\square

VARDHAMAN CO LLEG E OF ENG INEERING
 (AUTONOMOUS)

Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay - 2014
(Regulations: VCE-R11)
COM PUTER ARCHITECTURE AND ORGANIZATION
(Common to Computer Science and Engineering, Information Technology, Electronic and Communication \& Electrical and Electronics Engineering)
Date: 26 May, 2014
Time: 3 hours
Max Marks: 75

Answer ONE question from each Unit

All Questions Carry Equal M arks
All parts of the question must be answered in one place only
Unit - I

1. a) Convert the following pairs of decimal numbers to 5 bit, signed, 2's complement, binary numbers and add them. State whether or not overflow occurs in each case.
i. -14 and 11
ii. $\quad-3$ and -8
iii. -10 and -13
b) What do you understand by stacks and subroutines? Explain in brief?
2. a) By using the required parity generator/checker circuit, explain how parity checking can 7M be used for the error detection.
b) Convert the following binary number into decimal \& octal number:
i. $(00010.110)_{2}$
ii. $(000.10110)_{2}$

Unit - II
3. a) Define addressing modes? Explain all the addressing modes with an example? 8 M
b) With an example of each, explain memory reference instructions? 7M
4. a) With a neat block diagram, explain how the basic computer registers are connected to 7M the common bus?
b) With a neat diagram, explain the instruction pipeline processing in RISC architecture?

Unit - III

5. a) What is Micro programming? Give an example for Micro programming? 7M
b) Differentiate between hardwired \& micro-programmed Computers? 8M
6. a) Perform the following:
i. $\quad(110.101)_{2}=()_{10}$
ii. $\quad(1.10101)_{2}=()_{10}$
iii. $\quad(11010.1)_{2}=()_{10}$
iv. $\quad 110.10 \times 10.1$
b) Perform the long hand binary division for the given binary number

Divisor is 1111 and Dividend $=1100$

Unit - IV

7. a) Draw the block diagram of a DM A controller and explain its functioning?
b) Explain the organization of a 2M X 32 memory module using 512k X 8 static memory 9 M chips?
8. a) Consider the page reference string 232152453252 . Find the number of page 10 M faults using the page replacement algorithms:
i. Optimal
ii. FIFO
iii. LRU

Assume that the number of frames available in the memory is 3.
b) Consider the impact of the cache on overall performance of the computer. What is the average access time experienced by the processor with the hit rate and miss penalty?

Unit - V

9. a) Describe the architecture of a shared memory multiprocessor? 7M
b) Draw and explain the 8×8 omega switch network? 8 M
10. a) What do you mean by cache coherence? Mention the conditions under which cache 7M coherence occurs. Explain, how cache coherence problem can be resolved by a snoopy cache controller?
b) Define IPC? Mention the IPC methods. Explain any two methods in detail? 8M
\square

VARDHAMAN CO LLEG E OF ENG INEERING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay - 2014
(Regulations: VCE-R11)
ELECTRICAL TECHNOLOGY
(Common to Mechanical Engineering, Aeronautical Engineering \& Civil Engineering)
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) How D.C Generators are classified? Give neat diagram of each type of generator.
b) A DC Shunt generator with armature and shunt field resistance of 0.5Ω and 100Ω respectively has no load voltage of 300 V . What is the power delivered to the load when the load current is 10A? Allow brush drop of 2 V on load.
2. a) Sketch speed, armature current and torque, armature current characteristics of
i. D.C series motor and
ii. D.C shunt motor. Mention two applications of each motor.
b) A shunt motor connected to 440 V , takes 3 A on no load. If shunt and armature
field resistance is 600Ω and 0.5Ω respectively, rated speed being 1000 rpm , calculate the speed when taking a load current of 30 A from the line.

Unit - II

3. a) A single phase 50 Hz transformer has 80 turns on the primary winding and 280 turns in the secondary winding. The voltage applied across the primary winding is 240 V . Calculate (i) the maximum flux density in the core (ii) induced e.m.f in the secondary winding. The net cross sectional area of the core can be taken $200 \mathrm{~cm}^{2}$
b) Draw the phasor diagram of transformer when it is operating on lagging load.
4. a) $A 200 / 100 \mathrm{~V}, 50 \mathrm{~Hz}$, transformer has an impedance of $(0.3+j 0.8) \Omega$ in the 200 V winding and impedance of $(0.1+\mathrm{j} 0.25) \Omega$ in the 100 V winding. What are the currents on the high and low voltages sides if a short circuit occurs on the 100 V side with 200 V applied to the HV side?
b) Derive the equation of e.m.f for a transformer.

Unit - III

5. a) Explain the principle of operation of 3 phase induction motors. Also define synchronous speed and slip.
b) An alternator of 8 poles runs at 750 rpm , and supplies power to a 6 pole induction motor which has full load slip of 3%. Find the full load speed of induction motor and the frequency of its rotor e.m.f.
6. a) Explain the working principle of star delta starter with a schematic diagram. 8 M
b) A 3 phase induction motor is wound for 4 poles and is supplied from 50 Hz system. Calculate i) synchronous speed ii) rotor speed when slip is 4% and iii) rotor frequency when rotor runs at 600 rpm

Unit - IV

7. a) Explain how do you find the regulation of an alternator by synchronous 8 M impedance method.
b) A 12 pole, 500 rpm , star connected alternator has 60 slots with 20 conductors 7M per slot. The flux per pole is 0.02 Wb and is distributed sinusoidally. The winding factor is 0.93 . Calculate
i. Frequency.
ii. Phase e.m.f
iii. Line e.m.f
8. a) Explain the construction and principle of operation of synchronous motor.
b) A $3 \mathrm{ph}, 400 \mathrm{~V}$ synchronous motor takes 52.5 A at a pf of 0.8 leading Calculate the

8M power supplied and the induced e.m.f The motor impedance per phase is $(0.25+j 0.32) \Omega$

Unit -V

9. a) What is a servomotor? Explain 2 phase and 3 phase AC servomotor.
b) A stepper motor has a step angle of 2.5°. Determine
i. Resolution.
ii. Number of steps required for the shaft to make 25 revolutions.
iii. Shaft speed if the stepping frequency is 3600 rps .
10. a) With a neat figure explain the operation of a shaded pole motor.
b) Discuss the sped- torque characteristics of capacitor start motor and capacitor 8M run motor.
\square

VARDHAMAN CO LLEG E OF ENG INEERING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay - 2014
(Regulations: VCE-R11)
OPERATING SYSTEM S
(Common Computer Science and Engineering \& Information Technology)
Date: $\mathbf{2 8}$ May, 2014
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit-I

1. a) What is the purpose of interrupts? What are the differences between a trap and an interrupt? Can traps be generated intentionally by a user program? If so, for what purpose?
b) What is a process? Explain the various states of the process. Explain process control block in detail.
2. a) Explain in detail the data structure of a Unix thread with diagram
b) Consider the following set of processes, with the length of the CPU burst given in milliseconds:

Process	Burst Time	Priority
P1	8	4
P2	6	1
P3	1	2
P4	9	2
P5	3	3

The processes are assumed to have arrived in the order P1, P2, P3, P4, and P5 all at time 0.
i. Draw the Gantt Charts that illustrate the execution of these processes using the following scheduling algorithms: Non preemptive Priority (a smaller priority number implies a higher priority) and RR (Quantum =1).
ii. Calculate the Average Waiting time and Average Turnaround Time in both the algorithms.

Unit - II

3. a) The first known correct software solution to the critical-section problem for two
boolean flag[2]; /* initially false */
int turn;
The structure of process P ; $(\mathrm{i}=0$ or 1) is shown in below; the other process is $\mathrm{P},-\mathrm{j}=1$ or 0). Prove that the algorithm satisfies all three requirements for the critical-section problem.
```
do
{
    flag[i] =TRUE;
    while (flag[j])
    {
        if (turn = j)
        {
            flag[i] =false;
            while (turn = j)
                        ;// do nothing
            Flag[i] =TRUE;
            // critical section
            turn =j;
            }
            flag[i] =FALSE;
            // remainder section
        }
    }while (TRUE);
```

b) Explain the two methods to eliminate deadlocks by aborting a process
4. a) Consider the following snapshot of a system

Process	Allocation				Max				Available			
	A	B	C	D	A	B	C	D	A	B	C	D
P0	0	0	1	2	0	0	1	2	1	5	2	0
P1	1	0	0	0	1	7	5	0				
P2	1	3	5	4	2	3	5	6				
P3	0	6	3	2	0	6	5	2				
P4	0			4								

Answer the following questions using the banker's algorithm:
i. What is the content of the matrix Need?
ii. Is the system in a safe state?
iii. If a request from process Pl arrives for $(0,4,2,0)$, can the request be granted immediately?
b) Explain how recovery from deadlocks is done using Banker's Algorithm

Unit - III
5. a) Given five memory partitions of $100 \mathrm{~KB}, 500 \mathrm{~KB}, 200 \mathrm{~KB}, 300 \mathrm{~KB}$, and 600 KB (in order), 8 M how would each of the first-fit, best-fit, and worst-fit algorithms place processes of 212 KB, $417 \mathrm{~KB}, 112 \mathrm{~KB}$, and 426 KB (in order)?Which algorithm makes the most efficient use of memory?
b) The in-memory information is used for both file-system management and performance improvement via caching. The data are loaded at mount time and discarded at dismount. Explain the contents of in-memory structure.
6. a) When considering a particular directory structure, we need to keep in mind different operations that are to be performed on a directory. Explain any four of them.
b) Discuss situations under which the least frequently used page-replacement algorithm generates fewer page faults than the least recently used page replacement algorithm. Also discuss under what circumstance does the opposite holds?

