch diameter ii) Lead iii) thread angle iv) Depth and v)Helix 5M angle with respect to screw thread.

Unit - 4
7. a) A square key is to be used to a key gear to a 35 mm diameter shaft, The hub length of gear is 60 mm . Both shaft and key are made of same material having an allowable shear stress of 55 MPa . What are the dimensions of the square key if 395 N -m torque is to be transmitted.
b) Design a knuckle joint to connect two mild steel rods to sustain in an axial pull of 150 kN . The pin and the rods are made of same material. Assuming the working stresses in the material as 80 MPa in tension, 40 mpa in shear and 120 MPa in crushing.
8. a) A wire rope is used with a hoisting drum of 1 meter diameter to lift a load of 20 kN . Determine the diameter of the shaft to which the drum is keyed if the safe shear stress in the shaft material is 45 MPa . Neglecting the effect of bending.
b) How shafts can be designed?
c) A hallow shaft is mounted between bearings 4 meter apart transmits 1 mW at 100 rpm . The shaft weighs 27 kN . The outside and inside diameters of the shaft are 0.45 m and 0.3 m respectively then determine, i) shear stress induced in the shaft by taking $\mathrm{K}_{\mathrm{b}}=1.5$ and $\mathrm{K}_{\mathrm{t}}=1.0 \mathrm{ii}$) angular deflection between bearings by taking ' G ' as 80GPa.

Unit - 5

9. a) A rigid coupling is used to transmit 20 kW of power at 720 rpm . There are four bolts and the pitch circle diameter of the bolts is 125 mm . The bolts are made of steel 45 C 8 $\left(\mathrm{S}_{\mathrm{yt}}=380 \mathrm{~N} / \mathrm{mm}^{2}\right.$) and the factor of safety is 3 . Determine the diameter of the bolts. Assume that the bolts are finger tight in reamed and ground holes.
b) Write short notes on Couplings. 5M
a) Derive an expression for Energy stored in helical springs.
b) A helical springs is made from a wire of 6 mm diameter and has outside diameter of
i. Neglecting the effect of curvature
ii. Considering the effect of curvature

VARDHAMAN COLLEGE Of $\operatorname{\in NGIN\in \in RING~}$
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)

AEROSPACE VEHICLE STRUCTURES-II

(Aeronautical Engineering)
Date : 12 December, 2013
Time : 3 Hours
Max. Marks : 75
Answer ONE question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - 1

1. a) Explain briefly about complete and incomplete diagonal tension beams. 8M
b) Explain the importance of Wagner's theory of beams? 7 M
2. a) Explain the following: 8M
i. Stability of stiffened Panel
ii. Monocoque and semi monocoque
b) Derive the equation for shear force at any section of an incomplete tension field beam?

Unit - 2

3. The doubly symmetrical fuselage section shown in fig. 1 has been idealized into an 15 M arrangement of direct stress carrying booms and shear stress carrying skin panels; the boom areas are all $150 \mathrm{~mm}^{2}$. Calculate the direct stresses in the booms and the shear flows in the panels when the section is subjected to a shear load of 50 kN and a bending moment of 100 kN m .

fig. 1
4. Figure .2 shows the cross section of a two-cell torque box. If the shear stress in any wall must not exceed $140 \mathrm{~N} / \mathrm{mm}^{2}$, find the maximum torque which can be applied to the box. If this torque were applied at one end and resisted at the other end of such a box of span 2500 mm , find the twist in degrees of one end relative to the other and the torsional rigidity of the box. The shear modulus $\mathrm{G}=26600 \mathrm{~N} / \mathrm{mm}^{2}$ for all walls. Data are as follows:

Shaded areas: A34 $=6450 \mathrm{~mm} 2, \mathrm{~A} 16=7750 \mathrm{~mm} 2$
Wall lengths: S34 $=250 \mathrm{~mm}, \mathrm{~S} 16=300 \mathrm{~mm}$
Wall thickness: $\mathrm{t} 12=1.63 \mathrm{~mm}, \mathrm{t} 34=0.56 \mathrm{~mm}, \mathrm{t} 23=\mathrm{t} 45=\mathrm{t} 56=0.92 \mathrm{~mm}, \mathrm{t} 61=2.03 \mathrm{~mm}$, $\mathrm{t} 25=2.54 \mathrm{~mm}$.

fig. 2
Unit - 3
5. a) Explain effective skin width concept in skin stringer construction. 7M
b) Briefly discuss about stability of stiffened Panel. 8M
6. a) Derive an expression for share flow in open section? 8M
b) Give a brief note about unsymmetrical beams and mention its assumptions. 7M

Unit - 4

7. Derive the expression for primary wrapping of thin walled open section beam. 15M
8. The cold-formed section shown in fig. 3 is subjected to a torque of 50 Nm . Calculate the 15 M maximum shear stress in the section and its rate of twist. $G=25000 \mathrm{~N} / \mathrm{mm} 2$.

