\square

VARDHAMAN COLLEGE OF ENGINGERING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
BUILDING PLANNING AND DRAWING
(Civil Engineering)

Answer ONE question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

Unit - 11. a) What do you understand by building by-laws? Explain the necessities of building7Mby-laws.b) Write a note on lighting and ventilation requirements of a building.8M
2. a) Write a brief note on 10Mi. FAR
ii. FSIb) How do you justify the open area requirements for a building? Explain briefly.5M
Unit-2
3. a) List out various component of residential Building with their standard sizes. 7M
b) Discuss briefly the requirements of 8M
i. Hospital building
ii. Hotel building
4. a) Explain briefly principles of planning of a building. 7 M
b) Discuss various requirements of 1) Office building 2) Educational institution 8M building.
Unit - 3
5. a) Explain the stages of a construction project and construction management team. 7M
b) Write a short note on network technique and Programme Evaluation and Review 8M Techniques in construction management.
6. What is critical path method? Write the advantages of CPM. Differentiate between CPM 15 M and PERT.

Unit-4

7. a) Write the sign conventions for brick, stone, plaster, concrete, alluminium, earth and 7 M rock.
b) Explain English bond and Flemish bond with neat sketch.
8. Draw the following (Any three):
i. Panelled and glazed door
ii. Glazed window
iii. King post truss
iv. Queen post truss

Unit - 5
9. For the line diagram given below, draw the plan, elevation and section along $X-X$. assume suitable dimensions for foundations, doors and windows etc.

10. For the given line diagram, draw
i. Plan
ii. Section along A-A
iii. Elevation

$D=1100 \times 2200 \quad W=1500 \times 1350 \quad V=610 \times 460$
D1=920x2200
W1=1300×1350
V1=920x460
D2=760×2200
(All dimensions are in mm and all are internal dimensions)
\square

VARDHAMAN COLLEGE OF ENGINEERING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)

OPERATING SYSTEMS

(Common to Computer Science and Engineering \& Information Technology)

Answer ONE question from each Unit
 All Questions Carry Equal Marks All parts of the question must be answered in one place only

Unit-1

1. a) Explain the various services provided by an Operating System that are designed to make it more convenient for users to use the computer system.
b) What are the various components of an Operating System? Explain any two in detail.
2. Consider the following jobs and CPU burst time given in milliseconds

Process	Burst time	Priority
P1	10	3
P2	1	1
P3	2	3
P4	1	4
P5	5	2

The processes are arrived in the order P1, P2, P3, P4, P5 all at time 0.
i. Draw four Gantt charts illustrating the execution of these processes using FCFS, SJF, a nonpreemptive priority (a smaller priority number implies a higher priority), and $R R$ (quantum $=1$) scheduling.
ii. What is the turnaround time of each process for each of the scheduling algorithms in part (I)?
iii. What is the waiting time of each process for each of the scheduling algorithm in part (I)?
iv. Which of the schedules in part(I) results in a minimal average waiting time(over all processes)?

Unit - 2
3. Consider a system with five process P_{1} to P_{5} and three resource types P, Q and R. resource type P has 7 instances, resource type Q has 5 instances, and resource type R has 10 instances. Suppose that at time T_{0}, the following snapshot of the system has been taken:

Allocation				Max			Available		
	P	Q	R	P	Q	R	P	Q	R
P_{1}	0	1	0	3	5	7	2	3	3
P_{2}	0	0	2	2	2	3			
P_{3}	2	0	3	2	0	9			
P_{4}	1	1	2	2	2	2			
P_{5}	2	0	0	3	3	4			

Answer the following questions.
i. What is the content of need matrix?
ii. Is the system in safe state?
iii. If a request from process P_{1} arrives for $(0,2,0)$, can this request be granted immediately?
iv. If a request from process P_{4} arrives for $(0,3,3)$, can this request be granted immediately?
4. a) Explain the deadlock prevention methods. 10M
b) What do you mean by a semaphore? How do you access it? 5M

Unit - 3
5. a) List the common file types along with its extensions and describe each file type. 10M
b) Explain the difference between internal fragmentation and external fragmentation. 5M
6. a) Consider the page reference string $7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1$. How many 10 M page faults would occur for the following pages replace algorithms by considering 3 frames?
i) FIFO
ii) LRU
iii) Optimal
b) Explain the different file allocation methods.

$$
\text { Unit - } 4
$$

7. a) Consider the following I/O scenarios on a single - user PC.
i. A mouse used with a graphical user interface
ii. A tape drive on a multitasking operating system (assume no device preal location is available)
iii. A disk drive containing user files
iv. A graphics card with direct bus connection, accessible through memory mapped I/O
For each of these I/O scenarios, would you design the operating system to use buffering, spooling, caching, or a combination? Would you use polled I/O, or interrupt driven I/O? Give reasons for your choice
b) How do you choose an optimal technique among the various disk scheduling 7 M techniques? Explain.
8. a) Explain in detail about interrupts and interrupt handling features. 8M
b) Explain with a diagram the steps in DMA transfer.

Unit - 5

9. a) What is access matrix? Explain with neat figure, also explain one of the 10 M
implementation methods of access matrix.
b) Protection from viruses is an important security concern. Justify. 5 M
10. a) List and explain security violations of a system. 10M
b) Explain how firewall is used to protect systems and networks. 5 M
\square

VARDHAMAN COLLEGE Of ©NGINGERING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
 (Regulations: VCE-R11)
 COMPUTER ARCHITECTURE AND ORGANISATION

(Common to Computer Science and Engineering, Information Technology, Electrical and
Electronics Engineering and Electronics and Communication Engineering)
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

Unit - 1

1. a) Describe basic operational concepts of computer in detail.
b) i. Perform 2's complement Addition, Subtraction between the signed Decimalnumber +66, -25 using 8 Bit representation.
ii. Convert (101.11011) 2 into Decimal, Octal, Hexadecimal.
2. a) Design 3-to-8 line decoder with truth table.
b) What is bus? Explain bus structure with single bus and double bus structure. 7M

Unit - 2
3. a) What do you mean by addressing mode? Explain the following addressing modes. 10M
i. Index addressing mode
ii. Relative addressing mode.
iii. Direct addressing mode
iv. Immediate addressing mode
b) Write a note on interrupts.
4. a) With a neat block diagram, explain how the basic computer registers are connected to 10 M the common bus.
b) Explain the basic computer instruction formats.

Unit - 3

5. a) Explain how control signals are generated using micro programmed control unit. Write 10M the circuit required for the generation of Zin Control Signal.
b) Divide 17 by 5 using Restoring division technique.
6. a) Multiply the following numbers using booths algorithm.
i. -13 X 9
ii. -02×-02
b) With a neat block diagram, explain the multiplication of positive numbers using array 9 M multiplier.

$$
\text { Unit - } 4
$$

7. a) Describe the use of DMA controllers in a computer system. 8M
b) The access time of a cache memory is 100 ns and that of main memory 1000 ns . It is 7 M estimated that 80 percent of the memory requests are for read and the remaining 20 percent for write. The hit ratio for read accesses only is 0.9 . A Write-through procedure is used
i. What is the average access time of the system considering only memory read cycle?
ii. What is the average access time of the system for both read and write requests?
iii. What is the hit ratio taking into consideration the write cycles?
8. a) Explain organization of a $1 \mathrm{~K} X 1$ memory chip with neat diagram. 7M
b) An address space is specified by 24 bits and the corresponding memory space by 16 8M bits.
i. How many words are there in the address space?
ii. How many words are there in the memory space?
iii. If a page consists of 2 K words, how many pages and blocks are there in the system?

Unit - 5

9. a) Explain the following interconnection networks in detail. 10M
i. Multiport Memory
ii. Crossbar switch
b) Differentiate between Synchronous and asynchronous bus. 5M
10. a) Explain the following Dynamic arbitration algorithms. 10M

i. LRU

ii. Time slice

iii. Polling

iv. Rotating daisy chain
b) How the cache coherence problem is resolved by a snoopy cache controller?
\square

VARDHAMAN COLLEG Of $\operatorname{\in NGIN\in \in RING~}$

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013

(Regulations: VCE-R11)

DATABASE MANAGEMENT SYSTEMS

(Common to Computer Science and Engineering \& Information Technology)

Answer ONE question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

Unit - 1

1. a) Discuss the main characteristics of the database approach. How does it differ from 7M the traditional file system?
b) Define data independence and What is the difference between logical data independence and physical data independence ?
2. a) List the steps of mapping algorithm of ER to Relational Model. Discuss the mapping rules for Regular entity, Weak entity and Multi-valued attributes.
b) Draw an E-R diagram for BANK database. Make suitable assumptions and use them 8M in showing cardinality ratios and participation constraints. The data requirements are summarized as follows:
i. Each bank is identified by a unique number and bank name and address are also recorded.
ii. Each bank has many branches having branch number and address. Branches depend on bank for its identification. Each bank may have multiple accounts and loans.
iii. Each account is identified by unique account number. Type and balance of accounts must be recorded.
iv. Each loan is identified by unique loan number. Type and amount of loans must be recorded.
v. The bank keeps track of a customer by his SSN, name address, and phone number. Age is used as a factor to check whether he is major. A customer can open different accounts with the bank. A customer can take out more than one type of loan.

Unit - 2

3. a) Consider the following database and answer the given queries using relation algebra.
part (pnum, pname, price)
customer (cnum, cname, street, zip, phone)
employee (enum, ename, zip, hire_date)
zip_code (zipcode, city)
order (eno, cno, pno, odate)
i. Find the part number and order dates for the parts whose cost is more than Rs. 1000.
ii. Find the customer names and their phone number who have purchased 'microwave' from employee 'John'.
iii. Find the names and hire date of employees who have delivered more than 2 orders.
b) Differentiate between theta join, equi join and natural join.
4. a) consider the database given in Q-3(a) and answer the given queries using SQL:
i. Find the name, street of the customer whose name is 'ASHOK' and phone number is 9988776655.
ii. Find the name and city of employees who have been hired before 26-jan-2010.
iii. Find the name and phone number of the customers who have placed more than 2 orders.
iv. Find the pair of customer names who live in same city.
b) Explain domain constraint and referential integrity constraint for relational model in detail with example.

Unit - 3

5. a) What is normalization? Explain various normal forms with example. 8M
b) Explain various update anomalies due to poor database design.
6. Suppose a relation R with four attributes A B C D. For each of the following sets of FDs, 15 M assuming those are the only dependencies that hold for R, do the following
a) Identify the candidate key(s) for R.
b) Identify the best normal form that R satisfies (1NF,2NF,3NF or BCNF)
c) If R is not in BCNF, decompose it into a set of BCNF relations that preserve the dependencies.
i. $\quad C->D, C->A, B->C$
ii. $B \rightarrow C, D->A$
iii. $\quad A B C->D, D->A$
iv. $A \rightarrow B, B C \rightarrow D, A \rightarrow C$
v. $A B->C, A B->D, C->A, D-B$

Unit - 4

7. a) Describe the anomalies due to interleaved executions in terms of two transactions T1 and T2.
b) When the system restarted after the crash, what are different phases proceeded by recovery manager explain the tasks performed by all phases.
8. a) Discuss the ACID properties with example.
b) Define these terms: Schedule, Blind write, dirty read, unrepeatable read, serializable schedule, recoverable schedule, avoids-cascading-aborts schedule.

$$
\text { Unit - } 5
$$

9. a) Write an algorithm for deletion of node from B+ tree.
b) Consider a disk with a sector size of 512 bytes, 2000 tracks per surface, 50 Sectors per track, 5 double-sided platters, average seek time of 10 msec .
i. What is capacity of a track in bytes? What is the capacity of each surface? What is the capacity of the disk?
ii. How many cylinders does the disk have?
iii. Give examples of valid blocks sizes. Is 256 bytes a valid block size? 2048? 51200?
iv. If the disk platter rotate at 5400 rpm (revolution per minute), what is the maximum rotational delay?
v. Assuming that one track of data can be transferred per revolution, what is the transfer rate?
10. a) What does it mean to say that a page is pinned in the buffer pool? Who is responsible 8 M for planning pages? Who is responsible for unpinning pages?
b) Explain what is RAID system? and how it improves performance and reliability. Discuss 7M choice of RAID levels.

VARDHAMAN COLLEGE Of ENGINGERING

(AUTONOMOUS)
Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
POWER SYSTEM GENERATION
(Electrical and Electronics Engineering)

Answer ONE question from each Unit
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

Unit - 1

1. a) Mention the classification of Hydro electric power plants according to available head? 9MExplain each one of them briefly.b) Give the differences between Kaplan and Francis turbines.6M
2. a) What type of turbine is best suited for high head, low pressure and high specific speed 8Mhydro electric power plants? Explain its working principle with a suitable sketch.
b) A river based hydel plant has its capacity as "firm capacity" when it operates at the peak part of the load curve, the load factor here being 15%. If the rated installed capacity of the generator, head and plant efficiency are $10 \mathrm{MW}, 50 \mathrm{~m}$ and 0.8 respectively, calculate the minimum flow of river water in order to operate the plant at the base of the load curve.

Unit - 2

3. a) With the help of a neat schematic layout of a typical coal fire power station, briefly 11 M describe the function of its main parts.
b) What are the advantages of using super heater in thermal power station?
4. a) Describe briefly the following parts of a thermal power plant.
i. Boilers
ii. Cooling towers
b) Explain how coal is handled in a thermal power plant starting from delivery of coal to final consumption stage.
Unit - 3
5. a) What are the classifications of Nuclear reactors? Describe briefly. 8M
b) Describe briefly a Gas turbine plant with neat schematic diagram. 7M
6. a) Discuss the various factors to be considered while selecting the site for Nuclear power 7M
plant.
b) What is a Nuclear reactor and describe the various parts of Nuclear reactor?

Unit - 4

7. a) How can Substations are classified according to the service requirements? 8M
b) Compare outdoor and indoor substations. 7M
8. a) Explain different types of busbar arrangements with neat sketch 7M
b) What is a substation? Name the factor that should be taken care while designing and 8 M erecting a substation.