::3::

Unit - IV

7. a) Suppose that a disk drive has 5000 cylinders, numbered 0 to 4999 . The drive is currently 12 M serving a request at cylinder 143, and the previous request was at cylinder 125. The queue of pending requests, in FIFO order, is
86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130
Starting from the current head position, what is the total distance (in cylinders) that the disk arm moves to satisfy all the pending requests, for each of the following diskscheduling algorithms?
i. FCFS
ii. SSTF
iii. SCAN
iv. LOOK
b) Give two examples each for which blocking I/O is suitable and non-blocking I/O is suitable.
8. a) Explain the three most important aspects of tertiary-storage performance.
b) What are the various kinds of performance overheads associated with servicing an interrupt?

Unit - V
9. a) Discuss the strengths and weaknesses of implementing an access matrix using access 7M lists that are associated with objects.
b) Make a list of six security concerns for a bank's computer system. For each item on your8M list, state whether this concern relates to physical, human, operating-system and software security.
10. a) What hardware features are needed for efficient capability manipulation? Can these be used for memory protection?
b) Discuss by means of manager of a system that connected to the Internet could have 7M designed their systems to limit or eliminate the damage done by a worm. What are the drawbacks of making the change that you suggest?
\square

VARDHAMAN CO LLEG E OF ENG INEERING

(AUTONOMOUS)

Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay - 2014
(Regulations: VCE-R11)
ELECTROM AGNETIC THEORY AND TRANSM ISSION LINES

(Electronics and Communication Engineering)

Date: 28 May, 2014
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) Point charges 1 mc and -2 mc are located at $(3,2,-1)$ and $(-1,-1,4)$ respectively. Calculate the electric force on a 10 nc charge located at $(0,3,1)$ and the electric field intensity at that Point.
b) If $\vec{J}=\frac{1}{r^{3}}\left(2 \cos \theta a_{r}+\sin \theta a_{\theta}\right) \mathrm{A} / \mathrm{m}^{2}$ Calculate the current Passing through
i. A Hemi Sphere shell of radius $20 \mathrm{~cm}, 0<\theta<\frac{\pi}{2} ; 0<\phi<2 \pi$
ii. A spherical shell of radius 10 cm
2. a) Determine the electric field intensity due to infinite sheet of charge using Gauss's Law.
b) Conducting Spherical shells with radii $a=10 \mathrm{~cm}$ and $\mathrm{b}=30 \mathrm{~cm}$ are maintained at potential difference of 100 V such that $\mathrm{V}(\mathrm{r}=\mathrm{b})=0$ and $\mathrm{V}(\mathrm{r}=\mathrm{a})=100 \mathrm{v}$. Determine V and E in the region between the shells if $\varepsilon_{r}=2.5$

Unit - II
3. a) Determine the magnetic field intensity at point P due to straight filamentary conductor of finite length.
b) Given the magnetic vector Potential $\vec{A}=\frac{\rho^{2}}{4} a_{z} \mathrm{~Wb} / \mathrm{m}$, calculate the total magnetic flux crossing the surface $\phi=\frac{\pi}{2}, 1 \leq \rho \leq 2 m, 0 \leq z \leq 5 m$
4. a) A circular loop located on $x^{2}+y^{2}=9 ; z=0$ carries a direct current of 10 A along a_{ϕ}. Determine \vec{H} at $(0,0,4)$ and $(0,0,-4)$.
b) In cylindrical Coordinates a magnetic field is given as $\vec{H}=\left[4 \rho-2 \rho^{2}\right] a_{\phi}(\mathrm{A} / \mathrm{m})$, $0 \leq \rho \leq 1$.
i. Find the current density as a function of ρ within the cylinder
ii. Find the total current that passes through the surface $z=0$ and $0 \leq \rho \leq 1(m)$ in the $a z$ direction

Unit - III

5. a) State M axwell's equation in differential and integral form for time varying field.
b) The electric and magnetic field in frees space are given by
$E=\frac{50}{\rho} \cos \left[10^{6} t+\beta z\right] a_{\phi} V / m$
$H=\frac{H_{0}}{\rho} \cos \left[10^{6} t+\beta z\right] a_{\rho} \quad A / m$ Express these in phasor form and determine the constants H_{0} and β such that the fields satisfy M axwell's equation.
6. a) What is the significance of boundary conditions? Also derive an expression for the law
of refraction for magnetic flux lines at a boundary with no surface current.
b) Given that $H_{1}=-2 a_{x}+6 a_{y}+4 a_{z} A / m$ in region $y-x-2 \leq 0$ where $\mu_{1}=5 \mu_{0}$ calculate B_{1}, H_{2} and B_{2} in region $y-x-2 \geq 0$ where $\mu_{2}=2 \mu_{0}$.

Unit - IV

7. a) State and prove Poynting's theorem.
b) A uniform plane wave propagating in a perfect dielectric medium has
$E=500 \cos \left(10^{7} t-\beta z\right) a_{x}(\mathrm{v} / \mathrm{m})$ and $\boldsymbol{H}=1.1 \cos \left(10^{7} t-\beta z\right) a_{y}(\mathrm{~A} / \mathrm{m})$. If the wave is travelling with velocity $\mathrm{u}=0.5 \mathrm{c}$. Find ϵ_{r}, μ_{r} and intrinsic impedance of medium η
8. a) Derive the expression for reflection coefficient when an electromagnetic wave is incident normally on to the surface of a perfect dielectric in terms of η_{1} and η_{2}
b) Given a uniform plane wave in air as
$E_{i}=40 \cos (\omega t-\beta z) a_{x}+30 \sin (\omega t-\beta z) a_{y} V / m$ find H_{i}
i. If the wave encounters a perfectly conducting plate normal to the z axis at $z=0$, find the reflected wave E_{r} and H_{r}.
ii. What are the total E and H fields for $z \leq 0$?
iii. Calculate the time - average Poynting vectors for $z \leq 0$ and $z \geq 0$

Unit - V

9. a) Derive the general solution for voltage and current at any point on a transmission line 9M in terms of sending end voltage and sending end currents.
b) A certain transmission line 2 m long operating at $\omega=10^{6} \mathrm{rad} / \mathrm{s}$ has $\alpha=8 \mathrm{~dB} / \mathrm{m}, \beta=1 \quad 6 \mathrm{M}$ $\mathrm{rad} / \mathrm{m}$, and $Z_{0}=60+j 40 \Omega$. If the line is connected to a source of $100^{\circ} \mathrm{V}$, $Z_{t}=40 \Omega$ and terminated by a load of $20+j 50 \Omega$, determine:
i. The input impedance
ii. The sending - end current
iii. The current at the middle of the line
10. a) What is the condition for transmission line to be lossless? Derive the expression for 6 M attenuation constant, phase constant and characteristic impedance for a lossless transmission line.
b) A distortionless line has $z_{0}=60 \Omega, \alpha=20 \mathrm{mNp} / \mathrm{m} u=0.6 c$. Where ' c ' is the speed 9 M of the light in vacuum. Find $\mathrm{R}, \mathrm{L}, \mathrm{C}, \mathrm{G}$ and λ at 100 MHz .

Four Year B. Tech IV Semester Regular/Supplementary Examinations May - 2014
(Regulations: VCE-R11)
ELECTRO M AGNETIC FIELDS
(Electrical and Electronics Engineering)
Date: 28 May, 2014
Time: 3 hours
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks

 All parts of the question must be answered in one place only
Unit - I

1. a) Derive an expression for the potential at a point due to an infinite uniformly charged line.
b) Let a point charge Q_{1} of $25 n C$ be located at $p_{1}(4,-2,7)$ and a charge $Q_{2}=60$
$n C$ be at $p_{2}(-3,4,-2)$. If $\varepsilon=\varepsilon_{0}$, find E at $p_{3}(1,2,3)$.
2. a) Explain the torque on an electric dipole in an electric field
b) Point charges of $50 n C$ each are located at $A(1,0,0), B(-1,0,0), C(0,1,0)$, 7M and $D(0,-1,0)$ in free space. Find the total force on the charge at A .

Unit - II

3. a) State and explain Ampere's circuital Iaw.
b) The magnetic field intensity is given in a certain region of space as
$H=(X+2 y) / z^{2} a_{y}+2 / z a_{z} A / m$. Find the total current passing through the surface $z=4,1<x<2,3<y<5$, in the a_{z} direction.
4. a) Obtain an expression for magnetic field intensity at a point due to an infinite sheet of current.
b) Mention the applications of Ampere's circuital law. A long straight non-magnetic conductor of 0.2 mm radius carries a uniformly-distributed current of 2 Adc .Use Ampere's circuital law to find H and B within the conductor, at radius ρ.

Unit - III

5. a) A spherical condenser has a capacitance of 54 pF. It consists of two concentric spheres differing in radii by 4 cm and having air as dielectric. Find their radii.
b) A metal bar of conductivity σ is bent to from a flat 90° sector of inner radius a, outer radius b and thickness t as shown in figure. Determine the resistance of the bar between the vertical curved surfaces at $\rho=a$ and $\rho=b$.

6. a) Obtain the boundary condition for electric field for conductor and dielectric boundary.
b) Determine the self-inductance of a coaxial cable of inner radius a and outer radius b.