Unit - 5

9. a) Derive an equation for torsion in thin walled open section beams? 8M
b) What is primary and secondary warping? Derive the equations for the same? 7M
10. a) Explain the effect of axial constraint in an open section beams subjected to torsion? 7M
b) Determine maximum shear stress and warping distribution in the channel section shown 8 M in fig.4, when it is subjected to an anticlockwise torque of $10 \mathrm{Nm}, \mathrm{G}=25000 \mathrm{~N} / \mathrm{mm}^{2}$.

fig. 4

VARDHAMAN COLLEGE Of ©NGINGERING
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)

ENGINEERING GEOLOGY

(Civil Engineering)

Date : 12 December, 2013
Time : 3 Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) Explain the process of weathering. 8M
b) Mention any seven failures of different kinds of important civil constructions due to 7 M geological drawbacks.
2. a) What is the importance of weathering with reference to dams? 8M
b) Give a brief account on weathering of Granite.

Unit - 2
3. a) Explain the properties exhibited by minerals due to light (such as color, streak, lusture 8 M and diaphaneity).
b) Explain the important properties of following rock forming minerals: 7M
i) Grey Quartz
ii) White Calcite
iii) Biotite
iv) Talc
4. a) What is Ore mineral? List out any 5 ore minerals with composition. 7M
b) Explain the properties of the following economic minerals and its uses: 8M
i) Hematite
ii) Galena
iii) Pyrolusite
iv) Magnesite

Unit - 3
5. a) What are the characteristics of igneous rocks? Explain briefly the classification of 8 M igneous rocks.
b) How sedimentary rocks are formed? Briefly explain structures exhibited by sedimentary7M rocks.
6. a) What is Dip and Strike? Explain with neat sketch. Add a brief note on objectives of dip
and strikes in civil engineering projects.
$\begin{array}{ll}\text { b) Explain the following with neat sketches: } \\ \begin{array}{ll}\text { i)Normal Fault } & \text { ii)Anticline and syncline fold }\end{array} & 7 M\end{array}$

Unit - 4
7. a) What are the principles of geophysical study by gravity method? 7M
b) What are the applications of gravity method of geophysical investigation? 8M
8. a) What is grouting? Describe the various methods of grouting adopted in the construction 7M of civil engineering structures.
b) What is the controlling property, principle and applications of electrical method of 8 M geophysical exploration?

Unit - 5

9. a) What is a dam? Discuss briefly the geological considerations in selecting a suitable site 8 M for the construction of a dam.
b) Add a note on tunneling through folds. 7M
10. a) What are the considerations for successful reservoir? 7M
b) What is silting? Write the remedial measures of silt control. 8M

VARDHAMAN COLLEGE Of ©NGINGERING
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
 (Regulations: VCE-R11)
 DESIGN AND ANALYSIS OF ALGORITHMS
 (Common to Computer Science and Engineering \& Information Technology)

Date : 14 December, 2013
Time : 3 Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) Describe the worst case analysis for quick sort algorithm.
b) Apply quick sort on the following data with 6 as the pivot element:
$\begin{array}{llllllllll}2 & 5 & 8 & 3 & 9 & 4 & 1 & 7 & 10 & 6\end{array}$
2. a) Explain the Stassen's matrix multiplication and compare it with basic matrix multiplication method.
b) Give a big-O estimate for each of these functions. Use a simple function in the big-O estimate.
i. $3 n+n^{3}+4$.
ii. $1+2+3+\ldots \ldots+n$.

$$
\text { Unit - } 2
$$

3. a) Explain the Real knapsack problem with an example.
b) Explain the concept of job scheduling with deadlines. Find a feasible solution and job processing sequence such that each job can be completed by its deadline so as to maximize its profit. Consider $n=4,(p 1, p 2, p 3, p 4)=(100,10,15,27)$ and (d1, d2, d3, $\mathrm{d} 4)=(2,1,2,1)$
4. a) Write the differences between Prim's and Kruskal's algorithm. Mention the 8M applications of spanning tree.
b) Find the minimum spanning tree using Kruskal's algorithm.