Unit - 5

9. a) A generating station has a maximum demand of 100 MW . Calculate the cost per unit generated from the following data:

Capital cost
Annual load factor
Annual cost of fuel and oil Taxes, wages and salaries etc. Interest and depreciation
$=\quad$ Rs. 200×10^{6}
$=40 \%$
$=\quad$ Rs. 15×10^{6}
$=\quad$ Rs. 10×10^{6}
$=15 \%$
b) What is a tariff? What are the different types of tariff? Discuss.
10. a) Show that the sine of most economical angle is equal to ratio of annual cost of phase 8 M advancing plant to annual tariff per KVA of maximum demand.
b) A supply system supplies the following loads:
i. A lighting load of 500 kW at a power factor 0.7 lagging.
ii. $\quad 400 \mathrm{~kW}$ at power factor 0.7071 lagging.
iii. 800 kW at power factor 0.8 leading.
iv. $\quad 500 \mathrm{~kW}$ at power factor 0.6 lagging.
v. Motor synchronous generator set supplies 360 kW (D.C. load) and has an efficiency of 90%.
Calculate the power factor of the motor so that the station power factor may be unity.
\square

VARDHAMAN COLLEGE Of ©NGINGERING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
CONTROL SYSTEMS
(Common to Electronics and Communication Engineering \& Electrical and Electronics Engineering)
Time: $\mathbf{3}$ hours

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) From basic principle derive an expression for the transfer function between $\theta_{m}(S)$ and
armature voltage of armature controlled DC servomotor.
b) Refer the rotational system shown in figure.1. Obtain the equations of motion for the inertias $\mathrm{J}_{1}, \mathrm{~J}_{2}$ and find the transfer function $\frac{\theta_{1}(S)}{T(S)}$

Figure. 1
2. a) Define open loop and close loop control systems. Briefly describe the features and applications of closed loop control systems.
b) For the mechanical system shown in figure.2, find the transfer function $\frac{X_{1}(S)}{F(S)}$.

Figure. 2

Unit - 2
3. a) Obtain $C(s) / R(s)$ using block diagram reduction rules for the for the block diagram shown in figure.3.

Figure. 3
b) Obtain the transfer function using Mason's gain reduction formula for figure. 4 given below.

Figure. 4
4. a) Obtain the transfer function for the lead network shown in figure. 5 below.

Figure. 5
b) Evaluate C_{2} / R_{1} for the system whose block diagram representation is shown in figure. 6 below.

Figure. 6

Unit - 3
5. a) Utilizing the equation of transient response of second order system derive an expression for peak time and rise time interms of ' ξ ' and ' ω_{n} '.
b) For a unity feedback system $G(s)=\frac{200}{s(s+8)}$ and $\mathrm{r}(\mathrm{t})=2 \mathrm{t}$ determine steady state error.
If it is desired to reduce this existing error by 5% find new value of gain of the system.
6. a) Sketch the root locus for the system having $G(s) H(s)=\frac{(s+0.5)}{s\left(s^{2}+2 s+2\right)}$.
b) The characteristic equation of a feedback control system is
$s^{4}+20 K s^{3}+5 s^{2}+10 s+15=0$
Find the range of K for which the system is stable.

Unit - 4
7. A certain unity feedback control system is given by $G(s)=\frac{K}{g(1+g)(1+0.1 \Omega)}$. Draw the bode plot of the above system. Determine from the plot the value of ' K ' so as to have
i. Gain Margin $=10 \mathrm{db}$
ii. Phase Margin $=50^{\circ}$
8. a) Find the open-loop transfer function of a system whose approximate plot is shown in figure.7.

Figure. 7
b) Draw the complete Nyquist plot for a system whose open-loop transfer function is
$G(s) H(s)=\frac{K}{s(s+2)(s+10)}$. Determine the range of ' K ' for which closed-loop system is stable.

Unit - 5

9. a) Write a note on state and state variable. Also write the advantages of state space Techniques.
b) Represent the differential equation given below in a state model

$$
\frac{d^{3} y}{d t^{3}}+3 \frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+7 y(t)=2 u(t)
$$

10. a) Obtain the state transition matrix $\varphi(\mathrm{t})$ of the following system:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Also obtain the inverse of the state transition matrix $\varphi^{-1}(\mathrm{t})$
b) Obtain the state model of the given transfer function

$$
\frac{Y(S)}{U(S)}=\frac{24}{S^{3}+9 S^{2}+26 S+24}
$$

\square

VARDHAMAN COLLEGE Of ENGINGERING

(AUTONOMOUS)
 Four Year B. Tech IV Semester Regular Examinations June - 2013
 (Regulations: VCE-R11)
 WEB TECHNOLOGIES
 (Common to Computer Science and Engineering \& Information Technology)

Answer ONE question from each Unit
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

Unit - 1

1. a) Discuss about the different tiers of web application. State the most suitable web -tier for university registration system. Also support the discussion with appropriate justification.
b) Write a javascript to analyze a subject code for subject in a semester. The subject code may be visualized like 12 CS 43 where ' 12 ' represents year of syllabus, 'CS' - indicates the engineering discipline as Computer Science and Engineering and ' 4 ' gives the semester details as $4^{\text {th }}$ sem, and ' 3 ' gives the subject information.
2. a) Demonstrate with an case-study, the event model in DHTML.
b) Demonstrate with an example, the use of common tags in HTML. (State at-least 108 M tags).
Unit - 2
3. a) With suitable example, explain the different types of XML parsers.
b) Discuss the deployment structure, processing of information and protocol support for Jigsaw and Tomcat servers.
4. a) Create a XML document to store the student information for Identity card with the fields like Student name, year of joining, date of birth, blood group and permanent address. Create a DTD to validate the document.
b) Create a XML document to prepare a table for student with fields like Student Name as SNAME, Student ID as SID and Total marks as TOTMARKS.
Unit - 3
5. a) Write a Servlet to display a "Hello" message.Also mention the deployment structure 6M used in IIS server to execute the program.
b) Illustrate with servlet code, to retrieve the employee records from MySQL database 9M and display on web page. The Employee table in database has following schema -
Employee Table

ENAME	SSN	DESGN	DEPT	SALARY

6. a) Explain the life cycle of servlet. Also mention the flow of events during request and
response using sequence diagram.
b) With a code snippet, explain how session tracing is handled in java with servlet.
Unit - 4
7. a) Make a Comparison of JSDK and Apache Tomcat. 7M
b) Develop a JSP to detect the Web Browser. 8M
8. a) Explain the components of JSP. 8M
b) Explain the core interface provided by javax.servlet.http.package. 7M

Unit - 5

9. Short Notes on :
i. CGI
ii. JSF
iii. CMS
10. a) Using ASP, create a Registration and Authentication Application for on-line purchase 8M of Book. The application should have
i. Registration form page.
ii. Thank you for registration page.
iii. Invalid Book number.
iv. Authentication failed.
b) Write an ASP code to display the student information for Identity Card application 7M using HTML. Also list out the key object of ASP and their features.
\square

VARDHAMAN COLLEGE Of $\operatorname{\in NGIN\in \in RING~}$

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
COMPUTER GRAPHICS
(Common to Computer Science and Engineering \& Information Technology)

Answer ONE question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

Unit - 1

1. a) List the areas where we will use computer graphics and explain in detail the importance of graphics in
i. Data visualizations
ii. Education and training
iii. Computer art
b) Compare and Contrast random scan and raster scan displays.
2. a) Justify why CRT is called as Refresh CRT and explain the basic working principles of
cathode ray tube along with neat sketch describing about each component
b) Illustrate the sequence of coordinate transformations from modeling coordinates to 6 M device coordinates.

Unit - 2

3. a) Consider the line from $(0,0)$ to $(4,6)$. Use the simple DDA algorithm to rasterize this 7M line.
b) Explain mid-point circle drawing algorithm with a neat diagram.
4. a) Explain the scan line polygon filling algorithm. Also write the data structures used for implementing the algorithm.
b) Explain flood fill algorithm with pseudo-code.7M

Unit - 3
5. a) Illustrate the transformation sequence for rotating an object about a specified pivot point in 2D.
b) Prove that multiplication of transformation matrices for each of the following 9 M sequence of 2D transformation operation is commutative
i. Two successive rotations
ii. Two successive translations
iii. Two successive scaling
6. a) Illustrate the stages involved in two dimensional viewing transformation pipeline with 8 M a neat sketch.
b) Discuss Cohen- Sutherland line clipping algorithm.

Unit - 4
7. a) Illustrate the steps for obtaining a composite matrix for rotation about an arbitrary axis with the rotation axis projected onto the z axis in 3D (rotation with axis not parallel to any coordinate axis).
b) Compare and contrast the difference between perspective projection and parallel 5 M projection.
8. a) Demonstrate the formulation of B-spline blending functions for a uniform integer knot vector.
b) List all 3D transformation and explain each with corresponding transformation matrices. 8 M

Unit - 5

9. a) Explain the depth sort algorithm for hidden surface removal. 8 M
b) Explain direct motion specification with a neat diagram. 7M
10. a) Explain Computer Animation Languages with suitable examples. 8 M
b) Explain back face detection algorithm for hidden surface removal. 7M
\square

VARDHAMAN COLLEGE Of $\in \mathbb{N G I N G \in R I N G ~}$

(AUTONOMOUS)
Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)

ELECTRONIC CIRCUIT ANALYSIS

(Electronics and Communication Engineering)
Time: $\mathbf{3}$ hours

Answer ONE question from each Unit All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) For the transistor amplifier shown in figure. 1, determine the dc level of I_{B} and V_{C}

Figure. 1
b) Determine suitable values for R_{1} and $V_{D D}$ in the circuit in figure.2, to provide an operating point of $\left|I_{D}\right|=12 \mathrm{~mA}$ and $\left|\mathrm{V}_{D S}\right|=8 \mathrm{~V}$, if the FET is satisfactorily described by the nonlinear relationship $I_{D}=4\left(V_{G S}+2\right)^{2} \quad \mathrm{~mA}$.

Figure. 2
2. a) Find the Q-point for the circuit shown in figure.3, if $R_{1}=120 \mathrm{k} \Omega, R_{2}=270 \mathrm{k} \Omega, R_{E}=100$ $\mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=150 \mathrm{k} \Omega, \beta_{\mathrm{F}}=100, \mathrm{~V}_{\mathrm{BE}}=0.7 \mathrm{~V}$, and the positive power supply voltage is 15 V .

Figure. 3
b) The FET in the circuit in figure.4, is characterized by $\left|I_{D S S}\right|=22.5 \mathrm{~mA}$ and $\left|\mathrm{V}_{\mathrm{P}}\right|=3.6 \mathrm{~V}$. Determine suitable values for the external circuit elements to obtain an operating point of $\left|I_{D}\right|=15 \mathrm{~mA}$ and $\left|\mathrm{V}_{\mathrm{DS}}\right|=6 \mathrm{~V}$

Figure. 4

Unit - 2
3. a) Explain the important properties of negative feedback.
b) With the help of network topology, obtain the expressions for transfer ratio, input impedance and output impedance of voltage series feedback system.
4. a) Design a RC phase shift oscillator for the following specifications using BJT.

Given $f_{o}=1 \mathrm{KHz}, R_{C}=2 K \Omega, R=1 K \Omega, V_{C C}=10 \mathrm{~V}, I_{C}=2 m A$ and $\beta=50$. Draw the circuit and insert the values.
b) Explain the working of Colpitts oscillator with condition for stable oscillations.

Unit - 3

5. a) Explain the high frequency behavior of BJT and obtain the hybrid $-\Pi$ model with usual 8 M notations.
b) What are high input impedance circuits and their characteristics? Give its classification and comparison.
6. a) Explain the necessity of cascading of amplifiers and its effects on bandwidth and gain. 6M
b) Derive the expressions for f_{L}, f_{H} and $A_{\text {vmid }}$ for $R-C$ coupled amplifier.

Unit - 4
7. a) What is the quiescent collector current in figure.5? Also calculate the maximum 7M efficiency of the amplifier.

Figure. 5
b) The adjustable resistor of Figure. 6 sets both emitter diodes on the verge of conduction.

What is the maximum transistor power dissipation? Also the maximum output power?

Figure. 6
8. a) With a neat schematic of a Class B push pull emitter follower explain cross over 7 M distortion.
b) If the peak-to-peak output voltage is 18 V and the input impedance of the base is 100Ω, What is the power gain in figure.7?

Figure. 7
Unit - 5
9. a) A parallel resonant circuit has a capacitor of 250 pF in one branch and inductance of
1.25 mH plus a resistance of 10Ω in the parallel branch. Find
i. Resonant frequency
ii. Impedance of the circuit at resonance
iii. Q factor of the circuit.
b) With the help of neat schematics explain the working of a double tuned amplifier.
10. a) A parallel resonant circuit has a capacitor of 100 pF in one branch and inductance of $100 \mu \mathrm{H}$ plus a resistance of 10Ω in parallel branch. If the supply voltage is 10 V , Calculate
i. Resonant frequency
ii. Impedance of the circuit at resonance
b) With the help of neat schematics explain the working of a single tuned amplifier.
\square

VARDHAMAN COLLEG OF $\operatorname{\in NGIN\in \in RING~}$

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
PULSE AND DIGITAL CIRCUITS
(Electronics and Communication Engineering)
Time: $\mathbf{3}$ hours
Max Marks: 75

Answer ONE question from each Unit All Questions Carry Equal Marks

 All parts of the question must be answered in one place only
Unit-1

1. a) Explain and obtain the response of RC low pass circuit to a step input. Draw the input and output waveforms.
b) The pulse from a high voltage generator rises linearly for $0.05 \mu \mathrm{secs}$ and remains constant for $1 \mu \mathrm{sec}$. The rate of rise of pulse is measured with RC differentiator circuit whose time constant is equal to 250 psecs. If the positive output voltage from the differentiator has a maximum value of 50 V , what is the peak voltage value of generator?
2. a) In an attenuator circuit $R_{1}=R_{2}=1 M \Omega$, capacitor across R_{2} is $C_{2}=50 \mu \mathrm{~F}$, input is a step voltage of 20 V , compute and draw to scale the output waveform for capacitor C_{1} across the resistor R_{1} for the following three cases:
i. $\mathrm{C}=50 \mathrm{PF}$
ii. $\mathrm{C}=75 \mathrm{PF}$
iii. $\mathrm{C}=25 \mathrm{PF}$
b) Obtain the response of High pass circuit to a sinusoidal input. Also obtain the relation between the lower cut-off frequency and time constant.

Unit - 2
3. a) Draw the transfer characteristic for the clipper circuit shown in figure.1. Find the value of input voltage at which the output will be zero. Also find at what values of input voltage D_{2} conducts.

b) Calculate the output levels of the circuit shown in figure. 2 for inputs of 0 V and -8 V and verify that the circuit is an inverter. What is the minimum value of $h_{F E}$ required? Neglect junction saturation voltages and assume the diode is ideal.

Figure. 2
4. a) Calculate the steady state output voltage level and plot the waveform when a square wave input signal with a peak-to-peak value of 15 V is applied to clamping circuit. The input base level is zero level. The frequency of the input signal is $5 \mathrm{kHz}, \mathrm{C}=0.1 \mu \mathrm{~F}$, $R=20 k \Omega, R_{f}=1 k \Omega, R_{r}=500 k \Omega$. Assume $T 1=T 2$
b) Draw the transfer characteristics for the clipper circuit shown in figure.3. Assume ideal diodes.