Unit - IV

7. a) Explain the concept of scalar and vector magnetic potential.
b) A rectangular loop of wire in free space joins points $A(1,0,1)$ to $B(3,0,1)$ to $C(3,0,4)$ to $D(1,0,4)$ to A. The wire carries a current of 6 mA , flowing in the $\mathrm{a}_{\mathbf{z}}$ direction from B to C . A filamentary current of 15 A flows along the entire z axis in the a_{z} direction. Find F on side $B C$.
8. a) Briefly explain Lorentz force equation.
b) A small current loop L1 with magnetic moment $5 a_{z}$ A. m^{2} is located at the origin while another small loop current L2 with magnetic moment $3 i_{z}$ A. m^{2} is located at $(4,-3,10)$. Determine the torque on L2

Unit - V

9. a) Derive M axwell's equation from Faraday's law. Also write Maxwell's equations for a general medium for time varying fields in differential and integral forms.
b) If the electric field intensity in free space is given in the rectangular coordinates $\vec{E}=E_{m} \sin (\alpha x) \sin (\omega t-\beta z) a_{y}(v / m)$. Find the magnetic field intensity, \vec{H} using Faraday's law.
10. a) State and prove Poynting theorem. Write the expression for average power density by using Poynting theorem.
b) The conduction current through a wire with a conductivity, $10^{7}(\mathrm{~S} / \mathrm{m})$ and relative permittivity, $\varepsilon_{\mathrm{r}} \quad=1$ is given by $I_{c}=2 \sin (\omega t) m A$ If $f=\frac{10^{9}}{2 \pi} \mathrm{~Hz}$, find the displacement current.
\square

VARDHAMAN CO LLEG E OF ENG INEERING

(AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay - 2014
(Regulations: VCE-R11)
HYDRALULC M ACHINERY AND SYSTEM S
(Mechanical Engineering)
Date: 28 May, 2014
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit

All Questions Carry Equal M arks
All parts of the question must be answered in one place only

Unit - I

1. a) Derive an expression for force exerted by jet on a flat vertical plate moving in the direction of jet.
b) A jet of water of diameter 50 mm moving with a velocity of $40 \mathrm{~m} / \mathrm{s}$, strikes a curved fixed symmetrical plate at the centre. Find the force exerted by the jet of water in the direction of the jet, if the jet is deflected through an angle of 120° at the outlet of the curved plate.
2. a) A jet of water from a nozzle is deflected through 60° from its original direction by a curved plate which it enters tangentially without shock with a velocity of $30 \mathrm{~m} / \mathrm{s}$ and leaves with a mean velocity of $25 \mathrm{~m} / \mathrm{s}$. If the discharge from the nozzle is $0.8 \mathrm{~m}^{3} / \mathrm{s}$, calculate the magnitude and direction of the resultant force on the vane, if the vane is stationary.
b) The water in a jet propelled boat is drawn through inlet openings facing the direction of motion of the ship. The boat is moving in sea-water with a speed of $30 \mathrm{~km} / \mathrm{h}$. The absolute velocity of the jet of the water discharged at the back is $20 \mathrm{~m} / \mathrm{s}$ and the area of the jet of water is $0.03 \mathrm{~m}^{2}$. Find the propelling force and efficiency of propulsion.

Unit - II

3. a) Define the following with respect to turbine.
i. Hydraulic efficiency
ii. Mechanical efficiency
iii. Volumetric efficiency
iv. Overall efficiency
b) Two jets strike the buckets of a Pelton wheel, which is having shaft power as 15450 kW .

The diameter of each jet is given as 200 mm . If the net head on the turbine is 400 m , find the overall efficiency of the turbine. Take $\mathrm{Cv}=1.0$.
4. a) Draw a neat sketch and explain the construction and working of any radial flow reaction turbine.
b) Explain the purposes of the 'draft tube'.

Unit - III

5. a) Draw neat sketches and explain the characteristic curves of a Pelton wheel and a reaction turbine.
b) A pelton wheel is supplied with water under a head of 35 m at the rate of 40.5 kilo liter/min. The bucket deflects the jet through an angle of 160° and the mean bucket speed is $13 \mathrm{~m} / \mathrm{s}$. Calculate the power and hydraulic efficiency of the turbine.
6. a) With the help of a neat sketch explain the working of a reciprocating pump
b) A single acting reciprocating pump running at 50 rpm delivers $0.01 \mathrm{~m}^{3} / \mathrm{sec}$ of water. The diameter of the piston is 200 mm and stroke length 400 mm . Determine:
i. Theoretical discharge of the pump
ii. Coefficient of discharge
iii. Slip and the percentage of slip of the pump.

Unit - IV
7. a) Define the following terms
i. Suction head
ii. Delivery head
iii. Static head
iv. Manometric head
v. Manometric efficiency
b) A centrifugal pump having outer diameter equal to two times the inner diameter and running at 1000 rpm works against a total head of 40 m . The velocity of flow through the impeller is constant and equal to $2.5 \mathrm{~m} / \mathrm{s}$. The vanes are set back at an angle of 40° at outlet. If the outer diameter of the impeller is 500 mm and width at outlet is 50 mm , determine :
i. Vane angle at inlet
ii. Work done by impeller on water per second
iii. M anometric efficiency
8. a) Define cavitation. What are the effects of cavitation?
b) A single stage centrifugal pump with impeller diameter of 30 cm rotates at 2000 rpm and lifts $3 \mathrm{~m}^{3}$ of water per second to a height of 30 m with an efficiency of 75%. Find the number of stages and diameter of each impeller of a similar multistage pump to lift $5 \mathrm{~m}^{3}$ of water per second to a height of 200 m when rotating at 1500 rpm .

Unit - V

9. a) Explain the term, 'Hydraulic devices'. Name any five hydraulic devices.
b) A hydraulic press has a ram of 150 mm diameter and plunger of 20 mm diameter. The stroke of the plunger is 200 mm and weight lifted is 800 N . If the distance moved by the weight is 0.1 m in 20 minutes, determine:
i. The force applied on the plunger
ii. Power required to drive the plunger
iii. Number of strokes performed by the plunger
10. a) Sketch and explain the working of a vane pump and write an equation for theoretical volume displacement by the pump per second.
b) With a neat sketch explain the working of an accumulator.

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay - 2014
(Regulations: VCE-R11)
AERODYNAM ICS-I
(Aeronautical Engineering)
Date: $\mathbf{2 8}$ May, 2014
Time: 3 hours
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) Define center of pressure and aerodynamic center. Derive
$M^{\prime}{ }_{L E}=-C / 4 L^{\prime}+M_{c / 4}^{\prime}=-X_{c p} L^{\prime}$
b) With a neat sketch, differentiate between the symmetric and cambered airfoil.

5M
2. Derive the expression for C_{n} and C_{a} in terms of shear stress, normal pressure and slope at a 15 M point on the airfoil.

Unit - II

3. Explain the following with relevant expressions and neat sketches:
i. Kelvin's circulation theorem
ii. Vortex sheet
iii. Kutta-Joukowski theorem and

D' Alembert's paradox
4. a) Tabulate the velocity, ϕ and ψ expressions for:
i. Uniform flow in X-direction
ii. Source
iii. Vortex
iv. Doublet
b) Derive the continuity equation for a finite control volume fixed in space.

Unit - III
5. a) Derive an expression for lift coefficient and moment coefficient of cambered airfoil. 10M
b) Explain briefly about Kutta Condition. 5 M
6. a) Explain thin airfoil theory. 10M
b) Express the algebraic form of Kutta-Joukowski theorem and explain the parameters in the 5 M equation.

Unit - IV

7. a) Derive the equation for prandtl lifting line theory
8. What is the downwash velocity induced by the pair of wingtip vortices along the bound 15M vortex? Derive an expression for this using Biot-savarts law.
9. For a lifting flow over arbitrary bodies obtain an expression for lift per unit span by vortex 15 M panel method
10. Derive an expression for C_{p} at the $\mathrm{i}^{\text {th }}$ control point, $C_{p, i}=\left(1-\frac{V_{i}}{V_{\infty}}\right)^{2}$ based on the source panel method for non - lifting flow over arbitrary bodies.

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations May - 2014
(Regulations: VCE-R11)
HYDRAULICS AND HYDRAULIC M ACHINES
(Civil Engineering)
Date: 28 May, 2014
Time: 3 hours
Max Marks: 75

Answer ONE question from each Unit All Questions Carry Equal M arks All parts of the question must be answered in one place only

Unit - I

1. a) Explain the stepwise procedure of Raleigh method of analysis.
b) The pressure drop $\Delta \mathrm{p}$ generated by a pump of a given geometry is known to depend upon the impeller diameter D , the rotational speed N , the fluid discharge Q , the fluid density ρ and viscosity μ. Obtain the dimensionless form of the functional relationship.
2. a) For Froude model law, find the ratios of velocity, discharge, force, work and power in terms of the length scale.
b) A 1:6 scale model of a passenger car is tested in a wind tunnel. The prototype velocity is $60 \mathrm{~km} / \mathrm{h}$. If the model drag is 250 N what is the drag and the power required to overcome the drag in the prototype? The air in the model and prototype can be assumed to have the same properties.