Unit-3
5. a) Explain the dynamic programming approach for problem solving. Discuss the 7M difference between greedy approach and dynamic approach of problem solving.
b) Write an algorithm to find all-pairs shortest path of a given graph. Apply the algorithm 8 M to find all-pairs shortest path for the following graph:

6. a) Explain the travelling salesman problem with an example. 7M
b) Solve the 0/1 knapsack problem for the following data:

Item	Weight	Value
10	9	10
11	8	4
12	9	9
13	8	11

The maximum weight the knapsack can hold is 20.

Unit - 4

7. a) What is branch and bound? How is it different from back tracking?
b) What is backtracking? Apply backtracking algorithm to solve the following instance of 10 M the subset sub problem $S=\{5,7,8,10\}$ and $d=15$.
8. a) Explain the travelling salesman problem using the branch and bound technique. 7M
b) Explain the 0/1 knapsack problem using branch and bound technique. 8 M

Unit - 5

9. a) What do you mean by Non-deterministic algorithm? Explain with examples. 6M
b) Distinguish between P, NP and NP-complete problems. Give examples for each 9M category.
10. a) Write brief note on Cooks theorem and comparison trees. 9M
b) Draw decision trees for the following: 6M
i. Three element insertion sort
ii. Binary decision tree for binary search in a four-element array

VARDHAMAN COLLEGE Of ©NGINGERING
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)
ANTENNAS AND WAVE PROPAGATION
(Electronics and Communication Engineering)
Date : 14 December, 2013
Time: 3 Hours
Max. Marks : 75

Answer ONE question from each Unit

All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - 1

1. a) Define
i. Isotropic and Directional Antenna
ii. Radiation Pattern
iii. Near and Far Fields
iv. Polarization of an antenna
v. Directivity of an antenna
b) An antenna has a radiation resistance of 72Ω, loss resistance o 8Ω and power gain of 12 dB . Determine the antenna efficiency and it's directivity.
2. a) Obtain the expressions for radiation resistance, maximum directivity and effective aperture assuming the expression for average power density for an infinitesimal dipole.
b) Discuss the far field conditions for an antenna of length L and assuming far field conditions, calculate the amplitude and phase errors for an antenna of length 6λ when observations are made at a distance of 80λ.

$$
\text { Unit - } 2
$$

3. a) Show that the radiation resistance of a small loop antenna is $R_{r}=31171\left(A / \lambda^{2}\right)^{2}$.
b) Explain briefly the following:
i. Broadside array
ii. End fire array
iii. Scanning array
4. a) Given a linear uniform array of 16 elements with a separation of $\lambda / 4$ between the elements. Compare the directivity of the array if the array is (i) Broadside array (ii) Ordinary end fire array.
b) Assuming the array factor for an uniform planar array, find the progressive phase shift between the elements in the x and y directions for a desired beam at $\theta=\theta_{0}, \emptyset=\emptyset_{0}$ and the conditions for principal maxima and grating lobes to occur.

$$
\text { Unit - } 3
$$

5. a) What are the advantages and drawbacks of rhombic antenna? Design an alignment type rhombic antenna for an elevation angle $\alpha=17.5^{\circ}$ to be operated at $\lambda=3 \mathrm{~cm}$.
b) Explain the principle of operation of V-dipole antennas. Design a V-dipole antenna to 8 M be operated at 20 MHz with directivity of 7.5 dB .
6. a) Draw the basic geometry of a helical antenna and define the various parameters. 9 M
b) A 10 turn axial mode helix antenna has the following specifications:
$\alpha=13^{0}, f=8 \mathrm{GHz}$ and circumference of the helix $\mathrm{C}=3.4 \mathrm{~cm}$. Find the gain, HPBW and axial ratio of the antenna.

Unit - 4

7. a) Discuss the method adopted to obtain optimum flare angles of a pyramidal horn and the conditions on horn length to realize such a horn.
b) Explain briefly the parameters affecting the performance of a parabolic reflector antenna.
8. a) Write the advantages offered by dielectric lens antennas.
b) Design a rectangular patch antenna on a dielectric substrate with $\epsilon_{r}=2.65$ to be operated at 3 GHz .Determine the antenna parameters, bandwidth and VSWR, if the antenna is fed by a transmission line of 100Ω. Assume the thickness of the substrate as 2% of λ.