Figure. 3

Unit - 3
5. a) Describe a bi-stable multivibrator. What do you mean by triggering? With the help of 8 M neat diagrams discuss the different methods of triggering a binary.
b) Design a collector coupled one shot with a gate width of 3 ms . Using n-p-n transistors
with $\mathrm{h}_{\mathrm{fe}}=20$, neglect $\mathrm{I}_{\mathrm{CBO}}, \mathrm{V}_{\mathrm{BE}(\text { sat })}$ and $\mathrm{V}_{\mathrm{CE}(\text { sat })}$. Let $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{C}(\text { sat })}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE}(\text { (ofF })}=-1 \mathrm{~V}$.
6. a) What is Schmitt trigger? Explain any three applications of Schmitt trigger. With the help of a neat circuit diagram and waveforms explain the working principle of Schmitt trigger.
b) Design a free running multivibrator to generate a square wave of amplitude 10 V and frequency 1 kHz with 70% duty cycle. Consider $n-\mathrm{p}-\mathrm{n}$ transistors with $\mathrm{h}_{\mathrm{fe}}=25$, $\mathrm{V}_{\mathrm{BE}(\text { sat) }}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}(\text { sat })}=0.3 \mathrm{~V}, \mathrm{I}_{\mathrm{C} \text { (sat) }}=5 \mathrm{~mA}$.

Unit - 4

7. a) Mention the different types of sweep circuit. With neat circuit and waveform explain the working principle of Miller Sweep circuit.
b) Draw the circuit of Bootstrap Sweep. Design the circuit for the following Specifications:
$\mathrm{VCC}=12 \mathrm{~V}, \mathrm{Ic}=1 \mathrm{~mA}, \mathrm{hfe}(\mathrm{min})=20, \mathrm{~V}_{\mathrm{CE}}(\mathrm{sat})=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}($ sat $)=0.7 \mathrm{~V}$, assume sweep time $\mathrm{Ts}=5$ mSecs.
8. a) Derive an expression for Sweep speed error (es) in Bootstrap sweep.
b) Design Miller's Sweep circuit for the following specifications: Vcc=12V, ic=1mA, hfemin=20, VCE(sat)=0.3V, VBE(sat)=0.7V, assume sweep period $\mathrm{Ts}=5 \mathrm{msecs}$.

Unit - 5

9. a) With neat circuit diagram explain DTL Nand Gate.
b) Explain how to reduce pedestal in a Gate circuit.
10. a) Realize negative logic AND gate using diodes. Compare the logic families in terms of power dissipation and propagation delay.
b) Explain the operation of unidirectional diode gate adapted for more than one signal input.

VARDHAMAN COLLEGE Of ENGINGERING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
 (Regulations: VCE-R11)

 ELECTROMAGNETIC THEOREY AND TRANSMISSION LINES

 ELECTROMAGNETIC THEOREY AND TRANSMISSION LINES}(Electronics and Communication Engineering)
Time: $\mathbf{3}$ hours
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) State Coulomb's Law and obtain an expression for the same in vector form.
b) In freespace let $Q_{1}=10 n C$ be at $A(0,-4,0)$ and $Q_{2}=20 n C$ be at $B(0,0,4)$.
i) Find the electric field intensity E at the origin.
ii) Where should a 30 nC point charge be located so that $\mathrm{E}=0$ at the origin?
2. a) Explain the term Electric Field Intensity E and derive an expression in spherical coordinates. Extrapolating find E at a point r when n charges $Q_{1}, Q_{1} Q_{2 \ldots} Q_{n}$ are located at $r_{1}, r_{2}, \ldots r_{n}$.
b) A point charge $Q_{1}=10 \mu \mathrm{C}$ is located at $A(1,2,3)$ in free space while $Q_{2}=-5 \mu \mathrm{C}$ is at 7 M $B(1,2,10)$. Find the
i) Vector force exerted on Q_{2} by Q_{1} and
ii) Co-ordinates of $P(1,2, z)$ at which a point charge Q experiences no force.

Unit - 2

3. a) Apply Ampere's law and determine the magnetic field intensity both inside and outside the conductor of radius 4 m , carrying a uniform current of 10A.
b) The magnetic field intensity is given in a certain region of space as 9 M $H=\frac{(x+2 y)}{Z^{2}} \hat{a}_{y}+\frac{2}{Z} \hat{a}_{z} A / m$ find (i) J (ii) Total current passing through the surface $Z=4,1<x<2,3<y<5$ in \hat{a}_{z} direction.
4.

a) Show that energy in a magneto static field is given by $W_{m}=\frac{1}{2} \int B_{1} H d V$.
b) In cylindrical co-ordinates, Vector magnetic potential $\vec{A}=100 r^{2} \hat{a}_{z} w b / m$ is given in a free space. Find Magnetic field intensity and flux density.
c) The point charge $\mathrm{Q}=18 \mathrm{nC}$ has a velocity $5 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in the direction given by5M $0.04 a_{x}-0.05 a_{y}+0.2 a_{z}$. Calculate the magnitude of the force exerted on the charge by the magnetic field $B=-3 a_{x}+4 a_{y}+6 a_{z} m-w b / m^{2}$.

Unit - 3
5. a) State Maxwell's equations for static field. Explain how they are modified for time varying electric and magnetic fields.
b) For a lossy dielectric $\sigma=5 \square / m$ and $\mathcal{E}_{r}=1$. The electric field intensity is given by
$E=100 \sin 10^{10} t$. Find
i) Conduction current density J_{C}
ii) Displacement current density J_{D}
iii) Frequency at which both have equal magnitudes.
6. a) Explain and derive the boundary conditions for a dielectric- dielectric interface in 8 M electro static fields.
b) $\mathrm{Z}=0$ plane separates two lossless dielectric regions with $\varepsilon_{\mathrm{r} 1}=2$ and $\varepsilon_{\mathrm{r} 2}=3$. If we know that electric field E_{1} in the region of $\varepsilon_{\mathrm{r} 1}$ is $2 y a_{x}-3 x a_{y}+(5+z) a_{z} V / m$, what do we know about E_{2} and D_{2} in region of $\varepsilon_{r 2}$.

Unit - 4

7. a) An E field in free space is given as $E=800 \cos \left(10^{8} t-\beta y\right) a_{z} V / m$. Find β, λ and H at $5 M$ $P(0.1,1.5,0.4)$ at $t=8 n s$.
b) Discuss Poynting Theorem and obtain an expression for power flow associated with 10 M electromagnetic wave.
8. a) An uniform plane wave operating in a perfect dielectric at a frequency of 250 MHz has 8 M $E=\left(1000 a_{x}+400 a_{y}\right) e^{-j 10 y}$. If the maximum value of H is $3 A / m$, find β, λ, η (impedance), v(velocity of propagation), ε_{r} and μ_{r}
b) Obtain the expressions for α, β, and skin depth δ for an electromagnetic wave 7M propagating in good conductors.

Unit - 5

9. a) Define Reflection Co-efficient and VSWR of a transmission line loaded with an 7M impedance of z_{1} and obtain an expression for the same in terms of z_{0} and z_{1}
b) A line with characteristic impedance of 50 ohms is connected to a load impedance of $z_{1} \quad 8 \mathrm{M}$ $=50+j 50$ ohms. If the wavelength $\lambda=5 \mathrm{~cm}$ find the first $\mathrm{V}_{\max }$, first $\mathrm{V}_{\text {min }}$, Reflection coefficient Γ and VSWR ρ.
10. a) A transmission line has the following parameters: $R=2 \mathrm{ohm} / \mathrm{m}, \mathrm{G}=0.5 \mathrm{mmho} / \mathrm{m}, \mathrm{L}=$ $8 \mathrm{nH} / \mathrm{m} \mathrm{C}=0.23 \mathrm{pF}$. If the operating frequency is .0 GHz find the characteristic impedance of the line, propagation constant, attenuation and phase constant.
b) An antenna with an impedance of $0.3+j 0.5 \Omega$ is to be matched to a 50Ω lossless line with a shorted stub. Find the stub length, stub admittace, and the distance of stub from the load.
\square

VARDHAMAN COLLEGE Of ENGINGERING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
ELECTRICAL TECHNOLOGY
(Common to Civil Engineering, Mechanical Engineering and Aeronautical Engineering)

Time: $\mathbf{3}$ hours

Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

Unit - 1

1. a) With neat diagram give the classification of DC machines according to method of their 8 M excitation.
b) A dc shunt generator supplies a load of 10 KW at 220 V through, and the resistance of 7 M armature and shunt field windings is 0.05Ω and 100Ω respectively. Calculate
i. Load current
ii. Shunt field current
iii. Generated emf
2. a) Explain various losses and power flow in a dc motor.
b) A 500 V dc shunt motor running at 700 rpm takes an armature current of 50A. Armature resistance is 0.4Ω. What resistance must be placed in series with armature to reduce the speed to 600 rmp , the torque and flux remains constant.

Unit - 2

3. a) Consider a $20 \mathrm{KVA}, 2200 / 220 \mathrm{~V}, 50 \mathrm{~Hz}$ transformer. The $\mathrm{OC} / \mathrm{SC}$ test results are as
follows:
OC test: 220V, 4.2A, 148W (Iv side)
SC test: 86V, 10.5A, 360W (hv side)
Determine the regulation at 0.8 p.f lagging and at full load. What is the p.f on short circuit?
b) Explain the various losses occurring in a single phase transformer.6M
c) Find the ratio of current in the primary to that in the secondary of a transformer which 1 M steps up the voltage by a factor 100 .
4. a) A single phase transformer has 180 and 90 turns respectively in its secondary and primary windings. The respective resistances are 0.233Ω and 0.067Ω. Calculate the equivalent resistance of
i) Primary referred to secondary
ii) Secondary referred to primary
iii) Total resistance referred to primary
b) A 600 KVA , single phase transformer has an efficiency of 92% both at full load and half
load at unity power factor. Determine its efficiency at 60% of full load at 0.8p.f lag.

$$
\text { :: } 2 \text { :: }
$$

Unit - 3
5. a) List few advantages and disadvantages of squirrel cage induction motor.
b) The power input to the rotor of a three-phase, $50 \mathrm{~Hz}, 6$-pole induction motor is

80 KW . The rotor emf frequency is 1.66 Hz . Find
i) Slip
ii) Motor speed
iii) Mechanical power developed
iv) Rotor copper loss per phase
6. a) With a neat diagram explain induction motor starting method using star-delta 7M connection.
b) A three-phase, 4 pole, 50 Hz , star connected induction motor is connected to a 400 V
supply. The rotor resistance and leakage reactance are 0.2Ω and 0.81Ω respectively. The ratio of stator to rotor effective turns is 1.8 .If the full-load slip is 4\%, Calculate
i) Full load torque
ii) Full load output
iii) Maximum torque
iv) Speed at maximum torque

Unit - 4
7. a) With sketches distinguish salient pole and non salient pole (smooth cylindrical) rotors of an alternator.
b) A three-phase, $50 \mathrm{~Hz}, 16$ pole generator with star connected winding has 144 slots with 10 conductors /slot. The flux/pole 24.8 mwb is sinusoidally distributed. The coils are fullpitched. Find
i) Speed
ii) Line emf(given winding factor $\mathrm{K}_{\mathrm{d}}=0.96$)
8. a) Define the following with respect to synchronous machine
i) Regulation
ii) Pull in torque
iii) Power angle
b) A star-connected, three-phase 50 Hz ,six pole alternator develops a voltage of $1000 \mathrm{~V}(\mathrm{RMS})$ between the lines when the rotor dc field current is 3 A . If this alternator is to generate 60 Hz , find the new synchronous speed and calculate the new terminal voltage for the same field current.

Unit - 5

9. a) Explain the working principle and application of AC servomotors. 8M
b) Write a short note on AC tachometers. 7M
10. a) Explain the working of a stepper motor. Also mention its applications. 8M
b) With a neat figure explain shaded pole motor. 7M

VARDHAMAN COLLEGE Of $\operatorname{\in NGIN\in \in RING~}$

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
 (Regulations: VCE-R11)
 MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS
 (Electronics and Communication Engineering)

Time: $\mathbf{3}$ hours
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Abstract

Unit - 1 1. Mr. Devendra T. Vice President sales of 'Sun Zone Solar Systems' has estimated the following demand function for the 100 liters solar water heater produced by them: Q=1500-0.04P Where, $\mathrm{Q}=$ Quantity demanded of solar water heaters, $\mathrm{P}=$ Price of Solar water heater, Construct a demand curve assuming price Rs. $12,000,13,000,14,000,15,000$ and 16,000 per unit. 2. What is price elasticity of demand? What is its significance in managerial decision making?

\section*{Unit - 2} 3. Explain the 'Law of Variable Proportions' with suitable examples and diagrams. 4. Construct a hypothetical cost schedule and bring out the cost output relationships in the 15M short run between output and TC, TFC, TVC, AC, AFC, AVC.

\section*{Unit - 3} 5. What conditions are necessary before price discrimination is both possible and profitable? Why does price discrimination result in higher profits? Explain with suitable examples of price discrimination. 6. a) Suppose you are a manager at a strategic business unit of an organization. Explain how the analysis of market structure contributes to business decision making. b) If you are the owner of a small business what pricing formulas will you follow? Will they be effective? Justify your answer with examples.

Unit - 4 7. Explain the features of Sole proprietorship and Partnership firm. 8. A company has to make a choice between two projects namely A and B. The initial capital outlay of the two projects are Rs. $2,70,000$ and Rs. $4,80,000$ respectively for A and B. there is no scrap value at the end of the life for both the projects. The cost of capital is 16%. The annual cash inflows are as under:

Year	Project A	Project B
1	Nil	$1,20,000$
2	60,000	$1,68,000$
3	$2,64,000$	$1,92,000$
4	$1,68,000$	$2,04,000$
5	$1,68,000$	$1,80,000$

You are required to calculate for each project:
i. Payback period
ii. Net present value

$$
\begin{array}{r}
\text { :: } 2 \text { :: } \\
\text { Unit - } 5
\end{array}
$$

9. From the following trial balance prepare trading and profit and loss account and balance 15M sheet as on that date after taking into account the necessary adjustments.
Trial balance as on $31^{\text {st }}$ March 2012.