Unit - II

3. a) Show that the efficiency of a free jet striking normally at series of flat plates mounted on the periphery of a wheel never exceeds 50%.
b) A jet of water having a velocity of $45 \mathrm{~m} / \mathrm{s}$ impinges without shock a series of vanes moving at $15 \mathrm{~m} / \mathrm{s}$, the direction of motion of the vanes being inclined at 20° to that of the jet. The relative velocity at outlet is 0.9 of that at inlet, and the absolute velocity of the water at exit is to be normal to motion of the vanes. Find
(i) vane angles at the entrance and exit; (ii) work done on vanes per unit weight of water supplied by the jet; and (iii) the hydraulic efficiency
4. a) Derive an expression for the work done by the jet striking symmetrical moving curved vane at the centre.
b) A metal plate of 10 mm thickness and 200 mm square is hung so that it can swing freely about the upper horizontal edge. A horizontal jet of water 20 mm diameter impinges with its axis perpendicular and 50 mm below the edge of the hinge, and keeps it steadily inclined at 30° to the vertical. Find the velocity of the jet if the specific weight of the metal is $75.54 \mathrm{kN} / \mathrm{m}^{3}$.

Unit - III

5. a) Prove that for the trapezoidal channel of most economical section: Half of top width = length of one of the slopping sides.
Hydraulic mean depth =half of depth of flow.
b) In a rectangular channel 3.5 m wide laid at a slope of 0.0036 , uniform flow occurs at a depth of 2 m . Find how high can the hump be raised without causing afflux? If the upstream depth of flow is to be raised to 2.5 m , what should be the height of the hump? Take M anning's ' n ' equal to 0.015 .
6. a) Derive an expression for critical depth and critical velocity for flow of water in open channels.
b) Find the slope of the free water surface in a rectangular channel of width 20 m , having depth of flow 5 m . The discharge through the channel is $50 \mathrm{~m}^{3} / \mathrm{s}$. The bed of the channel is having a slope of 1 in 4000 . Take the value of chezy's constant $\mathrm{C}=60$.

Unit - IV

7. a) What do you mean by gross head and net head? Explain the different types of efficiency of a turbine.
b) Show that the expression for the non-dimensional numbers specific speed, specific diameter, flow number and head number for Pelton wheel are functions of only the diameter ratio (d / D) where ' d ' is the jet diameter and ' D ' is Pelton wheel diameter. It is assumed that friction effect is neglected and 180° reversal of flow is achieved by the Pelton wheel buckets.
Find out the values of the above dimensionless numbers if diameter ratio d / D is 0.2 .
Assume $K_{v}=1$ and $K_{u}=0.5$.
8. a) Describe the following terms:
i. Specific speed of a turbine,
ii. Unit rate of flow of a turbine,
iii. Cavitation, and
iv. Governing of a turbine
b) A Pelton wheel is supplied with water under a head of 35 m at the rate of 40.5 kilo litre/min. the bucket deflects the jet through an angle of 160° and the mean bucket speed is $13 \mathrm{~m} / \mathrm{s}$. Calculate the power and hydraulic efficiency of the turbine.

Unit-V

9. a) Draw a neat sketch and explain the main parts of a centrifugal pump.
b) Find the power required to drive a centrifugal pump which delivers 40 liters of water per second to a height of 20 m through a 150 mm diameter and 100 m long pipeline. The overall efficiency of pump is 70% and Darcy's $f=0.06$ for the pipeline. Assume inlet losses in suction pipe equal to 0.33 m .
10. a) Derive an expression for minimum speed for starting a pump.
b) A pump operates at a maximum efficiency of 82% and delivers $2.25 \mathrm{~m}^{3} / \mathrm{s}$ under a head of 18 m while running at 3600 rpm speed. Compute the specific speed of the pump. Also determine the discharge
\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay - 2014
(Regulations: VCE-R11)
THEORY OF COM PUTATION
(Computer Science and Engineering)
Date: 30 May, 2014
Time: 3 hours
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks

All parts of the question must be answered in one place only

Unit - I

1. a) Write any four differences between DFA and NFA and give the formal definition of NFA. 8M
b) Design a DFA to accept the following language.
$L=\{w:|w| \bmod 3=0\}$ on $\sum=\{a, b, c, d\}$
2. a) Convert the following NFA to DFA.

$$
A=(\{p, q, r\},\{0,1\}, \delta, p, r)
$$

δ is given as follows:-
$\delta(p, 0)=\{p, q\} \quad \delta(p, 1)=\{p\}$
$\delta(\mathrm{q}, 0)=\phi \quad \delta(\mathrm{q}, 1)=\{r\}$
$\delta(\mathrm{r}, 0)=\phi \quad \delta(\mathrm{r}, 1)=\phi$
b) Write the procedure to convert ε NFA to DFA and draw a NFA to recognize the set of strings abc, abd and aacd.

Unit - II

3. a) Design a Regular Expression and construct a NFA which accepts strings of a's and b's
b) Write a note on applications of regular expressions.
4. a) Give the meaning of the following regular expression:
aa*bb*cc*
$(a+b)^{*}(a+b b)$
(aa)*(bb)*b
$(0+1) * 000$
b) Show that if L is a regular language over alphabet Σ, then, $L=\Sigma^{*}-L$ is also regular language.

Unit - III

5. a) Show that the following grammar is ambiguous with respect to the string aaabbabbba.
$S \rightarrow a B \mid b A$
$A \rightarrow a S|b A A| a$
$B \rightarrow b S|a B B| b$
b) Give formal definition of CFG and obtain a grammer to strings consisting of multiples of three a's.
6. a) Define the following:
i. Sentence
ii. Language of grammer
iii. Ambiguous grammer
iv. Derivation tree
b) Obtain a grammer to genarete the language.
$L=\left\{0^{m} 1^{m} 2^{n} \mid m>=1\right.$ and $\left.n>=0\right\}$
::2::

Unit - IV

7. Obtain the PDA for the given regular language:
$L=\left\{w w^{R} \mid w\right.$ is in $\left.(0+1)^{*}\right\}$, the language for even length palindrome.
Also show the moves of the PDA to accept the string 101101 for the above grammar.
8. a) Convert the following PDA to CFG using the given transitions.
$\operatorname{PDA} P=\{p, q\},\{0,1\},\{X, Y\}, \delta, q, Z)$), transition δ is given by:
$\delta(q, 1, Z)=\{(q, X Z)\}$
$\delta(q, 1, \mathrm{X})=\{(q, X X)\}$
$\delta(q, \varepsilon, \mathrm{X})=\{(q, \varepsilon)\}$
$\delta(q, 0, \mathrm{X})=\{(\mathrm{p}, \mathrm{X})\}$
$\delta(\mathrm{p}, 1, \mathrm{X})=\{(\mathrm{p}, \varepsilon)\}$
$\delta(\mathrm{p}, 0, \mathrm{Z})=\{(\mathrm{q}, \mathrm{Z})\}$
b) Identify whether the given grammar contains nullable variable? If so eliminate the same

6M and rewrite the grammar.
$S \rightarrow A B A$
$A \rightarrow \mathrm{aA} \mid \varepsilon$
$B \rightarrow b B \mid \varepsilon$

Unit - V

9. a) Define ID of a Turing M achine. 3M
b) Design a Turing M achine to accept the following language. 12M

$$
L=\left\{a^{n} b^{n} \mid n \geq=1\right\}
$$

10. a) Explain the working of a Turing machine with a diagram. 6M
b) Write a note on Universal Turing machine and Halting problem. 9M
\square
VARDHAMAN CO LLEG E OF ENG INEERING
(AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay - 2014
(Regulations: VCE-R11)
DATA COM MUNICATION SYSTEMS
(Information Technology)
Date: 30 M ay, 2014
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit -I

1. a) Describe the CISCO three layer hierarchical internetworking model.
b) Suppose that the spectrum of a channel is between 10 M Hz and 12 Mhz , and an intended
capacity of 8 Mbps .
IM
i. What should be the SNR in order to obtain this capacity
ii. How many signaling levels are required to obtain this capacity
2. a) "A data communications circuit can be described in terms of circuit configuration" - 6M Comment.
b) Explain briefly three fundamental digital modulation schemes.

Unit - II
3. a) Explain cross talk and what is needed to reduce it? 7M
b) Define Characteristic impedance, velocity factor, and dielectric constant and tell how they 8 M affect the performance of a transmission line.
4. a) List and describe the five types of transmission line losses. 8M
b) What do you mean by a transmission line? Describe balanced and unbalanced transmission 7M lines.

Unit - III
5. a) A signal is quantizied using 10 bit PCM (Pulse Code Modulation). Find the Signal-toQuantization noise ratio.
b) Explain the term companding. 4 M
c) What are the goals of Multiplexing? Which of three multiplexing techniques is (are) used to combine analog signals? Which of three multiplexing techniques is (are) used to combine digital signals?
6. a) Four channels, two with a bit rate of 200 kbps and two with a bit rate 150 kbps are to be multiplexed using multiple slots TDM with no synchronization bits. Answer the following questions: assume 4 bits from the first 2 sources and 3 bits from the second 2 sources.
i. What is the size of a frame in bits?
ii. What is the frame rate?
iii. What is the duration of a frame?
iv. What is the date rate?
b) Describe Delta M odulation PCM and Differential PCM.

Unit - IV

7. a) Sixteen-bit messages are transmitted using a Hamming code. How many check bits are needed to ensure that the receiver can detect and correct single bit errors? Show the bit pattern transmitted for the message 1101001100110101. Assume that even parity is used in the Hamming code.
b) Explain three types of automatic repeat request (ARQ) protocols.
8. a) Data link protocols almost always put the CRC in a trailer rather than in a header. Why?
b) Explain XM ODEM protocol with its frame format.