Unit - 5

9. a) Discuss the prominent modes of wave propagation and factors affecting them.
b) In an ionospheric propagation, the angle of incidence made at a particular layer at a height of 200 km is 45° with a critical frequency of 6 MHz . Calculate the skip distance.
10. a) Define the terms surface and elevated ducts and duct gradient. Also discuss the duct propagation.
b) Two towers of height 80 m and 20 m for transmission and reception respectively are spaced at a distance of 10 Km . If the transmitted power is 50 W at a frequency of 6 GHz , find the power received when the antennas are
i. Isotropic and
ii. Directional with 20 dB gain and aligned for maximum signal

VARDHAMAN COLLEGE Of $\operatorname{\in NGIN\in \in RING~}$

(AUTONOMOUS)
Four Year B. Tech V Semester Regular Examinations December - 2013
(Regulations: VCE-R11)
SOFT COMPUTING
(Electrical and Electronics Engineering)
Date : 14 December, 2013
Time: 3 Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) With a neat diagram explicate about the structure and working of a biological neural network.
b) Write in detail about the following models of artificial neural network neuron:
i. Perceptron Model
ii. Adaline Model
2. a) Briefly explain the different characteristic and activation functions of artificial neural networks.
b) Discuss about the basic learning laws used in modification of weights in an artificial neural network.

Unit - 2
3. a) With a basic learning algorithm converse about Rosenblatt's Perceptron model. 7M
b) What is supervised learning? Differentiate supervised and unsupervised learning. 8M
4. a) Discuss in detail about the training algorithm used in back propagation network for a 8 M multilayered Artificial Neural Networks.
b) With a neat architecture discuss about multi layer feed forward neural networks.

Unit - 3

5. a) What is a discrete Hop field neural network? Draw a neat architecture of Hopfield neural network and explain.
b) Mention the applications of self organizing feature map.
6. Explicate in detail about the following
a) Bidirectional associative memory
b) Bam stability analysis

Unit - 4

7. a) With examples discuss about Crisp sets and operations on crisp sets.
b) Let $A=\left\{\left(x_{1}, 0.3\right),\left(x_{2}, 0.6\right),\left(x_{3}, 0.5\right)\right\}$ and $B=\left\{\left(y_{1}, 0.4\right),\left(y_{2}, 0.7\right)\right\}$ be the two fuzzy sets defined on the disclosure $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $Y=\left\{y_{1}, y_{2}\right\}$ respectively. Find the cartesian product $A x B$.
8. a) Define fuzzy and crisp sets. Write about fuzzy relations and crisp relations with 8 M examples.
b) Elaborate the control technique applied in Fuzzy control of Blood Pressure.

Unit - 5

9. a) Explain in detail about the involvement of fuzzy logics in data base systems.
b) Investigate the fuzzy relational data models and the operations involved in the data 8 M
models.
10. Discuss in detail about the following :
a) Design theory for fuzzy relational databases 7M
b) Fuzzy information 8M
\square

VARDHAMAN COLLEGE Of ©NGINGERING
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
(Regulations: VCE-R11)
METROLOGY AND SURFACE ENGINEERING
(Mechanical Engineering)
Date : 14 December, 2013
Time : 3 Hours
Max. Marks : 75
Answer ONE question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - 1

1. a) Define Fit. Give classification of different types of fits and explain each of them with suitable example.
b) Calculate the limits of tolerance allowance for a 35 mm shaft and hole pair designated $\mathrm{H}_{8} \mathrm{~d}_{9}$. The following assumptions may be made, 35 mm lies in diameter step of 30 and 50 mm . The IT grades for IT8 and IT9 are 25 i and 40 i . The fundamental deviation for ' d ' shaft is given by $-16 \mathrm{D}^{0.41}$ microns.
2. a) Explain the need for providing tolerance on a dimension. Explain the difference between Allowance and Tolerance.
b) A hole and shafting system has the following dimensions $50\left[\mathrm{H}_{8} / \mathrm{C}_{8}\right]$. The standard tolerance is given by $\mathrm{i}=0.45(\mathrm{D})^{1 / 3}+0.001 \mathrm{D}$, where $\mathrm{D}=\mathrm{dia}(\mathrm{mm})$ of geometric mean of steps $\mathrm{i}=$ standard tolerance, microns. The multiplier for grade IT 8 is 25 i . The fundamental deviation for shaft c , for $\mathrm{D}>40 \mathrm{~mm}$ is given by $-(9.5+0.8 \mathrm{D})$ microns. The diameter range lies between 50 to 80 mm . Sketch the fit and show these upon the actual dimension of hole and shaft.