Opening stock	1,500	
Purchases	25,000	
Sales		78,000
Debtors	6,000	
Capital	5,000	20,000
Drawings	800	1,000
Returns	15,000	
Plant and Machinery	2,500	
Bills Receivables	30,000	
Land and Buildings	12,000	
Bills Payable	7,000	
Salaries and Wages	1,200	
Trade expenses	700	
Rent		
Stationery		6,800
Creditors	300	
Interest received	5,500	
Bad debts	500	
Furniture	$1,13,000$	$1,13,000$
Cash balance		

Adjustments:
i. Closing stock as on $31^{\text {st }}$ March 2012 is Rs.1,200
ii. Accrued expenses: Wages Rs. 400 and Rent Rs. 50
iii. Provision for bad debts on debtors should be maintained at 15% on debtors
iv. Depreciate plant and machinery at 10% and 8% on land and buildings
10. The following is the balance sheet of $A B C$ Ltd as on 31-3-2012

liabilities	Rs.	Assets	Rs.
Equity capital (20,000 shares of 100 each)	$20,00,000$	Plant and machinery	$12,50,000$
		Buildings	$5,00,000$
		Debtors	$4,50,000$
Retained earnings	$5,00,000$	Stock	$7,00,000$
creditors	$4,00,000$	bills receivables	$1,50,000$
bills payable	$1,50,000$	pre-paid insurance	10,000
current liabilities	50,000	cash	40,000
	$31,00,000$		$31,00,000$

Statement of profit and loss for the year ended 31-3-12

Sales	$50,00,000$
less COGS	$38,50,000$
Gross profit	$11,50,000$
less operating expenses	$7,50,000$
Net profit	$4,00,000$
less tax @40\%	$1,60,000$
Net profit after tax	$2,40,000$

Calculate: Current ratio, liquid ratio, stock turnover ratio, debtors turnover ratio, gross profit ratio, net profit ratio and EPS.

VARDHAMAN COLLEGE Of ©NGIN€ \in RING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
THEORY OF COMPUTATION
(Computer Science and Engineering)
Time: $\mathbf{3}$ hours
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) Define DFA. Discuss why it study finite automata? What are the moves made by
following DFA while processing the string abaab?

b) Prove that if $D=\left(Q_{D}, \varepsilon, \delta_{D},\left\{q_{0}\right\}, F_{D}\right)$ is the DFA constructed from NFA $N=\left(Q_{N}, \varepsilon, \delta_{N},\left\{q_{N}\right\}\right.$,
F_{N}) by subset construction then $L(D)=L(N)$
2. a) Minimise the following DFA

b) For the NFA given by following state transition diagram
i. Check whether the string axxaxxa is accepted or not
ii. Give atleast two transition paths

Unit - 2
3. a) Obtain a regular expression for $L=\left\{V U V \mid U, V \in\{a, b\}^{*}\right.$ and $\left.|V|=2\right\}$. 7M
b) State and prove pumping lemma for regular languages. 8M
4. a) Prove that there exists a finite automata to accept the language $L(R)$ corresponding to $7 M$ the regular expression R.
b) Convert the following DFA to a regular Expression using the state elimination method (Arden's method).

	0	1
$\rightarrow P$	S	P
Q	P	S
R	R	Q
S	Q	R

Unit - 3

5. a) Let G be the grammar

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aB} \mid \mathrm{bA} \\
& \mathrm{~A} \rightarrow \mathrm{a}|\mathrm{aS}| \mathrm{bAA} \\
& \mathrm{~B} \rightarrow \mathrm{~b}|\mathrm{bS}| \mathrm{aBB}
\end{aligned}
$$

For the string aaabbabbba , find
(i) Leftmost Derivation.
(ii) Rightmost Derivation.
(iii) Derivation Tree.
b) Obtain the grammar to generate strings of a's and b's having the substring ab.
6. a) For the following grammar :
$\mathrm{S} \rightarrow \mathrm{ABC}|\mathrm{BbB}, \mathrm{A} \rightarrow \mathrm{aA}| \mathrm{BaC} \mid$ aaa $, \mathrm{B} \rightarrow \mathrm{bBb}|\mathrm{a}| \mathrm{D}, \mathrm{C} \rightarrow \mathrm{CA} \mid \mathrm{AC}, \mathrm{D} \rightarrow \varepsilon$
i) Eliminate ε-productions.
ii) Eliminate any unit productions in the resulting grammar.
iii) Eliminate any useless symbols in the resulting grammar.
iv) Put the resulting grammar in Chomsky Normal Form.
b) Write a note on applications of Context free grammars.

Unit - 4

7. a) Define push down automata. Differentiate PDA by empty stack and final state by giving 6M their definitions.
b) Obtain PDA to accept the language $L(M)=\left\{w / w \in(a+b)^{*}\right.$ and $n_{a}(w)=n_{b}(w)$ by a final state $9 M$ i.e. number of a's in string w should be equal to number of b 's in w.
8. a) Obtain a CFG that generates the language accepted by PDA $M=\left(\left\{q_{0}, q_{1}\right\},\{a, b\},\{A, Z\}, \delta, 8 M\right.$ $\left.q_{0}, Z,\left\{q_{1}\right\}\right)$ with the transitions
$\delta\left(q_{0}, a, Z\right)=\left(q_{0}, A Z\right)$
$\delta\left(q_{0}, b, A\right)=\left(q_{0}, A A\right)$
$\delta\left(q_{0}, a, A\right)=\left(q_{1}, \epsilon\right)$
b) Construct the PDA for the grammar
$\mathrm{S} \rightarrow \mathrm{aABC}$
$A \rightarrow a B \mid a$
$B \rightarrow b A \mid b$
$C \rightarrow a$

Unit - 5
9. a) Name any three languages which are accepted by a Turing Machine. 3M
b) Design a Turing Machine to accept the following language. $L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$ 12M
10. a) Write short notes on 10M
i. Post correspondence problem
ii. Undecidability of problems that are regular expression
b) Discuss Chomsky hierarchy of languages.
 \title{
VARDHAMAN COLLEGE OF ENGINE ERING
}
 \title{
VARDHAMAN COLLEGE OF ENGINE ERING
}

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
ELECTRONIC CIRCUITS
(Electrical and Electronics Engineering)
Time: $\mathbf{3}$ hours
Max Marks: 75

Answer ONE question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

Unit - 1

1. a) Draw the H parameter equivalent circuit for a typical CE amplifier and derive its parameters.
b) For the emitter follower with $R_{S}=0.5 \mathrm{k} \Omega$ and $R_{L}=5 \mathrm{k} \Omega$, calculate $A_{1}, A_{I S}, A_{V}, A_{V S}, R_{O}$ and
R^{\prime}. Assume $\mathrm{h}_{\mathrm{fe}}=50, \mathrm{~h}_{\mathrm{ie}}=1 \mathrm{k}, \mathrm{h}_{\mathrm{oe}}=25 \mu \mathrm{~A} / \mathrm{V}$.
2. a) For the circuit shown in Fig. 1 calculate:
(i) $A_{i}=I_{0} / I_{i}$ (ii) $A_{V S}$ (iii) R_{i} and (iv) R_{0}.

Assume $h_{i e}=1 k \Omega, h_{f e}=100$, neglect $h_{r e}$ and $h_{\text {oe }}$

b) Draw a source follower circuit and give its equations for:
i. Input admittance
ii. Output admittance

Unit - 2

3. a) Draw the circuit diagram of transformer coupled class A power amplifier .Derive the conversion efficiency of transformer coupled class A power amplifier.
b) What is Harmonic distortion? Why do it occur in Amplifiers. Calculate the harmonic distortion components and the total harmonic distortion for an output signal having a fundamental amplitude of 3 V , Second harmonic amplitude of 0.3 V , third harmonic amplitude of 0.15 V and fourth harmonic amplitude of 0.06 V .
4. a) Explain the cross-over distortion in class B amplifiers. How is this overcome in class $A B$ push-pull amplifier.
b) Derive the maximum conversion efficiency in class B push-pull amplifier.

Unit - 3
5. a) Show the effect of negative feedback on the input resistance of voltage - series feedback amplifier.
b) An amplifier has a bandwidth of 200 kHz and a voltage gain of 1000 .
i. What will be the new bandwidth and gain if 5% negative feedback is introduced?
ii. What is the gain bandwidth product with and without feedback?
iii. What should be the amount of feedback if the bandwidth required is 1 MHz ?
6. a) Discuss in detail what is Barkhausen criterion. 8M
b) With a suitable circuit diagram explain the working principle of a phase shift oscillator.

Unit - 4

7. a) Obtain the relation between Tilt and time constant in RC High pass circuit.
b) A symmetrical square wave whose average value is zero has peak to peak amplitude of 20 V and a period of $2 \mu \mathrm{Sec}$. This waveform is applied to a low pass circuit whose upper 3 dB frequency is $1 / 2 \Pi \mathrm{MHz}$. Calculate and sketch the steady state output waveform. In particular what is peak to peak output amplitude?
8. a) State and prove clamping circuit theorem.
b) Design two level shunt clipping circut using ideal diode to clip the input sinusoidal signal above 50V and below 25V. Draw the transfer characteristics.(forward diode resistance drop is 10Ω and reverse resistance is $100 \mathrm{~K} \Omega$).

Unit - 5

9. a) Draw the circuit and waveforms at any one of the transistor's base and collector of 8 M Astable Multivibrator. Derive an expression for period of oscillations.
b) Design a fixed bias bistable multivibrator using npn transistor for the following 7 M specifications: $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}=\mathrm{V}_{\mathrm{BB}} ; \mathrm{h}_{\mathrm{fe}(\mathrm{min})}=20, \mathrm{i}_{\mathrm{csat}}=5 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CEsat}}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE} \text { sat }}=0.7 \mathrm{~V}$.
10. a) Explain with the help of a neat circuit diagram the principle of operation of a monostable multivibrator. Draw the waveforms at collector and bases of both transistor.
b) Determine the UTP and LTP for the Schmitt trigger circuit for the following 8 M specifications: $n p n$ silicon transistor, $h_{f e}=100, ~ V c c=+12 \mathrm{~V}, R_{e}=2.2 \mathrm{k} \Omega, R c_{2}=3.9 \mathrm{k} \Omega$, $R_{c 1}=3.9 \mathrm{k} \Omega, \mathrm{R}_{1}=22 \mathrm{~K} \Omega$ and $\mathrm{R}_{2}=22 \mathrm{~K} \Omega$.

VARDHAMAN COLLEG Of $\operatorname{\in NGIN\in \in RING~}$

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
AC MACHINES-I
(Electrical and Electronics Engineering)

Answer ONE question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

Unit - 1

1. a) Derive an expression for the condition for maximum efficiency in a transformer.
b) Two 100 KW transformers each has a maximum efficiency of 98% but in one the maximum efficiency occurs at full load while in the other it occurs at half load. Each transformer is on full load for 4 hours, on half-load for 6 hours and one-tenth load for 14 hours per day. Determine the efficiency of each transformer.
2. a) Explain the principle of operation of a transformer on load.
b) The full load copper loss on the hv side of $100 \mathrm{KVA}, 11000 / 317 \mathrm{~V}, 1$ phase transformer is 0.62 KW and on the Iv side is 0.48 KW . Calculate $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{2}^{\prime} in ohms The total reactance is 4 percent, find X_{1}, X_{2} and X_{2}^{\prime} in ohms if the reactance is divided in the same proportion as resistance.

Unit - 2
3. a) Is it necessary that two transformers to be operated in parallel should be of same capacity? Discuss.
b) A $200 \mathrm{KVA}, 2000 / 440 \mathrm{~V}, 50 \mathrm{~Hz}$ single-phase transformer gave the following test results

OC test(HV): $2 \mathrm{KV}, 1.75 \mathrm{KW}, \quad 1.8 \mathrm{~A}$
SC test(LV): 13V, 1KW, 300A
Find
i. Parameters of equivalent circuit as referred to HV side
ii. Regulation and efficiency at full-load, 0.8p.f lagging
4. a) Draw phasor diagram and equivalent circuit of an autotransformer. Compare it with two winding transformer.
b) Two transformers each of 800KVA are connected in parallel. One has a resistance and reactance of 1% and 4% respectively and the other has resistance and reactance of 1.5% and 6% respectively. Calculate the load shared by each transformer and the corresponding power factor when the total load shared is 100KVA at 0.8 p.f lagging.

Unit - 3

5. a) Enumerate the advantages of using three single phase transformers instead of one three phase transformer of same KVA rating.
b) Three $1100 / 110 \mathrm{~V}$ transformers connected in Δ / Δ supply a lighting load of 100 KW . One of these transformers is damaged and hence removed for repairs. What currents will be flowing in each transformer when
i. The three transformers were in service
ii. The two transformers are in service
6. a) A 3ϕ step down transformer is connected to 6.6 KV mains and takes 10 A . The ratio of turns per phase is 12 . Neglect losses. Calculate the secondary line voltage, line current and output for the following connections:
i. Δ / Δ
ii. $\quad Y / Y$
iii. Δ / Y
iv. $\quad Y / \Delta$
b) List out the advantages and disadvantages of stat - star connections.