Unit - V

9. a) Explain the Differences between cable modems and standard voice-band modems. 8M
b) Sketch the Functional block diagram of a standard telephone set and list the important 7M components of the system.
10. a) Bring out the significance of digital service unit and channel service unit. 7M
b) List the steps in basic telephone call procedures. 8M
\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay - 2014
(Regulations: VCE-R11)
CONTROL SYSTEM S
(Common to Electronics and Communication Engineering, Electrical and Electronics Engineering)
Date: 30 M ay, 2014
Time: 3 hours
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - I

1. a) Distinguish between open loop and closed loop control system. Give any two examples for 7M each.
b) From the basic principle derive an expression for the transfer function between $\theta_{m}(\mathrm{~S})$ and
control voltage of a two phase induction motor type A.C. servo motor.
2. a) Define Transfer function. List out the properties, advantages and disadvantages of transfer 5M functions.
b) Write the differential equations for the mechanical system shown in fig1. Draw the electrical network and electrical analogue (FV, FI) giving clearly all the analogous quantities.

Fig. 1
3. a) Draw a block diagram to describe the electrical circuit given in the fig. 2 and determine the 10M transfer function using block diagram reduction.

Fig. 2
b) Use M ason's gain formula to find out Y_{5} / Y_{1} for the signal flow graph shown in fig. 3

Fig. 3
4. a) Obtain the transfer function of the lag network shown in fig. 4.

Fig. 4
b) For the system shown in fig. 5, determine $\mathrm{I}_{0}(\mathrm{~s}) / \mathrm{V}_{\mathrm{i}}(\mathrm{s})$ by block diagram reduction technique.

Fig. 5
Unit - III
5. a) A unit feedback system has $G(s)=(40(s+2)) /(s(s+1)(s+4))$. Determine
i. Type of the system
ii. All error co-efficients
iii. Error for ramp input with magnitude 4
b) A feedback control system has open loop transfer function
$\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{S})=\left(\mathrm{K} /\left(\mathrm{s}(\mathrm{S}+4)\left(\mathrm{S}^{2}+4 \mathrm{~S}+20\right)\right)\right)$.
Plot the root locus for $K=0$ to ∞. Indicate all the points on it.
6. a) $S^{6}+4 S^{5}+3 S^{4}-16 S^{2}-64 S-48=0$. Find the number of roots of this equation with positive 6 M real part, zero real part and negative real part.
b) Open loop transfer function of unity feedback system is $\mathrm{G}(\mathrm{s})=(\mathrm{K} /(1+\mathrm{Ts}) \mathrm{s})$ where K and T are constants. Determine factor by which gain ' K ' should be multiplied so that overshoot of unit step response be reduced from 75% to 25%.

Unit - IV

7. a) State the advantages and limitations of frequency domain approach. 5 M
b) A unity feedback control system has $G(S)=10 / S(S+1)(S+2)$. Draw Nyquist plot and comment 10 M on closed loop stability.
8. a) State and explain Nyquist criterion.
b) What are i)gain margin and ii) phase margin? Determine these two analytically for a system 10M with $G(S) H(S)=(1 /(S(S+1)(S+(1 / 2))))$ given that the gain crossover frequency is 0.82 $\mathrm{rad} / \mathrm{sec}$. Is the system stable?

Unit - V

9. a) Obtain a state model for the system described by
$\mathrm{T}(\mathrm{S})=(\mathrm{Y}(\mathrm{s}) / \mathrm{U}(\mathrm{S}))=\left(2 \mathrm{~S}^{3}+7 \mathrm{~S}^{2}+12 \mathrm{~S}+8\right) /\left(\mathrm{S}^{3}+6 \mathrm{~S}^{2}+11 \mathrm{~S}+9\right)$
b) Write a note on the following:
i) Observability
ii) Controllability
10. a) What is the significance of state transition matrix and list out its properties? 7M
b) A third order system has the coefficient matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 0 \\
1 & -4 & 3
\end{array}\right], B=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], C=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]
$$

Determine the state transition matrix and output controllability
\square
VARDHAMAN CO LLEG E OF ENG INEERING
(AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay - 2014
(Regulations: VCE-R11)
THERM AL ENGINEERING-I
(Mechanical Engineering)
Date: 30 M ay, 2014
Time: 3 hours
Max M arks: 75
Answer ONE question from each Unit
All Questions Carry Equal M arks
All parts of the question must be answered in one place only

Unit - I

1. a) What is the difference between air standard cycle and fuel air cycle analysis? Explain the 7M significance of the fuel air cycle.
b) Compare the actual and theoretical p-v diagrams of a 4 -S diesel engine.
2. a) Describe with a suitable sketch the two stroke cycle spark ignition engine. How its 10M indicator diagram differs from that of a four stroke engine
b) Discuss the differences between theoretical and actual valve timing diagrams of a diesel engine

Unit - II
3. a) Briefly explain the stages of combustion in S.I. engines elaborating the flame front propagation.
b) What is meant by abnormal combustion? Explain the phenomenon of knock in S.I. engines.
4. a) Bring out clearly the process of combustion in C.I. engines and also explain the various stages of combustion.
b) Explain the phenomenon of knock in C.I. engines and compare it with S.I. engine knock.

Unit - III

5. a) Define air-fuel ratio and briefly state its effect on power output, fuel consumption and combustion pressure.
b) The following readings are taken on a single cylinder ,4-stroke gas engine 30 cm in diameter and 40 cm in stroke. RPM $=200$, No. of explosions $=80$ per minute, Brake diameter $=150 \mathrm{~cm}$, Net load on the brake $=1200 \mathrm{~N}$, Net mean effective pressure $=6 \mathrm{bar}$, Gas used $=11.5 \mathrm{cu} . \mathrm{m} / \mathrm{hr}$, Pressure of the gas $=15 \mathrm{~cm}$ of water above atmospheric pressure, Barometric reading $=755 \mathrm{~mm}$ of Hg . Ambient temperature $=20^{\circ} \mathrm{C}, \mathrm{C} . \mathrm{V}$ of the gas used $=$ $21000 \mathrm{KJ} / \mathrm{m}^{3}$ at N.T.P. Find out(i) the mechanical efficiency and (ii) the brake thermal efficiency.
6. a) What are the methods available for improving the performance of an engine?
b) A test on single cylinder 4 -stroke oil engine having bore 180 mm and stroke 360 mm gave

::2::

Unit - IV

7. a) A single stage reciprocating compressor takes $1 \mathrm{~m}^{3}$ of air per minute at 1.013 bar and $15^{\circ} \mathrm{C}$ and delivers it at 7 bar. Assuming that the law of compression is $\mathrm{pV}^{1.35}=$ constant, and the clearance is negligible, calculate the indicated power.
b) Explain the principle of working of a reciprocating compressor
8. An air compressor having stroke length of 88 cm and clearance volume of 2% of the swept volume delivers air at a pressure of 8.2 bar. In order to study the effect of clearance on free air delivery and work expended, the compressor was overhauled and a distance piece of 0.55 cm was fitted between the cylinder head and the cylinder. The compressor was then commissioned under the changed clearance. Calculate:
Percentage change in the volume of free air delivered, Percentage change in power expended Before and after overhauling the piston had a suction pressure 1.025 bar and the index of compression and expansion was 1.3

Unit - V

9. The following data refers to a centrifugal compressor

Total pressure ratio $=3.6: 1$, Diameter of inlet eye of compressor impeller $=35 \mathrm{~cm}$, Axial velocity at inlet $=140 \mathrm{~m} / \mathrm{s}$, Mass flow $=12 \mathrm{~kg} / \mathrm{s}$, Velocity in delivery duct $=120 \mathrm{~m} / \mathrm{s}$, The tip speed of the impeller $=460 \mathrm{~m} / \mathrm{s}$, Speed of the impeller $=16000 \mathrm{rpm}$. Total head isentropic efficiency $=80 \%$, Pressure coefficient $=0.73$, Ambient conditions $=1.013$ bar and $15^{\circ} \mathrm{C}$. Calculate
i. The static pressure and temp at inlet and outlet of the compressor
ii. The static pressure ratio
iii. Work of compressor per kg of air
iv. The theoretical power required.
10. a) Draw a neat velocity diagram of a axial flow compressor and derive an equation for 12 M degree of reaction
b) List the applications of axial flow compressors
\square
VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay - 2014
(Regulations: VCE-R11)
AIRCRAFT PRODUCTION TECHNOLOGY
Date: $\mathbf{3 0}$ May, 2014
(Aeronautical Engineering)
Time: 3 hours
Max Marks: 75

Answer ONE question from each Unit All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) Classify and compare merits and limitation of manufacturing processes. 8 M
b) Describe different casting processes. 7M
2. a) Explain Green sand moulding with sketch and mention its advantages and disadvantages. 8 M
b) Explain investment casting. What are its advantages and disadvantages? 7M

Unit - II
3. a) With a neat sketch explain the principle of arc welding. 7M
b) Describe gas welding and resistance welding through neat diagrams. 8 M
4. a) Give an outline of welding techniques used in aircraft production technology. 7M
b) With neat diagram explain soldering and brazing techniques. 8M

Unit - III
5. a) Explain the working procedure of lathe machine and explain about lathe operations with 7M the help of neat sketches?
b) How are shaper and milling machine used in manufacturing? 8M
6. a) Explain the working principle of radial drilling machine with help of neat diagram and 7 M write the advantages and disadvantages?
b) Write the importance sheet metal in Aircraft Manufacturing and write some sheet metal 8 M operations.