$$
\text { Unit - } 2
$$

3. a) State the Taylor's principle for the design of limit gauges. Draw a diagram to show the different classes of fit which can be obtained in a hole based system.
b) Calculate the dimensions of plug and ring gauges to control the production of 50 mm shaft and hole pair of $\mathrm{H}_{7} \mathrm{~d}_{8}$ as per I.S specification. The following assumptions maybe made, 50 mm lies in diameter step of 30 and 50 mm and the upper deviation for ' d ' shaft is given by $-16 \mathrm{D}^{0.41}$ and lower deviation for hole H is zero.
Tolerance factor $i($ microns $)=0.45(D)^{1 / 3}+0.001 \mathrm{D}$ and $I T 7=16 \mathrm{i}$ and above $1 T 8=25 \mathrm{i}$. Calculate the 10% gauge tolerance and wear tolerance of the shaft and hole.
4. a) Draw a schematic diagram of a mechanical bevel protractor with Vernier and optical 7M angle attachment, explain briefly.
b) What is an angle gauge? Also write the uses of angle gauges.

Unit - 3

5. a) Explain the construction of Tool maker's Microscope with a neat sketch and give its applications.
b) Describe with a neat sketch the measurement of major diameter of a screw thread using fudicial dial indicator.
6. a) Explain the different 'screw thread' errors commonly encountered during manufacturing. How can they be identified? Give remedies for their elimination.
b) Compare 2-wire and 3-wire methods of measuring the effective diameter of a screw.

$$
\text { :: } 2 \text { :: }
$$

Unit - 4
7. a) What is meant by roughness and waviness of machined surfaces? Explain
b) Calculate the $C L A\left(R_{a}\right), R_{z}, R . m . s$ value of a surface for which the samplin
0.8mm. The graph was drawn to a vertical magnification of 10,000 and a
magnification of 100 , and the areas above and below the datum line we
Above: 150
Below: 80
8. a) State the possible causes of each of the various types of irregularities found in surface texture. Show how surfaces having the same numerical assessment may have different properties and textures.

b) Classify comparators and explain in details. What are the advantages and limitations of 8 M
optical comparator?

$$
\text { Unit - } 5
$$

9. a) What are the important features of Coordinate measuring machines? What are the 8M possible causes of errors in CMM?
b) What are the different remedial measures for protecting the surface from corrosion? 7M
10. a) List out different surface treatment processes. Briefly discuss. 8M
b) Distinguish between organic and in-organic coatings \&give their applications. 7M

VARDHAMAN COLLEGE OF ENGINEERING
 (AUTONOMOUS)

B. Tech V Semester Regular Examinations, December - 2013
 (Regulations: VCE-R11) INTRODUCTION TO SPACE TECHNOLOGY
 (Aeronautical Engineering)

Date : 14 December, 2013
Time : 3 Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only
Unit - 1

1. a) Discuss the orbital characteristics of 9Mi. Remote sensingii. Communication satellite missions
b) Explain the effect of atmosphere on the life - time of near earth satellite. 6M
2. a) What are the important criteria for selecting a launch system? 8M
b) Write short notes on PSLV. 7M
Unit - 2
3. a) Describe the basic operating principles of a solid rocket motor. Give examples for their 8Mapplications.
b) Explain how the shape of the propellant grain can affect the thrust profile of a solid 7M rocket motor.
4. a) Explain how the thrust of a rocket develops. Derive the equation for the thrust. 10 M Differentiate between under-expanded and over-expanded nozzle performance.
b) Compare the various types of supersonic nozzles.

$$
\text { Unit - } 3
$$

5. a) With the help of a two dimensional free - body force diagram for a flying vehicle with 9Mwings, write down the differential equations of motion along and perpendicular toflight path.b) Determine the burnout velocity of a rocket launched vertically, using fuel of $\mathrm{I}_{\mathrm{SP}}=250 \mathrm{~s}$6M and mass fraction $\frac{m_{f}}{m_{0}}=0.2$ and thrust ratio $\Psi=2$.
6. a) List and discuss competing requirements of re - entry vehicle design. 9M
b) Define ballistic coefficient. What is the effect of ballistic coefficient on the vehicle 6M descent?