Unit - 4

7. a) Discuss construction and principle of operation of a 3-phase induction motor.
b) A 6-pole, 50 Hz 3 -phase induction motor has rotor resistance $=0.2 \Omega /$ phase. Maximum 8 M torque is $200 \mathrm{~N}-\mathrm{m}$ at 850 rpm . Find
i. Torque at 4% slip
ii. Additional rotor resistance to get two-third of the maximum torque at starting . Neglect stator impedence.
8. a) Draw and explain the power flow diagram of the 3-phase induction motor .Show rotor copper loss is slip times the power input to rotor.
b) A 6 pole $3-\Phi$ induction motor develops 30 HP including mechanical losses total equal to 2 HP at a speed of 950 rpm on $550 \mathrm{~V}, 50 \mathrm{~Hz}$ mains. The power factor is 0.88 . Calculate for this load
i. Slip
ii. Rotor copper loss
iii. Total input if the stator losses are 200 watts

Unit - 5

9. a) Discuss briefly the various methods of speed control of three -phase cage motor and wound rotor induction motor.
b) The rotor resistance and leakage reactance of a three-phase induction motor are 0.02Ω and 0.1Ω respectively. At rated voltage, the full-load slip is 5%.Determine the percentage reduction in the stator voltage to develop the full-load torque at half the full -load speed.
10. a) Explain induction machine working as an induction generator. Also draw speed torque 7M curve of induction machine showing braking, motoring and generating regions.
b) The results of no-load and blocked rotor tests on a $400 \mathrm{~V}, 50 \mathrm{HP}, 50 \mathrm{~Hz}$, three phase, 48 M pole induction motor are as follows

NO-LOAD TEST: $\quad V_{0}=400 \mathrm{~V}, \mathrm{I}_{0}=30 \mathrm{~A}, \mathrm{~W}_{0}=1800 \mathrm{~W}$
BLOCKED ROTOR TEST: Vsc=110V, Isc=80A , Wsc=4000W
The motor has a star connected stator having a resistance of 0.1Ω /phase. Draw circle diagram and find out full load
i. Current
ii. Power factor
iii. Slip
iv. Torque
v. Efficiency

VARDHAMAN COLLEGE Of ©NGINE ERING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
ELECTROMAGNETIC FIELDS
(Electrical and Electronics Engineering)

Answer ONE question from each Unit All Questions Carry Equal Marks

 All parts of the question must be answered in one place only
Unit - 1

1. a) Let a point charge Q_{1} of $25 n C$ be located at $P_{1}(4,-2,7)$ and a charge Q_{2} of $60 n C$ at $P_{2}(-3, \quad 8 M$ 4-2). If $\epsilon=\epsilon_{0}$ find \vec{E} at $\mathrm{P}_{3}(1,2,3)$.
b) Let $V=2 x y^{2} z^{3}+3 \ln \left(x^{2}+2 y^{2}+3 z^{2}\right) V$ in free space. Evaluate each of the following 7 M quantities at $\mathrm{P}(3,2,-1)$
i. $\quad V$
ii. $\quad|V|$
iii. $\quad \vec{E}$
2. a) Using Gauss's law derive the expression for the electric field intensity at a point due to an infinite sheet of charge with charge density $\rho_{s} \mathrm{C} / \mathrm{m}^{2}$.
b) A charge Q_{0} located at the origin in free space produces a field for which $E_{2}=1 \mathrm{KV} / \mathrm{m}$ at $\quad 8 \mathrm{M}$ point $\mathrm{P}(-2,1,-1)$
i. Find Q_{0}
ii. Find \vec{E} at $\mathrm{M}(1,6,5)$

Unit - 2

3. a) A filament is formed into a circle of radius ' a ', centered at the origin in the plane $z=0$. It carries a current ' 1 ' in the \hat{a}_{ϕ} direction. Find \vec{H} at the origin.
b) An infinite filament on the z-axis carries $20 \pi m A$ in the \hat{a}_{z} direction. Three uniform cylindrical current sheets are also present; $400 \mathrm{~mA} / \mathrm{m}$ at $\rho=1 \mathrm{~cm},-250 \mathrm{~mA} / \mathrm{m}$ at $\rho=2 \mathrm{~cm}$ and $-300 \mathrm{~mA} / \mathrm{m}$ at $\rho=3 \mathrm{~cm}$. Calculate H_{ϕ} at $\rho=3.5 \mathrm{~cm}$.
c) State and explain Gauss's law for magnetic field.
4. a) Given the field $\vec{H}=20 \rho^{2} \hat{a}_{\phi} A / m$. Determine the current density. Find the total current by a line integral around the circular path $\rho=1,0<\phi<2 \pi, z=0$.
b) State and explain
i. Ampere's circuital law
ii. Biot-Savart's law in vector form

Unit - 3

5. a) Explain Laplace's and Poisson's equations for boundary valued problems.
b) Derive the capacitance for a co-axial cable of inner radius ' a ', outer radius ' b ' and 5 M length L.
c) Derive the continuity equation for current.
6. a) A solenoid has 400 turns with a length of 2 m . It has a circular cross-section of $0.1 \mathrm{~m}^{2}$. Find its inductance.
b) Derive the Neuman's formula for mutual inductance.
c) A Toroid has a air core and has a cross sectional area of 10 sq.mm. It has 1000 turns and 5 M its mean radius is 10 mm . Find its inductance.

Unit - 4
7. a) Find the force per meter length between two long parallel wires separated by 10 cm in air and carrying a current of 10A in the same direction.
b) Explain the concept of scalar and vector magnetic potential with the help of necessary expressions.
8. a) Define magnetization in terms of magnetic dipole moment.
b) A point charge for which $Q=2 \times 10^{-16} \mathrm{C}$ and $m=5 \times 10^{-26} \mathrm{~kg}$ is moving in the 10M combined fields $\vec{E}=100 \hat{a}_{x}-200 \hat{a}_{y}+300 \hat{a}_{z} V / m$ and $\vec{B}=-3 \hat{a}_{x}+2 \hat{a}_{y}-\hat{a}_{z} m \tau$. If the charge velocity at $\mathrm{t}=0$ is $V(0)=\left(2 \hat{a}_{x}-3 \hat{a}_{y}-4 \hat{a}_{z}\right) \times 10^{5} \mathrm{~m} / \mathrm{s}$, find the unit vector showing the direction in which the charge is accelerating at $\mathrm{t}=0$.

Unit - 5
9. a) Obtain Maxwell's equation from Faraday's law for time varying fields. Given 12M $\vec{D}=\frac{-2 \beta}{10^{10}} \cos \left(10^{10} t-\beta x\right) \hat{a}_{y} C / m^{2}$. Find the value of \vec{B}.
b) Explain the concept of displacement current.
10. a) State Maxwell's equations in point form and in integral from for time varying fields. 8 M
b) State Poynting theorem. Explain different terms used. Also explain the significance of 7M Poynting vector.
\square

VARDHAMAN COLLEGE OF ENGINE \in RING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11) PROBABILITY AND STATISTICS
(Mechanical Engineering)
Time: $\mathbf{3}$ hours
Max Marks: 75

Answer ONE question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

Unit - 1

1. a) A problem in statistics is given to three students A, B and C whose chances of solving it are $1 / 2,3 / 4$ and $1 / 4$ respectively. What is the probability that the problem will be solved if all of them try independently?
b) The members of a consulting firm rent cars from rental agencies A, B and C as 60%, 30% and 10% respectively. If $9 \%, 20 \%$ and 6% of cars from A, B and C respectively agencies need tune up and if a rental car delivered to the firm does not need tune up, what is the probability that it came from B agency?
2. a) A random variable X has the following probability distribution

$\mathrm{x}:$	-2	-1	0	1	2	3
$\mathrm{P}(\mathrm{x})$	0.1	k	0.2	2 k	0.3	3 k

Then
i. Find k
ii. Evaluate $P(x<2)$
iii. $\quad P(-1<x \leq 2)$
iv. Evaluate mean of x
b) A and B alternately throw a pair of dice. A wins if he throws 6 before B throws 7 and
B wins if he throws 7 before A throws 6 of A begins, show that hi chance of winning is 30/61

Unit - 2

3. a) In a sample of 1000 cases, the mean of a certain test is 14 and standard deviation is 2.5. 8M Assuming the distribution to be normal, find
i. How many students score between 12 and 15?
ii. How many score above 18 ?
iii. How many score below 8?
iv. How many score 16?
b) A coin is biased so that a head is twice as likely to appear as a tail. If the coin is tossed $6 \quad 7 \mathrm{M}$ times, find the probabilities of getting
i. Exactly 2 heads
ii. At least 3 heads
iii. At most 4 heads
4. a) A population consists of five members $2,3,6,8,11$. Consider all possible samples of 9 M size 2 which can be drawn with replacement from this population.
Find
i. The mean and Standard deviation of the population
ii. The mean and standard deviation of sampling distributions of means
iii. Considering samples without replacement, find the mean and S.D of sampling distribution of means.

:: 2 ::

b) In a component manufacturing industry there is a small probability of $1 / 500$ for any component to be defective. The components are supplied in packets of10. Use Poisson distribution to calculate the approximate number of pockets containing
i. At least one defective
ii. At most one defective

In a consignment of 1000 packets.
Unit - 3
5. a) A die was thrown 9000 times and a throw of 5 or 6 was obtained 3240 times. On the assumption of random throwing, do the data indicate an unbiased die?
b) In a city A 20% of a random sample of 900 school boys had a certain slight physical defect. In another city B 18.5% of a random sample of ` 1600 school boys had the same defect. Is the difference between the proportions significant?
6. a) The nine items of a sample have the following values: $45,47,50,52,48,47,49,53$ and
51. Does the mean of these differ significantly from the assured mean of 47.5
b) Explain the test of significance for means of two large samples

Unit - 4

7. a) The following data relate to marks obtained by 11 students in 2 tests, one held at the beginning of year and the other at the end of the year after intensive coaching

Test.I	19	23	16	24	17	18	20	18	21	19	20
Test.II	17	24	20	24	20	22	20	20	18	22	19

Do the data indicate that the students have benefited by coaching?
b) A machinist is expected to make engine parts with axle diameter of 1.75 cm . A random sample of 10 parts shows a mean diameter 1.85 cm with $S . D$ of 0.1 cm . On the basis of this sample would you say that the work of the machinist is inferior?
8. a) A survey of 320 families with 5 children revealed the following distribution

No. of boys:	0	1	2	3	4	5
No. of girls:	5	4	3	2	1	0
No. of families:	12	40	88	110	56	14

Is this result consistent with the hypothesis that male and female births are equally probable?
b) Two independent samples of sizes 8 and 7 contained the following values

Sample I:	19	17	15	21	16	18	16	14
Sample II:	15	14	15	19	15	18	16	

Is the difference between the sample means significant?
Unit - 5
9. In a machine shop the interarrival time at the tool crib are exponential with an average time of 10 min . The length of the service is exponentially distributed with a mean of 6 min . Find
i. The probability that the person has to wait
ii. Average queue length and average time an operator spends in the queue system
iii. The manager of the shop will install a second booth when an arrival would have to wait 10 min or more for the service. Calculate the increase in the flow or arrivals
iv. The probability that an arrival will have to wait for more than 10 min for service.
v. Estimate the fraction of the day the operator is idle
vi. The probability that there will be 6 or more operators waiting for the service
10. A box office ticket window is being manned by a single server. Customers arrive to purchase according to Poisson distribution with a mean of 30 per hour. The time required to serve the customer has an exponential distribution with a mean of 90 sec . Calculate
i. Mean queue length
ii. Mean line length
iii. Mean waiting time in system
iv. Mean waiting time in queue
v. Probability that there are three or more customers in the sys mmtem
vi. Percentage of time the server is busy.

VARDHAMAN COLLEGE OF ENGINEERING

(AUTONOMOUS)
Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
DATA COMMUNICATION SYSTEMS
(Information Technology)

Time: $\mathbf{3}$ hours
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only
Unit - 1

1. a) What does the Nyquist theorem have to do with communications? Explain in detail. 7M
b) A signal travels from point A to point B. At point A, the signal power is 100 W . At point 8M
B, the power is 90 W . What is the attenuation in decibels?2. a) In a digital transmission, the sender clock is 0.2 percent faster than the receiver clock.5MHow many extra bits per second does the sender send if the data rate is 1 Mbps ?
b) An analog signal has a bandwidth of 20 KHz . If we sample this signal and send it 10 M through a 30 Kbps channel what is the SNRdB?

Unit - 2

3. a) Draw and show the two wire parallel transmission line electrical equivalent circuit. 8 M
b) Explain wave propagation on metallic transmission lines.
4. a) Explain the formula for characteristic impedance of a single coaxial cable. 8 M
b) Explain how to calculate attenuation of coaxial cable. 7M

Unit - 3

5. a) Define the characteristics of a self-synchronizing signal.
b) We have sampled a low-pass signal with a bandwidth of 200 KHz using 1024 levels of 9 M quantization.
i. Calculate the bit rate of the digitized signal.
ii. Calculate the SNRdB for this signal.
iii. Calculate the PCM bandwidth of this signal.
6. a) Define baseline wandering and its effect on digital transmission. 7M
b) How many invalid (unused) code sequences can we have in 5B/6B encoding? How 8M many in $3 \mathrm{~B} / 4 \mathrm{~B}$ encoding?

Unit - 4

7. a) Explain the working of synchronous data link protocols. 8 M
c) Mention the features of Asynchronous data link protocols. 7M
8. a) Determine the BCS for the following data and CRC generating polynomials.
Data $G(x)=x^{7}+x^{5}+x^{4}+x^{2}+x^{1}+x^{0}=10110111$
CRC $p(x)=x^{5}+x^{4}+x^{1}+x^{0}=110011$
b) Write a note on character synchronization.

Unit - 5

9. a) What is dial-up modem technology? List some of the common modem standards 8 M discussed in this chapter and give their data rates.
b) What type of topology is used when customers in an area use cable modems for 7M data transfer purposes? Explain.
10. a) Distinguish between CM and CMTS. 6 M
b) Calculate the minimum time required to download one million bytes of information 9 M using each of the following technologies:
i. V32 modem
ii. V32bis modem
iii. V90 modem
\square

VARDHAMAN COLLEGE Of ©NGINGERING

(AUTONOMOUS)
 Four Year B. Tech IV Semester Regular Examinations June - 2013
 (Regulations: VCE-R11)
 PRODUCTION TECHNOLOGY
 (Mechanical Engineering)

Time: $\mathbf{3}$ hours
Max Marks: 75

Answer ONE question from each Unit All Questions Carry Equal Marks

 All parts of the question must be answered in one place only
Unit - 1

1. a) What is a pattern allowance? List and explain the various types of pattern allowances. 6 M
b) It is desired to produce large castings of circular and symmetric shapes. Suggest which 4 M type of pattern is most suitable to produce such a mould cavity. Sketch and explain it.
c) Differentiate between open and blind risers.
2. a) With the help of a cooling curve explain equilibrium cooling and super cooling during 8 M solidification of a pure metal.
b) With suitable sketches explain the various steps involved in the lost wax casting 7M process.

Unit - 2

3. a) Explain the principle of arc welding process. 5 M
b) What are the electrodes in arc welding made up of? What are electrode coatings and 4 M why are they provided?
c) Explain the features of neutral flame, reducing flame and oxidizing flame.
4. a) What do you mean by welding and why it is done? 3 M
b) What do you understand by the term polarity in electric arc welding? What is the 4 M advantage of having different polarities?
c) With the help of a neat sketch explain the process of plasma arc welding? List its 8 M advantages, disadvantages and applications.

Unit - 3
5. a) Sketch and describe TIG welding process.

List the advantages of the same.
b) Describe with a neat sketch a welding process to weld pipe / solid round rods.(carbon Steel or stainless steel).
6. a) Define "Defect". List any four defects observed in welding, and suggest remedies for 6 M the same.
b) Describe clearly (i) Recovery \quad (ii) Recrystallization. 6M
c) Compare the properties of cold and hot worked products. 3 M

Unit - 4

7. a) Define Rolling. List the 4 different methods of reducing roll forces. 6M
b) What are residual stresses? Discuss the same with respect to rolling process. 6M
c) Sketch cluster roll mill 3M
8. a) Define the following with neat simple sketches
i. Bending
ii. Forming
iii. Drawing
b) Design a die set for the cup shaped component having the following dimensions Material yield stress is $280 \mathrm{~N} / \mathrm{mm}^{2}$ Thickness is 2 mm .

Unit - 5

9. a) Highlight the advantage of hot extrusion process. Discuss the drawbacks of the
Same.
b) Write a brief note on extrusion defects. 8M
10. a) List any 6 advantages of using plastic materials. 6M
b) Discuss the (variation of stress Vs. strain), the general terminology describing the 9 M behavior of three types of plastics.