Unit - IV
7. a) Explain the working of Abrasive Jet Machining with neat sketch. What are its advantages 8 M and disadvantages?
b) Explain Honing process for surface finishing operation.
8. a) Explain the working Principle of Electron Discharge M achining with a neat sketch. 8M
b) Write short notes on annealing and normalizing heat treatment process. 7M

Unit - V
9. a) Explain the main steps of Liquid Penetration Inspection with sketch. 8M
b) Define the terms Quality and Reliability. 7M
10. a) Describe the concept of quality and quality circle. 7M
b) Write short notes on: 8M
i. X-ray
ii. Magnetic particle inspection and ultrasonic testing
\square
VARDHAMAN CO LLEG E OF ENG INEERING
(AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay - 2014
(Regulations: VCE-R11)
STRENGTH OF M ATERIALS-II
(Civil Engineering)
Time: 3 hours
Max M arks: 75
Date: 30 M ay, 2014
Answer ONE question from each Unit
All Questions Carry Equal M arks
All parts of the question must be answered in one place only
Unit-I

1. a) A rectangular bar of cross sectional area of $11000 \mathrm{~mm}^{2}$ is subjected to a tensile load P as $\quad 7 M$ shown in Fig. 1. The permissible normal and shear stresses on the oblique plane BC are given as $7 \mathrm{~N} / \mathrm{mm}^{2}$ and $3.5 \mathrm{~N} / \mathrm{mm}^{2}$ respectively. Determine the safe value of P.

Fig. 1
b) A rectangular block of material is subjected to a tensile stress of $110 \mathrm{~N} / \mathrm{mm}^{2}$ on one plane and a tensile stress of $47 \mathrm{~N} / \mathrm{mm}^{2}$ on the plane at right angles to the former. Each of the above stresses is accompanied by a shear stress of $63 \mathrm{~N} / \mathrm{mm}^{2}$ and that associated with the former tensile stress tends to rotate the block anticlockwise. Find:
i. The direction and magnitude of each of the principal stress and
ii. Magnitude of the greatest shear stress
2. a) What do you understand by the term 'theories of failure'? Explain maximum principal strain theory.
b) According to the theory of maximum shear stress, determine the diameter of a bolt which is subjected to an axial pull of 9 kN together with a transverse shear force of 4.5 kN . Elastic limit in tension is $225 \mathrm{~N} / \mathrm{mm}^{2}$, factor of safety $=3$ and poisson's ratio $=0.3$.

Unit - II
3. a) State Euler's column theory and explain the assumptions made in it.
b) Determine the ratio of buckling strengths of two columns one hollow and the other solid. Both are made of the same material and have the same length, cross sectional area and end conditions. The internal diameter of hollow column is half of its external diameter.
4. A strut of length 'I', moment of inertia of cross-section ='I' uniform throughout and modulus of material =' E ', is fixed at its lower end, and its upper end is elastically supported laterally by a spring of stiffness ' k '. Show from the first principles that the crippling load P is given by $\frac{\tan \alpha l}{\alpha l}=1-\frac{p}{k l}$, where $\alpha^{2}=\frac{P}{E l}$

Unit - III

5. A solid circular shaft and a hollow circular shaft whose inside diameter is 0.75 of the outside diameter, are of the same material, of equal lengths and are required to transmit a given torque. Compare the weights of these two shafts if the maximum shear stresses developed in the two shafts are equal.
6. Derive an expression for torque transmitted by a hollow circular shaft.

::2::

Unit - IV

7. a) A rectangular column of width 200 mm and of thickness 150 mm carries a point load of 240 kN at an eccentricity of 10 mm as shown in Fig.2. Determine the maximum and minimum stresses on the section.

b) State the assumptions of theory of simple bending.
8. A hollow rectangular column of external depth 1 m and external width 0.8 m is 10 cm thick. 15 M Calculate the maximum and minimum stress in the section of the column if a vertical load of 200 kN is acting with an eccentricity of 15 cm as shown in Fig.3.

Fig. 3
9. a) Define and explain the following terms:
i. Perfect Frame
ii. Imperfect frame
iii. Deficient frame, and
iv. Redundant frame
b) Find the forces in the members AB, AC and BC of the truss shown in Fig. 4.

Fig. 4
10. A plane truss is loaded and supported as shown in Fig.5. Determine the nature and 15 M magnitude of the forces in the members' 1,2 and 3 .

Fig. 5

VARDHAMAN CO LLEG E OF ENG INEERING
(AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay/June - 2014
(Regulations: VCE-R11) WEB TECHNOLOGIES
(Common to Computer Science and Engineering \& Information Technology)
Date: 9 June, 2014
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) Design the web page for the library system, the page must accept the fields like Book Name, Author Name, ISBN, and No. of copies available. Design the page using different CSS properties.
b) Write a java script program to find the area of the circle and rectangle using functions. Use the prompt box to take input and display the output.
2. a) Write the function in JavaScript that checks if a field has been left empty. If the field is blank, an alert box alerts a message, the function returns false, and the form will not be submitted.
b) Illustrate with examples Java Script popup boxes.

Unit - II
3. a) With an example, explain the different types of $X M L$ parsers?
b) Create the XML document for the information of the product given below.

Identifier	Name	Price
p1XM L	Editor	$\$ 499.00$
p2DTD	Editor	$\$ 199.00$
p3XM L	Book	$\$ 19.99$
p4XM L	Training	$\$ 699.00$.

4. a) Create XML document for an address book of the person consisting of name, street, region, postal code, locality, country, telephone number, and emaillD. Assume the field values suitably.
b) Discuss the deployment structure, processing of information and protocol support for 8M Jigsaw and Tomcat servers.

Unit - III

5. a) Write a simple servlet that counts and displays the number of times it has been accessed?
b) Explain the following:
i. ServletInterface
ii. HTTPServletClass
6. a) Explain how servlets perform session tracking techniques?
b) Explain life cycle of a servlet with the help of its architecture? 8M

Unit - IV
7. a) What is a page directive? Briefly discuss different attributes of page directive. 8 M
b) Write a JSP program to illustrate different JSP elements. 7M
8. a) Write a program using Java Server Pages to print current date and time on to a web page 8 M using a JSP expression.
b) What is «ंsp:useBean>action? Briefly discuss «isp:useBean>attributes action.

Unit - V

9. a) Write an ASP program which contains username and password field along with a submit 10 M button (enter), when submit button is pressed the form should be redirected to name.asp where name.asp process the form data and returns XHTM L to the client.
b) Write a brief note on silver light.
10. a) List out the objects of ASP and highlight its properties, methods and events. 8 M
b) Briefly explain the AdRotator ActiveX component properties and methods with an 7 M example?

VARDHAMAN CO LLEG E OF ENG INEERING
(AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay/June - 2014
(Regulations: VCE-R11)
ELECTRONIC CIRCUIT ANALYSIS
(Electronics and Communication Engineering)
Date: 9 June, 2014
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit-I

1. a) Draw the h-parameters model of $C E$ transistor configuration and obtain the expressions for current gain A_{1}, voltage gain A_{V}, input impedance Z_{l}, output impedance Z_{0}, voltage gain with source internal resistance $A_{v s}$ and current gain $A_{I S}$ with source internal resistance.
b) A CE transistor amplifier is driven by a voltage source V_{s} of internal resistance $\mathrm{R}_{\mathrm{s}}=1200 \Omega$. The load impedance is a resistor $R_{L}=1200 \Omega$. The h-parameters are $h_{i e}=1.1 \mathrm{~K} \Omega, \mathrm{~h}_{\mathrm{re}}=2.5 \times 10^{-4}$, $\mathrm{h}_{\mathrm{fe}}=51, \mathrm{~h}_{0 \mathrm{e}}=25 \mu \mathrm{~A} / \mathrm{V}$. Compute the current gain A_{l}, voltage gain A_{V}, input impedance Z , output impedance Z_{0}, voltage gain with source internal resistance $\mathrm{A}_{\text {vs }}$ and current gain $\mathrm{A}_{\text {Is }}$ with source internal resistance.
2. a) Draw and explain the small signal model of JFET circuit.
b) Draw the circuit of a self-bias bypassed R_{s} (source resistance) common source JFET amplifier and draw it's equivalent circuit. Hence obtain the expressions for input impedance Z_{i}, out impedance Z_{0} and voltage gain A_{v}.

Unit - II
3. a) How the gain of an amplifier gain is stabilized with the help of negative feedback. Give the advantages of negative feedback circuit.
b) The current-series feedback circuit is considered to have an overall transconductance gain of $-1 \mathrm{~mA} / \mathrm{V}$, a voltage gain of -4 , and a sensitivity of 50 . If $R_{s}=1 \mathrm{~K} \Omega$, $h_{f e}=150$ and $r_{b b^{\prime}}$ is negligible, find:
i. $\quad R_{e}$
ii. R_{L}
iii. $R_{i f}$
iv. The Quiescent Collector current Ic at room temperature
4. a) Explain the principle and working of Wein bridge oscillator. Find an expression for the frequency of oscillations.
b) A Colpitt's oscillator has a coil with inductance of $120 \mu \mathrm{H}, \mathrm{C}_{1}=300 \mathrm{pF}$ and $\mathrm{C}_{2}=1200 \mathrm{pF}$. Find frequency of oscillations and minimum gain required for amplifier to have sustained oscillations.