$$
\text { Unit - } 4
$$

7. Write a note on Keplerian Orbital elements and derive Kepler's equation of orbit.15M
8. Explain Hohmann transfer technique for transferring a satellite from one orbit to another. 15M
:: 2 ::

Unit - 5
9. a) Write down Euler's moment equation for a rigid body. 7M
b) Explain any two passive attitude control techniques used for near earth satellites. 8 M
10. a) What are the main functions of a spacecraft power system? 6 M
b) Write short notes on: 9M
i. Telemetry system
ii. Tracking system
iii. Telecomm and system
iv. Transponder
\square

VARDHAMAN COLLEGE OF ENGINEERING

(AUTONOMOUS)
Four Year B. Tech V Semester Regular Examinations December - 2013
(Regulations: VCE-R11)
ESTIMATING AND COSTING
(Civil Engineering)
Time : 3 Hours
Max. Marks: 75
Date : 14 December, 2013

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) List the functions of an abstract of an estimate.
b) Prepare a preliminary estimate of a double storied building having floor area 2200 sqm for obtaining the administrative approval with the following data. 30% of the built up area may be taken for verandah 20% staircase \& lavatories and 10% foe walls.

Plinth area rate
Extra for foundation
Architectural design and drawing
Water supply and sanitary installation
Electricity installation including fans etc
Extra for other services
Contingencies
Supervision charges

Rs 300 per sqm
1% of building cost
1% of building cost
6% of building cost
10% of building cost
5% of building cost
3% of overall
3% of overall
2. a) List the various methods of estimate and briefly explain what is detailed estimate.
b) Write an explanatory note on the following
i. Circulation area
ii. Carpet area
iii. Floor area
iv. Supplementary estimate

$$
\text { Unit - } 2
$$

3. Estimate the quantity of earth work for a portion of a road 300 meter in length for the following data: Formation width $=10$ meter, side slopes of 2:1 and 1.5:1 for banking and cutting respectively. Formation RL $=102.00 \mathrm{~m}$ with a falling gradient of 1 in 150 up to the first 120 meter and later to a falling gradient of 1 in 100

Distance (m)	0	30	60	90	120	150	180	210	240
RL (m)	101	100.9	100.5	100.7	100.8	100.6	100.0	99.8	99.2

4. Prepare a detailed Estimate for 1 Kilometer length of a lime Concrete track way with 60 centimeter wide tracks 1.50 meter center to center over 30 centimeter thick rammed Kankar. Assume local rates and suitable cross section. Any other missing data may be reasonably assumed.
```
    :: 2 ::
Unit - 3
```

5. a) What are the factors affecting Rate analysis. Briefly explain overhead costs ?
b) Workout the rate analysis for a 12 cm thick RCC slab portion (1:2:4) with steel 9M reinforcement for 10 Sq m .
6. a) List the difference between Schedule of rates and Analysis of rates.
b) Work out the rate analysis for a RCC Beam portion (1:1.5:3) with steel reinforcement for 10 M 1 cu m . Also prepare bar bending schedule.

$$
\text { Unit - } 4
$$

7. a) What is security deposit in tender document and explain the typical form of tender notice.
b) What is Earnest Money Deposit (EMD)? What are the different modes of acceptance of tender?
8. a) Explain the following
i. Turn-key contract
ii. Package deal contract
iii. Lump sum contract
b) What is a contract document? Explain the details to be attached to a contract document.

Unit - 5

9. a) What are the various methods of depreciation? Differentiate between depreciation and Obsolescence.
b) The total cost of a new building is Rs $15,00,000$. Work out the depreciated cost of the building after 20 years by straight line method if the Scrap value is Rs 1, 50,000 assuming the life of the building to be 80 years.
10. Calculate the standard rent of a Government owned building that is constructed at the cost of Rs 7, 50,000. Data given:
i. Cost of water supply and Sanitation @ 10\% of the total cost
ii. Cost of electrical installations @ 8\% of the total cost
iii. Cost of internal roads and compound wall @ Rs 1,00,000
iv. Municipal and other Taxes @ Rs 3500 per annum