VARDHAMAN COLLEGE Of ENGINEERING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
 (Regulations: VCE-R11)
 HYDRAULIC MACHINERY AND SYSTEMS

(Mechanical Engineering)
Time: $\mathbf{3}$ hours
Max Marks: 75

Answer ONE question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - 1

1. a) A 7.5 cm diameter jet having a velocity of $30 \mathrm{~m} / \mathrm{s}$ strikes a flat plate, the normal of10M which is inclined at 45° to the axis of the jet. Find the normal pressure on the plate
i. When the plate is stationary
ii. When the plate is moving with a velocity of $15 \mathrm{~m} / \mathrm{s}$ and away from the jet. Also determine the power and efficiency of the jet when the plate is moving.
b) The head of water from the center of the orifice which is fitted to one side of the tank is maintained at 2 m of water. The tank is not allowed to move and the diameter of the orifice is 100 mm . Find the force exerted by the jet of water on the tank.
2. a) Write short notes on jet propulsion of ships.
b) A small ship is fitted with jets of total area $0.65 \mathrm{~m}^{2}$. The velocity through the jet is $9 \mathrm{~m} / \mathrm{s}$ and speed of the ship is 18 kmphr in sea water. The efficiencies of the engine and pump are 85% and 65% respectively. If the water is taken amid ships determine the propelling force and the overall efficiency, assuming the pipe losses to be 10% of the kinetic energy of the jets.

Unit - 2

3. a) Define the following terms
i. Gross Head
ii. Net Head
b) Draw a neat sketch and explain the construction and working of any radial flow reaction turbine.
4. a) Derive an equation for the work done of a Pelton wheel.
b) A Pelton wheel has a mean bucket speed of $10 \mathrm{~m} / \mathrm{sec}$ with a jet of water flowing at the rate of $700 \mathrm{lts} / \mathrm{sec}$ under a head of 30 m . The buckets deflect the jet through an angle of 160°. Calculate the power given by water to the runner and the hydraulic efficiency of the turbine. Assume coefficient of velocity as 0.98 .

Unit - 3

5. a) Define specific speed of hydraulic turbines. Derive an expression for the same. What is 7M its utility?
b) A Kaplan turbine develops 24647.6 kW power at an average head of 39 m . Assuming a speed ratio of 2 , flow ratio of 0.6 , (internal) diameter of the boss equal to 0.35 times the (external) diameter of the runner and an overall efficiency of 90%, calculate the diameter, speed and specific speed of the turbine.
6. a) Derive an expression for acceleration head on the flow in case of a reciprocating pump assuming simple harmonic motion of the piston.
b) The piston of a double acting reciprocating pump has 100 mm diameter and a stroke of 250 mm . The pump has a vertical suction pipe 5 m long and 100 mm diameter. The pump runs at 90 double strokes per minute with simple harmonic motion. Calculate the maximum permissible suction lift assuming no separation at 2 m of water absolute. Assume atmospheric head as 10.2 m of water.

Unit - 4
7. a) From the fundamentals derive and equation for work done and power required by a centrifugal pump using velocity triangles.
b) Centrifugal pump delivers $50 \mathrm{l} / \mathrm{sec}$ against a total head of 24 m when running at 1500 rpm. The velocity of flow is maintained constant at $2.4 \mathrm{~m} / \mathrm{sec}$ and blades are curved back at 30° to the tangent at out let. The inner diameter is half the outer diameter. If the manometric efficiency is 80%. Determine :
i. Blade angle at inlet
ii. Power required to drive the pump
8. a) Explain the phenomenon of cavitation in centrifugal pump. List out the factors 7 M favouring cavitation and its ill effects.
b) A model of a centrifugal pump absorbs, 5 kW at a speed of 1500 rpm , pumping water against a head of 6 m . The large prototype pump is required to pump water to a head of 30 m . The scale ratio diameters is 1:4. Assuming same efficiency and similarities, find the speed, power of prototype and ratio of discharge of prototype and model.

Unit - 5

9. a) Draw a neat sketch of a direct acting hydraulic lift and explain the working.
b) Draw a neat sketch of a gear wheel pump and explain its working.
10. a) Draw a neat sketch of a hydraulic coupling and explain the working.
b) Write a short note on air lift pump.

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
 (Regulations: VCE-R11)
 KINEMATICS OF MACHINERY

(Mechanical Engineering)
Time: $\mathbf{3}$ hours
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) Classify kinematic pairs and explain with neat sketches. 9M
b) How are links classified? Explain briefly each type. 6M
2. a) Explain any two inversions of a double slider crank mechanism with neat sketches. 8M
b) What is an indicator mechanism? Explain with a neat sketch 'Watt's indicator' 7M mechanism.

$$
\text { Unit - } 2
$$

3. A quick return mechanism of crank and slotted lever type shaping machine is shown 15 M in Figure.1. The dimensions of various links are as follows.
$\mathrm{O}_{1} \mathrm{O}_{2}=800 \mathrm{~mm}, \mathrm{O}_{1} \mathrm{~B}=300 \mathrm{~mm}, \mathrm{O}_{2} \mathrm{D}=1300 \mathrm{~mm}$ and $\mathrm{DR}=400 \mathrm{~mm}$
The crank $\mathrm{O}_{1} \mathrm{~B}$ makes an angle of 45° with the vertical and relates at 40 rpm in the CCW direction. Find:
i. Velocity of the Ram R, velocity of cutting tool, and
ii. Angular velocity of link $\mathrm{O}_{2} \mathrm{D}$

Figure. 1
4. a) What is the condition for exact straight line motion?
b) A toggle mechanism is shown in figure. 2 along with the diagrams of the links in 10M mm . find the velocities of the points B and C and the angular velocities of links $A B, B Q$ and $B C$. The crank rotates at 50 rpm in the clockwise direction.

Figure. 2
5. a) Explain Coriolis component of acceleration.
b) The crank of an IC engine is 200 mm long and the ratio of connecting rod to crank radius is 4 . Determine the acceleration of the piston and the acceleration of point X on the connecting rod(located at $3 / 4$ distance from piston end) when the crank has turned 45 degree from IDC position and rotates at a uniform speed of 240 rpm clockwise.(use klein's construction).
6. a) Locate all the instantaneous centres for a four bar mechanism shown in the figure.3. The length of the various links are $A D=70 \mathrm{~mm}, A B=70 \mathrm{~mm}, B C=51 \mathrm{~mm}$ and $C D=80 \mathrm{~mm}$.

Figure. 3
b) What is the condition for correct steering? Explain with a neat sketch.

Unit - 4

7. a) How cams and Followers are classified?
b) State and Derive Law of Gearing.
8. Draw the cam profile for following conditions: Follower type = Knife edged, in-line; lift = 50 mm ; base circle radius $=50 \mathrm{~mm}$; out stroke with SHM, for 60° cam rotation; dwell for 45° cam rotation; return stroke with SHM, for 90° cam rotation; dwell for the remaining period. Determine maximum velocity and acceleration during out stroke and return stroke if the cam rotates at 1000 rpm in clockwise direction.

Unit - 5
9. a) Derive the equation for centrifugal tension in belt drive.
b) In a compound epicyclic gear train as shown in the figure.4, has gears A and an annular gears $D \& E$ free to rotate on the axis P. B and C is a compound gear rotate about axis Q. Gear A rotates at 90rpm CCW and gear D rotates at 450 rpm CW . Find the speed and direction of rotation of arm F and gear E. Gears A, B and C are having 18,45 and 21 teeth respectively. All gears having same module and pitch.

Figure. 4
10. a) Which are the different types of chains used for power transmission?
b) A belt is required to transmit 18.5 kW from a pulley of 1.2 m diameter running at 250 rpm to another pulley which runs at 500 rpm . The distance between the centers of pulleys is 2.7 m . The following data refer to an open belt drive, $\mu=0.25$. Safe working stress for leather is $1.75 \mathrm{~N} / \mathrm{mm}^{2}$. Thickness of belt $=10 \mathrm{~mm}$. Determine the width and length of belt taking centrifugal tension into account. Also find the initial tension in the belt and absolute power that can be transmitted by this belt and the speed at which this can be transmitted.

VARDHAMAN COLLEGE Of ©NGINE \in RING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
AERODYNAMICS-I
(Aeronautical Engineering)
Time: $\mathbf{3}$ hours
Max Marks: 75

Answer ONE question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

Unit-1

1. a) Consider an infinitely thin flat plate of chord ' C ' at an angle of attact of 12°. The normal and axial force coefficients are 1.2 and 0.03 respectively. Calculate the lift and drag coefficients.
b) Explain in brief about the nomenclatures used for airfoil and 3D wing with neat sketches.
c) Differentiate between symmetric and cambered airfoil with appropriate ' C_{L} ' - ' α^{\prime} '4M curves.
2. a) What are the various forces on a typical airfoil? Obtain the expressions for aero dynamic coefficients viz. C_{l}, C_{d}, C_{m}, L.E.
b) Write short notes on center of pressure.

Unit - 2

3. a) Consider a velocity field where x and y components of velocity are given by 7 M $u=\frac{c x}{x^{2}+y^{2}}$ and $v=\frac{c y}{x^{2}+y^{2}}$. Where C is constant. Obtain the expression of the stream line. Also calculate the vorticity using polar coordinates.
b) Consider a velocity field where the radial and tangential components of velocity are
$\mathrm{V}_{\mathrm{r}}=0$ and $\mathrm{V}_{\theta}=\mathrm{CV}$ respectively. Obtain the equation of the stream line. Also find the flow field is rotational or irritational.
4. a) State vorticity and circulation. Also bring out the inter relationship between them. 8 M
b) Write short notes on the following:
i. Kutta Joukowski Theorem
ii. Kelvin Circulation Theorem

Unit - 3

5. Derive the fundamental thin airfoil relation and hence obtain an expression for lift 15 M coefficient and lift slope of a cambered airfoil.
6. Explain briefly about the following:
i. Kutta-Zhukowsky Transformation
ii. Kutta condition

Unit - 4
7. a) Describe in detail about the following:
i. Biot-Savart's law
ii. Helmholtz theorem
b) Consider a vortex filament of strength T in the shape of a closed circular loop of radius
R. Obtain an expression for the velocity induced at the center of the loop in terms of T and R.
8. a) A light single engine general aviation aircraft has a wing area of $14.81 \mathrm{~m}^{2}$ and a wing span of 9.75 m . Its maximum gross weight is 1111.3 kg . The wing uses an airfoil, which has a lift slope of 0.1033 degree $^{-1}$ and $\alpha_{L}=0=-30$. Assume $\tau=0.12$, if the airplane is cruising at $53.64 \mathrm{~m} / \mathrm{s}$ with standard sea level condition and level flight. Calculate the geometric angle of attack of the wing. Also calculate for, $\mathrm{e}=0.64$, the induced drag.
b) Prove that for an elliptical wing loading the mid span circulation as, $\Gamma_{0}=\frac{C_{L} V_{S}}{\pi S} \&$ $\omega=\frac{\Gamma_{0}}{4 S}$.

Unit-5

9. Derive an expression for $C_{p} @ \mathrm{i}^{\text {th }}$ control point, $C_{p, i}=\left(1-\frac{V_{i}}{V_{\infty}}\right)^{2}$ based on the source panel method for a non-lifting flow over arbitrary bodies.
10. For a lifting flow over arbitrary bodies obtain an expression for lift per unit span by vortex panel method.
\square

VARDHAMAN COLLEGE Of ©NGINE ERING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
AEROSPACE VEHICLE STRUCTURES-I
(Aeronautical Engineering)
Time: $\mathbf{3}$ hours
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) Define:
i) Limit load
ii) Proof load
iii) Ultimate load
iv) Reserve load
b) Briefly explain the following concepts (Any 5)
i) Manoeuvring load
ii) Gust load
iii) Control loads
iv) Thermal loads
v) Crash Loads
vi) Pressurization load
2. The following are the principle stresses $\sigma_{1}=200 \mathrm{~N} / \mathrm{mm}^{2}, \sigma_{2}=150 \mathrm{~N} / \mathrm{mm}^{2}, \sigma_{3}=120 \mathrm{~N} / \mathrm{mm}^{2}$ at a point in a stressed material. Taking $\mathrm{E}=210 \mathrm{KN} / \mathrm{mm}^{2}$. Calculate the volumetric strain and Lame's constant .Also find strain matrix.

Unit - 2

3. a) Derive the Euler Bernoulli equation of the beam from fundamentals.
b) Draw the shear force and bending moment diagram for the beam loaded as shown in figure. 1 below

Figure. 1
4. a) Write a short note on the assumptions made for analysis of beams on elastic foundation.
b) Consider the beam on elastic foundation shown below. An alluminium alloy I-beam (epth $=100 \mathrm{~mm}, \mathrm{Ix}=2.45(106) \mathrm{mm} 4, \mathrm{E}=72 \mathrm{GPa}$) as shown in figure. 2 has a length of $\mathrm{L}=6.6 \mathrm{~m}$ and is supported by 7 springs ($\mathrm{K}=110 \mathrm{~N} / \mathrm{mm}$) spaced at distance $\mathrm{I}=1.10 \mathrm{~m}$ center to center along the beam. A load $\mathrm{P}=12.0 \mathrm{kN}$ is applied at the center of the beam. Determine the load carried by each spring, the maximum deflection of the beam, the maximum bending moment and the maximum bending stress in the beam

Figure. 2

$$
\text { :: } 2 \text { :: }
$$

Unit - 3
5. a) Derive the 2-D Airy's stress function for the elasticity problems.
b) Derive the compatibility equation six components at a point in a deformable body in terms of the 3 components of displacement at that point u, v and w.
6. The stresses shown in figure. 3 act at a point on the free surface of a stressed body. Use Mohr's circle to determine the normal and shearing stresses at this point on the inclined plane $A B$ as shown in the figure

Figure. 3
Unit - 4
7. a) Define Principle of Super position.
b) A cantilever 800 mm long with a prop 500 mm from the wall deflects in accordance with the following observations when a point load of 40 N is applied to its end.

Distance $(\mathbf{m m})$	0	100	200	300	400	500	600	700	800
Deflection (mm)	0	-0.3	-1.4	-2.5	-1.9	0	2.3	4.8	10.6

What will be the angular rotation of the beam at the prop due to a 30 N load applied from the wall, together with a 10 N load applied 350 mm from the wall?

(a) Given deflected shape of propped cantilever; (b) determination of the deflection of C.

Figure. 4
8. a) A steel rod of uniform circular cross-section is bent as shown in figure. 5 below, $A B$ and $B C$ being horizontal and $C D$ vertical. The arms $A B, B C$ and $C D$ are of equal length .the rod is fixed at A and other end D is free .A uniformly distributed load covers the length $B C$.
Find the components of the displacement of the free end and D in terms of El and GJ.

Figure. 5
b) Explain the virtual or fictitious load method using Castigliano's theorem.