Unit - III

5. a) Draw the circuit diagram of Darlington pair using two BJTs. Obtain the expression for current gain and voltage gain of Darlington pair with a load resistance R_{L} (emitter resistance).
b) It is desired that the voltage gain of an RC coupled amplifier at 60 Hz should not decrease by more than 10% from the mid band value. Find the lower 3dB frequency.
6. a) Draw the hybrid- Π model of a CE transistor. What is the significance of each of the components used in the model.
b) The following low frequency parameters are known for a given transistor at $I_{c}=10 \mathrm{~mA}$, $V_{C E}=10 \mathrm{~V}$ and at room temperature, $\mathrm{h}_{\mathrm{i}}=500 \Omega$, $\mathrm{h}_{\mathrm{fe}}=100, \mathrm{~h}_{\mathrm{oe}}=10^{-4} \mathrm{~A} / \mathrm{V}, \mathrm{h}_{\mathrm{re}}=10^{-4}$. At the same operating point $\mathrm{f}_{\mathrm{T}}=50 \mathrm{M} \mathrm{Hz}$ and $\mathrm{C}_{\mathrm{e}}=3 \mathrm{pF}$. Compute the values of all the hybrid- Π parameters.

Unit - IV

7. a) With neat load line analysis, obtain the value of maximum conversion efficiency in class A power amplifier. Mention the merits and demerits of class A power amplifier.
b) A transformer coupled class A power amplifier delivers 4 watts to 8Ω loud speaker through a transformer of turns ratio 20:1. If the supply voltage $\mathrm{V}_{\mathrm{cc}}=24 \mathrm{~V}$ and the operating collector current is 400 mA , find
i. RMS value of secondary voltage
ii. RMS value of secondary current
iii. RM S value of primary voltage
iv. RMS value of primary current
v. Conversion efficiency
8. a) With neat circuit diagram, explain the working of class B Push-Pull power amplifier?
b) The output transformer used in class B Push-Pull amplifier has an efficiency of 95% while delivering a maximum of 10 watts of power to a load of 20Ω. The Push-Pull amplifier uses a single supply of $V_{c c}=40 \mathrm{~V}$. Find:
i. Maximum voltage rating per transistor
ii. Maximum collector current
iii. Maximum power dissipation per transistor
iv. Transformer turns ratio is $2 \mathrm{~N}_{1}: \mathrm{N}_{2}$

Unit - V

9. a) A parallel resonant circuit has a capacitor of 100 pF in one branch and inductance of 8 M $100 \mu \mathrm{H}$ plus a resistance of 10Ω in the parallel branch. Find:
i. Resonant frequency
ii. Impedance of the circuit at resonance
iii. Q factor of the circuit
iv. Bandwidth
b) Explain the working of a double tuned amplifier with neat circuit diagram and input - 7M output waveforms.
10. a) A circuit with resonance frequency of 455 KHz and has a 10 KHz bandwidth. The inductive 8 M reactance is 1255Ω. What is the parallel impedance of the circuit at resonance?
b) Design a single tuned amplifier for a single resonant frequency and explain the working.

VARDHAMAN CO LLEG E OF ENG INEERING
(AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay/June - 2014
(Regulations: VCE-R11)
ELECTRONIC CIRCUITS
(Electrical and Electronics Engineering)
Date: 9 June, 2014
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) Draw and explain small signal JFET model of a common source amplifier.
b) Draw the common base hybrid model. Given $\mathrm{h}_{\mathrm{i}}=0.83 \mathrm{k} \Omega, \mathrm{h}_{\mathrm{fe}}=50$. Find out the current gain

6M
9M ($h_{f b}$) and input impedance ($h_{i b}$) for a transistor in CB configuration.
2. a) Define h parameters. Draw the complete hybrid equivalent circuit of a transistor.
b) Determine the various gains of the circuit shown in Fig. 1 if an emitter resistance of 0.5 k is included in the circuit.

Fig. 1
Unit - II
3. a) With a neat diagram, explain the principle of operation of class B push-pull amplifier. 10M Obtain the maximum value of overall efficiency in case of push pull amplifier.
b) Explain the harmonic distortion present in a power amplifier.
4. a) Explain the operating principle of class AB push-pull amplifier
b) An amplifier has an input signal of 16 V peak-to-peak and an input impedance of $320 \mathrm{k} \Omega$. It gives an output voltage of 8 V peak-to-peak across a load resistor of 4 W . Calculate the dB Power gain of the amplifier.

Unit - III

5. a) With a neat block diagram, explain the operation of any two feedback amplifiers.
b) Discuss the general characteristics of four basic feedback configurations. In a negative feedback amplifier $A=100, \beta=0.04$ and $V_{i}=50 \mathrm{mV}$. Find gain with feedback, output voltage, feedback factor and feedback voltage.
6. a) Explain the concept of positive and negative feedback. Describe advantages and 6M disadvantages of negative feedback.
b) Sketch the circuit of a Wien bridge oscillator and derive the expression for the frequency 9 M of oscillations?

Unit - IV

7. a) Briefly explain the basic low pass RC circuit as integrator circuit.
b) How will the circuit of Fig. 2 respond to a 10v step input of Fig.3? In what time will the output rise from 1 v to 9 v ?

Fig. 2

Fig. 3
8. a) With a basic and practical clamping circuits, explain the diode clamping? 7M
b) Draw the transfer characteristics ($\mathrm{Vo} / \mathrm{Vi}$) for the two diode clipper circuit of Fig. 4 shown 8 M below. Assume the diodes to be ideal.

Fig. 4
Unit - V
9. a) Explain the working of a bistable multivibrator with the help of a neat circuit diagram and waveforms.
b) Explain the working of a Schmitt trigger with the help of a neat circuit diagram and 7M waveforms.
10. a) Distinguish between monostable multivibrator and bistable multivibrators.
b) In an astable multivibrator circuit shown in Fig.5, $R_{1}=R_{2}=5 \mathrm{k} \Omega, R_{3}=R_{4}=0.4 \mathrm{k} \Omega$ and 8 M $C_{1}=C_{2}=0.02 \mu \mathrm{~F}$. Determine the time period and frequency of oscillations. Find the minimum value of transistor β.

Fig. 5
\square
VARDHAMAN CO LLEG E OF ENG INEERING
(AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay/June - 2014

(Regulations: VCE-R11) PRODUCTION TECHNOLOGY

(Mechanical Engineering)

Date: 9 June, 2014
Time: 3 hours
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) Explain the different types of pattern allowances with neat sketches.
b) Enumerate the different steps in manufacture of castings and list its advantages.
2. a) With the help of a neat sketch, explain the construction and working of a cupola furnace.
b) Explain the investment casting process with the help of neat sketches.

Unit - II
3. a) Write a note on non-ferrous metals with their applications.
b) Describe forge welding operation with neat sketches. 7M
4. a) Explain thermit welding process? Where it is employed. 8M
b) Classify welding processes and enumerate one practical application with each of the 7M classification.

Unit - III
5. a) List the welding defects and explain the causes and remedies of any three different types 6 M of welding defects.
b) With the help of neat sketches explain the construction and working of
ii. Laser beam welding process
6. a) Explain the principle of hot and cold working. Enumerate the differences in terms of 8 M properties of hot and cold worked products.
b) What is strain hardening? Why it is done?

Unit - IV

7. a) Explain the types of rolling mills with neat sketches. Also state the applications of rolling 10 M process.
b) Explain the principle of operation of coining process.
8. a) Draw neat sketches and explain the principle of operation of Bending and forming 8 M process.
b) Explain the forces in rolling process and the method to counter act the forces.

Unit - V
9. a) What are the characteristics of extrusion process? 8M
b) Explain hot extrusion and where it is used and why? 7M
10. a) Explain the various types of plastics with suitable applications? 8 M
b) Highlight the processing of thermoplastics considering the molding machines and 7M materials used.
\square
VARDHAMAN CO LLEG E OF ENG INEERING
(AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay/June - 2014
(Regulations: VCE-R11)
AEROSPACE VEHICLE STRUCTURES-I
(Aeronautical Engineering)
Date: 9 June, 2014
Time: 3 hours
Max M arks: 75
Answer ONE question from each Unit
All Questions Carry Equal M arks
All parts of the question must be answered in one place only

Unit - I

1. a) Explain the statically determinate and indeterminate structure with example. 6 M
b) A beam ABC of length 2 L rests on three supports equally spaced and is loaded with UDL w/unit length throughout the length of the beam as shown in Fig.1. Draw the SF and BM diagram.

Fig. 1
2. For Fig.2, determine the unknown nodal displacements and forces in the beam. The beam is of uniform section throughout.

Unit - II
3. a) What are the assumptions made in Beams with elastic supports.
b) Derive differential equation for a beam resting on elastic foundation. 10 M
4. a) What are the assumptions of Euler's theory. 5 M
b) A hollow alloy tube of 6 m long with external diameter of 50 mm and internal diameter 10 M of 30 mm was found to be extend 2.98 mm under a tensile load of 50 KN . Find the buckling load for the tube, when used as strut with both ends pinned. Also, find the safe load on the tube taking a factor of safety 4.