Unit - 5
9. a) Define shear center and shear flow.
b) For the single cantilever beam figure. 6 shown below, determine the shear flows in all 8 10M cells under shear load of $\mathrm{V}=12000 \mathrm{~N}$ and represent the shear flow values in the figure.

Figure. 6
10. a) Explain briefly Bredt-Batho theory with neat sketch.
b) Find the Shear Flow distribution and shear center location for a beam of cross section 10M as shown in the figure. 7 (Thickness=1cm)

Figure. 7
\square

VARDHAMAN COLLEG Of $\operatorname{\in NGIN\in \in RING~}$

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
FLIGHT MECHANICS-I
(Aeronautical Engineering)
Time: $\mathbf{3}$ hours
Max Marks: 75

Answer ONE question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

Unit - 1

1. a) Derive the pressure height relationship in the model atmosphere and draw a typical temperature height profile of ISA.
b) Explain the measurement of air data system of an aircraft.
2. a) Obtain the relation for the measurement of airspeed and draw the graph of scale attitude error correction.
b) Define the following:
i. Calibrated airspeed
ii. Equivalent airspeed
iii. True airspeed
Unit - 2
3. a) Explain with relevant graphs the lift dependent drag volume dependent drag and the
10M
overall drag.
b) Describe the minimum drag speed.
4. a) Obtain the relations for range and endurance for a jet propeller aircraft.
b) Estimate the endurance for an airplane flying at sea level with a velocity of $165 \mathrm{~m} / \mathrm{sec}$. The gross weight is 33142 kg , usable fuel weight is 3393 kg . The thrust specific fuel consumption of the turbofan engine is $1.917 \times 10^{-4} \mathrm{~s}^{-1}$. The other aircraft characteristics are as follows:
$\mathrm{C}_{\mathrm{DD}}=0.015, \mathrm{~K}=0.08, \mathrm{~W}=33142 \mathrm{kgs}, \mathrm{S}=88.3 \mathrm{~m}^{2}$

Unit - 3

5. a) Draw a force diagram of an aircraft in steady climb and obtain the expression for steady climb and also draw a hodograph diagram for climb performance and explain.
b) An airplane powered by a turbojet engine weighs $180,000 \mathrm{~N}$ has a wing area of $50 \mathrm{~m}^{2}$ and the drag polar is $\mathrm{C}_{\mathrm{D}}=0.016+0.048 \mathrm{CL} 2$. At sea level a rate of climb of $1200 \mathrm{~m} / \mathrm{min}$ is obtain at a speed of $150 \mathrm{~m} / \mathrm{sec}$. Calculate the rate of climb at the same when a rocket motor is fitted giving an additional thrust of $10,000 \mathrm{~N}$ to the airplane.
6. a) Derive the expressions for Radius of turn and rate of turn for the following maneuvers: 9 M
i. Level turn
ii. Pull-up and
iii. Pull-down
b) Define load factor. What are its values in
i. Level flight
ii. Free-fall
iii. In a turn of radius 200 m at a speed of $100 \mathrm{~m} / \mathrm{sec}$
iv. At the bottom of a loop of radius 200 m at a speed of $100 \mathrm{~m} / \mathrm{sec}$.

Unit - 4
7. a) Explain the take-off and landing performance measurement with relevant graphs and 10 M
expressions.
b) Briefly explain the parametric form of the thrust force.
8. Describe on the various aspects of mission profile and fuel planning with relevant sketches.

Unit - 5

9. a) Briefly explain on the aspects of certification of air worthiness of a civil aircraft. 5M
b) Describe the operational analysis procedure of a transport aircraft. 10M
10. a) Explain the contents of the performance manual. 9M
b) Describe the determination of the field length available for take-off for the following 6 M cases:
i. All engines operating
ii. One engine inoperative
\square

VARDHAMAN COLLEGE OF ENGINGERING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
 (Regulations: VCE-R11)
 MECHANISMS AND MECHANICAL DESIGN
 (Aeronautical Engineering)

Time: $\mathbf{3}$ hours

Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

Unit - 1

1. a) What is kinematic link? Briefly explain 3 types of kinematic links.
b) With neat sketch explain completely constrained motion, incompletely constrained motion and successfully constrained motion.
2. a) Briefly explain any two inversions of single slider crank chain.
b) With neat sketch explain briefly Oldham's coupling and scotch yoke mechanism.

Unit - 2
3. In a 4 bar mechanism, the link $A B$ rotates at $36 \mathrm{rad} / \mathrm{s}$. The length of the links are $A B=200 \mathrm{~mm}$, $B C=400 \mathrm{~mm}, C D=450 \mathrm{~mm}$ and $A D=600 \mathrm{~mm}$. $A D$ is the frame. At the instant the crank is at right angles to AD find
i. Velocity of the midpoint of $B C$ and a point on $C D, 100 \mathrm{~mm}$ from the pin connecting the links $C D$ and AD
ii. Angular acceleration of $B C$ and $C D$
4. a) With a neat sketch explain velocity of a point on a link by relative velocity method.
b) In a four bar chain $A B C D, A D$ is fixed and is 150 mm long. The crank $A B$ is 40 mm long and rotates at 120 rpm clockwise, while the link $C D$ is 80 mm oscillates about D . BC and $A D$ are of equal lengths. Find the angular acceleration of the link $C D$ when the angle $B A D$ is 60°.

Unit - 3
5. a) State and prove Aronhold Kennedys theorem.
b) For 4 bar mechanism shown determine angular velocity of link $A B$ and absolute velocity of point B by instantaneous center method. Also locate all the Instantaneous centers.

6. a) Briefly explain with neat sketch effect of gyroscopic couple on a naval ship during pitching and steering.
b) An aeroplane makes a complete half circle of 50 m radius towards left, when flying at $200 \mathrm{~km} / \mathrm{hr}$. The rotary engine and propeller of the plane has a mass of 400 kg and radius of gyration of 0.3 m . The engine rotates at 2400 rpm clockwise when viewed from rear. Find the gyroscopic couple on aircraft and state its effect on it.

Unit - 4

7. Draw the profile of a cam operating a roller follower and with the following data:

Minimum radius of the cam $=20 \mathrm{~mm}$ Lift $=30 \mathrm{~mm}$ Roller radius 15 mm
The cam lifts the follower for 150° with SHM followed by a dwell period of 60°. Then the follower lowers down during 100° of the cam rotation with uniform velocity followed by a dwell period. If the cam rotates at a uniform speed of 120 rpm ,.
8. A tangent cam with straight working faces tangential to base circle of 50 mm diameter has a roller follower of 20 mm diameter. The line of stroke of the roller follower passes through the axis of the cam. The angle between the tangent faces of the cam is 60°. The speed of the cam is 200 rpm , and the lift of the follower is 15 mm . Sketch the cam and determine
a) The main dimensions of the cam
b) The acceleration of the follower
i. At the beginning of the lift
ii. Where the roller touches the nose

Unit - 5

9. a) A solid shaft is required to be replaced by a hollow shaft to save 75% of weight. If the diameter of solid shaft is' d^{\prime} and the hollow shaft are ' d_{o} ' and ' d_{i} ', find the relationship between diameters so as to have same torsional strength.
b) A closed coiled helical spring made of alloy steel of coil diameter 50 mm and spring index 5 to carry a load 1 KN . If the permissible deflection of the spring is 25 mm . Calculate the following
i. Maximum stress developed in the coil
ii. Total number of turns
iii. Free length
iv. Pitch of the spring. Take $\mathrm{G}=80 \mathrm{Gpa}$
10. a) State law of gearing and derive law of gearing.
b) A fixed annular wheel A and a smaller concentric rotating wheel B are connected by a compound wheel $A_{1} B_{1}$, the gear A_{1} mesh with wheel A and B_{1} with B. The compound wheel revolves on a pin on arm R which revolves about the axis of A and B. A has 130 teeth, B has 20 teeth and B_{1} has 80 teeth, the pitch of A and A_{1} being twice the pitch of teeth B and B_{1}. How many revolutions will B make for one revolution of arm R ?

VARDHAMAN COLLEG Of $\operatorname{\in NGIN\in \in RING~}$

(AUTONOMOUS)
Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
THERMAL ENGINEERING-I
(Mechanical Engineering)

Time: $\mathbf{3}$ hours

Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

Unit - 1

1. a) Define internal combustion Engines ? Give classification of internal combustion 9Mengines.
b) Define the following terminology as related to internal combustion engine6 M
i. Bore
ii. Stroke
iii. Clearance volume
iv. Displacement volume
v. Top dead centre
vi. Bottom dead centre
2. a) Discuss any 4 differences between actual cycles and air standard cycles.
b) List out the advantages and disadvantages of a two-stroke cycle over a four- stroke cycle.

Unit - 2

3. a) Explain briefly using pressure - crank angle diagram, the processes of normal combustion and combustion with detonation in spark ignition engines.
b) Mention the effects of knocking and explain briefly the factors affecting 7 M knocking in spark ignition engines.
4. a) Explain using pressure - crank angle diagram, the various stages of 7 M combustion process in a compression ignition engines.
b) Explain briefly the Diesel knock and the rating of compression ignition 8 M engine fuels.

Unit - 3

5. a) Explain willians line method for determination of friction power. 4 M
b) A six cylinder, gasoline engine operates on the four stroke cycle. The bore of each 11 M cylinder is 80 mm and the stroke is 100 mm . The clearance volume in each cylinder is 70 cc . At a speed of 4000 rpm and the fuel consumption is $20 \mathrm{~kg} / \mathrm{h}$. The torque developed is $150 \mathrm{~N}-\mathrm{m}$.

Calculate

i. The brake power,
ii. The brake mean effective pressure,
iii. Brake thermal efficiency if the calorific value of the fuel is $43000 \mathrm{~kJ} / \mathrm{kg}$ and
iv. The relative efficiency if the ideal cycle for the engine is Otto cycle.
6. a) A gasoline engine working on four- stroke develops a brake power of 20.9 kW . A Morse test was conducted on this engine and the brake power (kW) obtained when each cylinder was made inoperative by short circuiting the spark plug are 14.9, 14.3, 14.8 and 14.5 respectively. The test was conducted at constant speed. Find the indicated power, mechanical efficiency and brake mean effective pressure when all the cylinders are firing. The bore of the engine is 75 mm and the stroke is 90 mm . The engine is running at 3000 rpm .
b) Write short notes on Heat Balance Sheet.

Unit - 4

7. a) Derive an expression for the volumetric efficiency of a reciprocating compressor in terms of pressure ratio, clearance ratio and index of expansion.
b) An air reciprocating compressor with a bore of 15 cm , stroke of 20 cm and a clearance of 5% runs at 300 RPM. The suction and delivery pressures are 1 bar and 12 bar respectively. (i) Calculate the ideal volumetric efficiency and power input assuming the index of compression and expansion to be 1.3. (ii) Find also the theoretical maximum percentage saving in work possible had the compression been carried out in two stages instead of a single stage.
8. a) Explain the advantages of multi-stage compression.
b) A multi-stage compressor compresses air from 1 bar to 40 bar. The maximum temperature of air is not to exceed 400 K in any stage. If the compression follows the law $\mathrm{pv}^{1.3}=$ constant, find the number of stages for minimum power input. Also find the actual intermediate pressures and temperatures. What will be the minimum power input in kW required to compress and deliver 10 kg per minute of air and the rate of heat rejection in each inter-cooler? Assume ambient temperature of $27^{\circ} \mathrm{C}$, perfect inter-cooling between the stages and specific heat of air $=1.006 \mathrm{~kJ} / \mathrm{kgK}$.

Unit - 5

9. a) Explain briefly with a neat sketch, the main components and the principle of operation of a centrifugal compressor.
b) Explain briefly the head verses discharge characteristics of centrifugal compressor having backward, radial and forward curved vanes.
10. a) Explain briefly with a neat sketch, the construction and principle of operation of an axial flow compressor.
b) Define the following terms applied to axial flow compressors:
(i) Static-to-stagnation efficiency
(ii) Isentropic compression efficiency and
(iii) Work done factor.

VARDHAMAN COLLEGE OF ENGINEGRING

> (AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
 (Regulations: VCE-R11)
 AIRCRAFT PRODUCTION TECHNOLOGY

(Aeronautical Engineering)
Time: $\mathbf{3}$ hours

Answer ONE question from each Unit
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

Unit - 1

1. a) Describe the following sand moulds.
(i) Green sand mould,
(ii) Core sand moulds,
(iii) Shell moulds and
(iv) Skin dried moulds.
b) With a schematic diagram explain shell mould casting technique. 7M
2. a) Explain the following terms related to sand casting:
(i) Mould cavity, (ii) Pattern, (iii) Core and (iv) Riser.
b) With a schematic sketch discuss on semi centrifugal casting technique.

$$
\text { Unit - } 2
$$

3. a) What is the purpose of using an electrode in electric arc welding? List and explain 8 M the various types of electrodes used.
b) Discuss on the recent advances in welding technology.
4. a) With a suitable sketch explain the construction and working principle of thermit welding. List its advantages and disadvantages.
b) What is brazing? Discuss the steps involved in brazing.

Unit - 3

5. a) Describe with simple sketches atleast four types of machining operations that can be 8 M done on a lathe.
b) With a suitable sketch explain the principle of operation involved in shearing 7 M operation. List its applications.
6. a) With the help of a schematic diagram explain the construction of a horizontal shaping machine.
b) With suitable sketches describe the relative characteristics of down milling and up milling processes.

Unit - 4

7. a) With a suitable sketch explain the construction and working principle of an ultrasonic 8 M
machining process.
b) Explain why surface treatment of manufactured products may be necessary? List and
explain any three types of mechanical surface treatment methods.
8. a) With a suitable sketch explain the construction and working principle of laser beam machining process.
b) What do you understand by the term thermal spraying? List and explain the various techniques of thermal spraying.

:: 2 ::

Unit - 5
9. a) Enumerate on the main elements of jigs and fixtures. 8 M
b) Discuss the principle involved in detecting surface cracks using dye penetrate test. 7M
10. a) What are the main advantages of using jigs and fixtures in mass production. 7M
b) Define the following terms: 8M
(i) Quality
(ii) Reliability
(iii) Process capability.
\square

VARDHAMAN COLLEGE OF ENGINGERING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
STRUCTURAL ANALYSIS-I
(Civil Engineering)
Time: $\mathbf{3}$ hours
Max Marks: 75

Answer ONE question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

Unit - 1

1. a) Structurally differentiate the behavior of Cantilever beam and propped Cantilever
b) Find the support moment for the propped Cantilever shown in Figure below and Draw the Bending moment diagram.

2. a) Explain briefly the consistent deformation method of analysis of Propped Cantilever.
b) For the Propped Cantilever shown in the figure below. Determine the support reactions and Sketch the Bending moment diagram.

W/ UNIT LENGTH

Unit - 2
3. a) Derive the expression for the deflection at the centre of fixed beam subjected to UDL
$\mathrm{WkN} / \mathrm{m}$ throughout the beam.
b) A fixed beam of 6 m span is loaded with point loads of 150 kN at a distance 2 m from each support. Draw BM and SF diagrams.
4. Analyse the continuous beam shown in figure below if the support B sinks by 10 mm . Draw shear force and bending moment diagram.
Take $\mathrm{E}=2 \times 10^{8} \mathrm{kN} / \mathrm{m}^{2}$ and $\mathrm{I}=8.5 \times 10^{5} \mathrm{~m}^{4}$

Unit - 3
5. a) Explain the load combinations involved in the analysis of moving loads on beams 7M
b) A udl of intensity $30 \mathrm{kN} / \mathrm{m}$ of length 5 m crosses a girder of span 18 mts . Calculate maximum Shear force and Maximum BM at a section 8 m from left support.

$$
\text { :: } 2 \text { :: }
$$

6. a) Define Strain Energy and derive the expression for strain energy due to Bending 5M moment
b) Determine the deflection at point A for the frame shown in Figure below. Take $E=2.1 \times 10^{5} \mathrm{kN} / \mathrm{mm}^{2}$. Members $A B$ and $A D$ have cross sectional area of $8000 \mathrm{~mm}^{2}$ and member AC has an area of $4000 \mathrm{~mm}^{2}$.

Unit - 4
7. a) Define influence line diagram. What is difference between bending moment diagram and influence line diagram?
b) Two wheel loads of 16 kN and 8 kN at a fixed distance apart 2 m , cross a beam of 10 m span. Draw the influence line for bending moment and shear force for a point 4 m from the left abutment and find the maximum bending moment and shear force at that point.
8. a) What is the difference between slope and deflection? Write general slope deflection equations.
b) A continuous beam ABCD consists of three spans and is loaded as shown in figure below. Determine the bending moments at the supports.

Unit - 5
9. a) Explain Static and Kinematic Indeterminancy with examples.
b) Determine the Static and Kinematic Indeterminancy for the following structures.

10. a) State and explain Castigliano's theorem.
b) Determine the forces in all members of the pin jointed plane frame shown in figure below using Castigliano's theorem. All the members of the frame have same of cross sectional area of $20 \mathrm{~cm}^{2}$.

VARDHAMAN COLLEGE OF ENGINEERING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
HYDRAULICS AND HYDRAULIC MACHINES
(Civil Engineering)

Time: $\mathbf{3}$ hours

Max Marks: 75

Answer ONE question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - 1

1. a) Derive an expression for Reynolds's number (dimensionless number).9M
b) A pipe of diameter 1.5 m is required to transport an oil of specific gravity 0.90 and viscosity 3×10^{-2} poise at the rate of 3000 liters $/ \mathrm{sec}$. Tests were conducted on a 15 cm diameter pipe using water at $20^{\circ} \mathrm{C}$. Find the velocity and rate of flow in the model. Viscosity of water at $20^{\circ} \mathrm{C}=0.01$ poise.
2. a) Derive an equation for Froude's model law in terms of scale ratio for time, scale ratio for acceleration, scale ratio for discharge.
b) In 1 in 40 model of a spill way, the velocity and discharge are $2 \mathrm{~m} / \mathrm{s}$ and $2.5 \mathrm{~m}^{3} / \mathrm{sec}$. Find the corresponding velocity and discharge in the prototype.

Unit - 2

3. a) Derive an expression for the torque exerted on a wheel with radial curved vanes.
b) A jet of water 75 mm in diameter having velocity of $20 \mathrm{~m} / \mathrm{s}$ strikes a series of the flat plates arranged around the periphery of a wheel such that each plate appears successively before the jet. If the plates are moving at a velocity of $5 \mathrm{~m} / \mathrm{s}$, compute the force exerted by the jet on the plate, the work done per second on the plate and the efficiency of the jet.
4. a) Prove that the force exerted by a jet of water on a fixed semi-circular plate in the direction of the jet when the jet strikes at the centre of the semi-circular plate is two times the force exerted by the jet on the plate, the work done per second on the plate and the efficiency of the jet.
b) A jet of water of diameter 50 mm moving with a velocity of $25 \mathrm{~m} / \mathrm{s}$ impinges on a fixed curved plate tangentially at one end at an angle of 30° to the horizontal. Calculate the resultant force of the jet on the plate if the jet is deflected through an angle of 50°.
Unit - 3
5. a) Derive an equation of discharge through open channel by Chezy's Formula. 10M
b) Find the slope of the bed of a rectangular channel of width 5 m when depth of water is 5M 2 m and rate of flow is given as $20 \mathrm{~m}^{3} / \mathrm{sec}$. Take Chezy's constant $\mathrm{C}=50$.
6. a) Define and derive an equation for Critical depth during Critical flow. 9M
b) The specific energy for a 5 m wide rectangular channel is to be $4 \mathrm{Nm} / \mathrm{N}$. If the rate of flow of water through the channel is $20 \mathrm{~m}^{3} / \mathrm{sec}$, determine the alternate depths of flow.

Unit - 4
7. a) What do you mean by gross head, net head and efficiency of a turbine? Explain the 7M different types of the efficiency of a turbine.
b) A Pelton wheel has a mean bucket speed of $12 \mathrm{~m} / \mathrm{s}$ and is supplied with water at a rate of 750 litres per second under a head of 35 m . If the bucket deflects the jet through an angle of 160°, find the power developed by the turbine and its hydraulic efficiency. Take the coefficient of velocity as 0.98 . Neglect the friction in the bucket. Also determine the overall efficiency of the turbine if its mechanical efficiency is 80%.
8. a) Define the specific speed of a turbine. Derive an expression for the specific speed? What is the significance of the specific speed?
b) A turbine is to operate under a head of 25 m at 200 rpm . If the discharge is $9 \mathrm{~m}^{3} / \mathrm{s}$ and turbine efficiency is 90%, calculate power generated by the turbine, specific speed of the turbine and performance of the turbine under a head of 20 m . Also state the type of turbine.

Unit - 5

9. a) Derive an expression for the minimum speed for starting a centrifugal pump.
b) A centrifugal pump delivers water against a net head of 14.5 m and a design speed of 1000 rpm . The vanes are curved back to an angle of 30° with the periphery. The impeller diameter is 300 mm and outlet width 50 mm . Determine the discharge of the pump if manometric efficiency is 95%.
10. a) Define Cavitation. What are the effects of Cavitation? Give the necessary precautions against Cavitation.
b) A pump operates at a maximum efficiency of 82% and delivers $2.25 \mathrm{~m}^{3} / \mathrm{s}$ under a head of 18 m while running at 3600 rpm speed. Compute the specific speed of the pump. Also determine the discharge, head and power input to pump at a shaft speed of 2400 rpm .

VARDHAMAN COLLEGE OF ENGINEERING

(AUTONOMOUS)
Four Year B. Tech IV Semester Regular Examinations June - 2013
(Regulations: VCE-R11)
SURVEYING-II
(Civil Engineering)

Time: $\mathbf{3}$ hours
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

Unit - 1

1. a) What is local attraction, Dip and Declination in compass surveying?
b) Convert the following into reduced bearings with neat sketches:
$65^{\circ} 30^{\prime}, 140^{\circ} 20^{\prime}, 255^{\circ} 10^{\prime}, 336^{\circ} 40^{\prime}$
2. a) What are the temporary adjustments of a prismatic compass?
b) The following bearings are given. Calculate in each case the angle BAC.

Sl. No.	RB of AB	RB of AC
1	$\mathrm{~N} 35^{\circ} 30^{\prime} \mathrm{E}$	$\mathrm{N} 85^{\circ} \mathrm{C} 5^{\prime} \mathrm{E}$
2	$\mathrm{~N} 20^{\circ} 15 ; \mathrm{E}$	$\mathrm{S} 52^{\circ} 30^{\prime} \mathrm{W}$
3	$\mathrm{~S} 70^{\circ} 00^{\prime} \mathrm{E}$	$\mathrm{S} 10^{\circ} 00^{\prime} \mathrm{W}$
4	$\mathrm{~N} 40^{\circ} 30^{\prime} \mathrm{W}$	$\mathrm{N} 46^{\circ} 00^{\prime} \mathrm{E}$
5	$\mathrm{~N} 50^{\circ} 30^{\prime} \mathrm{E}$	$\mathrm{S} 20^{\circ} 30^{\prime} \mathrm{W}$
6	$\mathrm{~S} 45^{\circ} 45^{\prime} \mathrm{W}$	$\mathrm{N} 60^{\circ} 00^{\prime} \mathrm{W}$

Unit - 2

3. a) State the advantages and disadvantages of plane tabling.
b) Compare the radiation and intersection methods of plane table surveying and give an example of the most desirable application of each.
4. a) What is two-point problem? How is it solved?
b) Describe the use of various accessories of a plant table.

Unit - 3
5. a) What are the various methods employed in tacheometric survey? Explain the method most commonly used.
b) A leveling staff is held vertical at a distances of 100 m and 300 m from the axis of a tacheometer and the staff intercept for horizontal sights are 0.99 m and 3.00 m respectively. Find the constants of the instruments.
The instrument is set up at station A and the staff is held vertical at a point B. With the telescope inclined at an angle of depression of 10° to the horizontal, the readings on the staff are $2.670,1.835,1.000 \mathrm{~m}$. Calculate the R.L of B and its horizontal distance from A. The H.I is 1.42 m and R.L. is 450.5 m .
6. a) Derive the distance equation for an anallactic lens. What are its advantages?
b) A tacheometer is set up at an intermediate point on a traverse course PQ and the following observations are made on a vertically held staff:

Staff station	Vertical angle	Staff intercept	Axial hair readings
P	$+8^{0} 36^{\prime}$	2.350	2.105
Q	$+6^{0} 6^{\prime}$	2.055	1.895

Unit - 4

7. a) What are the features of total station compared to any other conventional survey
8. a) What are different applications of GPS? 7M
b) Write a short note of Geographic information system.

Unit - 5
9. a) What are the various angular methods commonly used for setting out a simple circular7M curve? Explain the field procedure of Rankine's method of deflection angle.
b) Two tangents intersect at change 59+60, the deflection angle being $50^{\circ} 30^{\prime}$. Calculate the necessary data for setting out a curve of 15 chains radius to connect the two tangents if it is intended to set out the curve by offsets from chords. Take peg interval equal to 100 links, length of the chain being equal to 20 m (100links).
10. a) Define and give the expressions for the following elements of a simple circular curve"
i. Length of the curve
ii. Tangent length
iii. Apex distance
iv. Mid ordinate
b) A compound curve, consisting of two simple circular curves of radii 350 m and 500 m , is 8M to be laid out between two straights. The angle of intersection between the tangents and the two straights are 25° and 55°. Calculate the various elements of compound curve.

Question Paper Code:ACE11T05
 VARDHAMAN COLLEGE OF ENGINEERING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular Examinations June - 2013
 (Regulations: VCE-R11)
 STRENGTH OF MATERIALS-II

(Civil Engineering)

Time: $\mathbf{3}$ hours
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - 1

1. a) A strained element in a body is subjected to two mutually perpendicular directions together with a simple shear stress. Derive expressions for principal stresses and principal planes, maximum shear stress.
b) At a point in a bracket, the stresses on two mutually perpendicular planes are $35 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile) and $15 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile). The shear stress across these planes is $9 \mathrm{~N} / \mathrm{mm}^{2}$. Find the magnitude and direction of the resultant stress on a plane making an angle of 40° with the plane of first stress. Find also normal and tangential stresses on these planes.
2. a) What are different theories of failures and explain any two theories of failures?
b) A bolt is under an axial thrust of 9.6 KN together with a transverse force of 4.8 KN .

Determine the diameter of bolt according to
Maximum shear stress theory
Maximum principal stress theory
Yield strength of material of bole $-270 \mathrm{~N} / \mathrm{mm}^{2}$
Factor of safety is 3
Poissions ratio is 0.3

Unit - 2

3. a) State Euler's Column Theory. Write the assumptions.
b) An I-section joist $400 \mathrm{~mm} \times 200 \mathrm{~mm} \times 200 \mathrm{~mm}$ and 6 m long is used as a strut with both ends fixed. What is Euler's crippling load for the column? Take E=200GPa for joist.
4. Mention the empirical formulae for columns with equations. Find the Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm thick. Take length of the column as 2.3 m and hinged at its both ends. Take $\mathrm{E}=205 \mathrm{GPa}$. Also determine crippling load by Rankine's formula using constants as 335MPa and 1/7500.

Unit - 3

5. a) Write the assumptions in the theory of Torsion and derive the expression of Torsional stresses and strains.
b) Find the maximum torque that can be applied safely to a shaft of 300 mm dia. The
permissible angle of twist is 1.5° in a length of 7.5 m length and the shear stress is not to exceed $42 \mathrm{~N} / \mathrm{mm}^{2}$. Take $\mathrm{C}=84.4 \mathrm{KN} / \mathrm{mm}^{2}$.
6. a) Derive the expression for power transmitted by a solid shaft.
b) A closed coil helical spring has mean dia of 75 mm , has spring constant of $80 \mathrm{KN} / \mathrm{m}$. It has to exceed $250 \mathrm{MN} / \mathrm{m}^{2}$? Modulus of rigidity of the spring wire material is $80 \mathrm{GN} / \mathrm{m}^{2}$. What is the maximum axial load, the spring can carry?

Unit - 4
7. a) Define the core of a section. Derive expression for core of a hollow circular section.
b) A masonry chimney 24 m high of uniform circular cross section 3.5 m external diameter and 2 m internal diameter is subjected to a horizontal wind pressure of $1 \mathrm{KN} / \mathrm{m}^{2}$ of projected area. Find the maximum and minimum intensities at the base. The specific weight of masonry is $22 \mathrm{KN} / \mathrm{m}^{3}$
8. a) What are the stability conditions of masonry dam?
b) A masonry retaining wall trapezoidal in section with one face vertical in 1 m wide at top and 3 m at the base and 8 m high. The material retained on the vertical face exerts a lateral pressure varying from zero at top to $25 \mathrm{KN} / \mathrm{m}^{2}$ at the base. IF the unit weight of masonry is $21 \mathrm{KN} / \mathrm{m}^{3}$, calculate the maximum and minimum stress induced in the base.

Unit - 5

9. Analyse the forces in the frame shown below fig. 1 by method of joints and verify forces in member $A E, B E, B C$ by method of section

Figure. 1
10. Analyse the frame shown in figure. 2 by methods of joints and also verify forces in member $B C, B E, A E$ by method of section.

Figure. 2