::2::

Unit - III

5. a) Define
i. Plane stress
ii. Plane strain
b) A piece of material is subjected to tensile stresses of $70 \mathrm{~N} / \mathrm{mm}^{2}$ and $30 \mathrm{~N} / \mathrm{mm}^{2}$ at right angles to each other. Find fully the stress on a plane the normal of which makes an angle of 35° with the $70 \mathrm{~N} / \mathrm{mm}^{2}$ stress.
6. Direct stresses of $160 \mathrm{~N} / \mathrm{mm}^{2}$ (tension) and $120 \mathrm{~N} / \mathrm{mm}^{2}$ (compression) are applied at a particular point in an elastic material on two mutually perpendicular planes. The principal stress in the material is limited to $200 \mathrm{~N} / \mathrm{mm}^{2}$ (tension). Calculate the allowable value of shear stress at the point on the given planes. Determine also the value of the other principal stress and the maximum value of shear stress at the point.
Verify your answer using M ohr's circle.

Unit - IV
7. Find the support reactions in the beam $A B C$ shown in Fig. 3 using the principle of virtual work.

Fig. 3
8. A steel rod of uniform circular cross section is bent as shown in Fig.4, AB and BC being horizontal and $C D$ being vertical. The arms $A B, B C$, and $C D$ are of equal length. The rod is encastré at A, and the other end D is free. A uniformly distributed load covers the length $B C$. Find the components of the displacement of the free end D in terms of El and GJ.

Fig. 4
::3::
Unit - V
9. a) Explain Bredt-Batho theory with neat sketch.
b) The cold-formed section shown in Fig. 5 is subjected to a torque of 50 Nm . Calculate the 10 M maximum shear stress in the section and its rate of twist. $\mathrm{G}=25000 \mathrm{~N} / \mathrm{mm}^{2}$.

Fig. 5
10. a) Briefly explain torsion of closed section with Bredt-Batho theory. 6M
b) Derive expression of shear of closed section beam. 9 M

VARDHAMAN CO LLEG E OF ENG INEERING
(AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations M ay/June - 2014
(Regulations: VCE-R11)
STRUCTURAL ANALYSIS-1
(Civil Engineering)
Date: 9 June, 2014
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

Unit - I

1. a) Differentiate between cantilever and propped cantilever beams.
b) Determine the reaction component in the propped cantilever shown in Fig.1. El is 12M constant throughout.

Fig. 1
2. a) Explain the procedure involved in the analysis of cantilever beams.
b) Draw SFD and BM D for the propped cantilever beam shown in fig. 2.

Fig. 2

Unit - II
3. A steel beam $A B, 6 m$ long is fixed horizontally at the ends A and B which are at the same level. The beam carries a load of 50 kN downwards at $\mathrm{C}, 1 \mathrm{~m}$ from A and a load of 50 kN upwards at $D, 2 \mathrm{~m}$ from A. Find the fixing moments and the deflection at D . Take $\mathrm{I}=8 \times 10^{7} \mathrm{~mm}^{4}$.
4. A continuous beam $A B C$ with $A B=10 \mathrm{~m}, B C=8 \mathrm{~m}$ is fixed at A and simply supported at C. It is continuous over the supports at B. The beam supports $20 \mathrm{kN} / \mathrm{m}$ over the span $A B$ and concentrated load of 50 kN at 2 m from C. Moment of inertia is same throughout. Using Clapeyron's theorem, determine the moment at A and B. Draw SFD and BM D.

Unit - III

5. A simply supported beam of span 20 m is subjected to a set of loads of magnitude $20 \mathrm{kN}, 30 \mathrm{kN}$, 15 kN , and 10 kN spaced at $1.5 \mathrm{~m}, 2 \mathrm{~m}$ and 1 m respectively moving from left to right with 10 kN load leading. Determine the max bending moment at a section 5 m from left and also absolute bending moment developed in the beam.
6. a) Determine the deflection at free end of a cantilever of length 'L' subjected to a concentrated load ' P ' at the free end. Use strain energy method.
b) Determine the vertical deflection of point ' C ' in the frame shown in fig 6 (b).Given $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$ and $\mathrm{I}=30 \times 10^{6} \mathrm{~mm}^{4}$.

Fig. 3

Unit - IV

7. Two wheel loads of 160 kN and 400 kN spaced 2 m apart move on a simply supported beam girder of span 16 m . Find the maximum positive and negative shear force at a section (i) 4 m from the left end and (ii) 6 m from the left end.
8. A continuous beam is shown in Fig.4. Using slope deflection method compute the end moments and plot the BM D. Also sketch the deflected shape of the beam.

Fig. 4
Unit - V
9. a) Define the degree of freedom. What is the degree of freedom for a fixed support, hinged 6 M support, roller support and free end.
b) Find the degree of indeterminacy for the structures shown in Fig.5, Fig.6, Fig.7.

Fig. 6

Fig. 7
10. Determine the forces in all the members of a pin jointed frame shown in Fig.8.

Fig. 8

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations June - 2014
(Regulations: VCE-R11)
COM PUTER GRAPHICS
(Common to Computer Science and Engineering \& Information Technology)
Date: 4 June, 2014
Time: $\mathbf{3}$ hours
Max M arks: 75
Answer ONE question from each Unit
All Questions Carry Equal M arks
All parts of the question must be answered in one place only

Unit - I

1. a) Compare and contrast random scan and raster scan displays.
b) Explain the architecture of raster graphics system with a display processor. 7M
2. a) Consider a typical color display system which has 680×960 horizontal to vertical electrodes. Calculate the resolution of the display system. Compute the size of the frame buffer if it takes 6 bits per pixel. Also, compute the time taken to transfer the frame if the transfer rate is 28 Kbps .
b) Explain with a neat diagram, the structure and functionality of a cathode ray tube (CRT).

Unit - II
3. a) Describe Scan-Line Polygon Fill Algorithm.
b) Write the slope, inverse slope, number of intersection points of a scan line at $y=8$ for the following Fig. 1

Fig. 1
Also determine whether shortening of edges is required or not?
4. a) Explain digital differential analyzer (DDA) algorithm 10M
b) Write a recursive function in C to demonstrate boundary fill algorithm. 5M

Unit - III

5. a) Justify that product of two successive translations are additive. 9M
b) Determine a Composite Transformation Matrix for an object being subjected to the 6M following sequence.
i. Rotate the object w.r.t. clockwise direction by an angle 60 degrees
ii. Scale the object by factors of $3 \& 4$ w.r.t. $X \& Y$ axes
iii. Finally translate by a distance of $8 \& 16$ w.r.t. $X \& Y$ directions
6. a) Explain general Pivot-Point Rotation. Give the corresponding composite transformation 8M
matrix.

b) Explain Cohen-Sutherland line clipping algorithm 7M
Unit - IV
7. a) Give the sequence of steps required to perform 3D rotation about an arbitrary axis. 8M
b) Write the structure of general three dimensional transformation viewing pipeline. 7M
8. a) Derive the expression of Bezier curve blending function by also stating its properties. 8M
b) Explain three dimensional scaling. 7M
Unit - V
9. a) Write pseudo code for Scan-Line Method 7M
b) Describe the four steps in generation of animation sequence 8M
10. a) Explain back face detection method. 8M
b) Justify with suitable reasons "how the special animation purpose languages are better 7Mthan general purpose programming languages like C, Lisp, Pascal, or FORTRAN".

VARDHAMAN CO LLEG E OF ENG INEERING

(AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations June - 2014
(Regulations: VCE-R11)

PULSE AND DIGITALCIRCUITS
 (Electronics and Communication Engineering)

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) With relevant waveforms, explain the response of an RC Low pass circuit with a square 7 M wave input under different time constants.
b) For the attenuator circuit shown in the Fig.1, calculate and plot output for the cases: $\quad 8 \mathrm{M}$
i. $\quad C_{1}=50 \mathrm{pF}$
ii. $C_{1}=150 \mathrm{pF}$

Fig. 1
The input $V_{i}(t)$ is a step of 10 V and $\mathrm{C}_{2}=100 \mathrm{pF}$.
2. a) With relevant wave forms, explain the response of an RL High pass circuit for a pulse input voltage.
b) In a low pass RC circuit, $\mathrm{R}=2 \mathrm{~K} \Omega, \mathrm{C}=1 \mu \mathrm{~F}$. If a 2 ms pulse with 5 V amplitude is applied as 8M input to this circuit, sketch the output wave form.

Unit - II
3. a) With the help of a neat circuit diagram and transfer characteristics explain the working of 7M a two level clipper.
b) In the negative clamper circuit $R_{S}=R_{f}=100 \Omega, R=10 K \Omega$ and $C=1.0 \mu \mathrm{~F}$. At $t=0$ a symmetrical square wave signal of amplitude 10 V and frequency 5 KHz is applied. The input signal extends from 0 to 10 V . Draw the output waveform.
4. a) Explain working of a transistor as a switch, indicating base current requirement and 7 M junction voltages of silicon npn transistor at room temperature.
b) The input voltage V_{i} applied to a two level clipper shown in Fig. 2 varies linearly from 0 to 8 M 150 V . Sketch the output voltage V_{0} to the same time scale as the input voltage. Assume ideal diodes.

Fig. 2

Unit - III

5. Design a self biased bistable multivibrator for the following specifications: Vcc=18V, 15M $\left(\mathrm{h}_{\mathrm{fe}}\right) \mathrm{min}=20, I_{C(\text { sat })}=20 \mathrm{~mA}, \mathrm{R}_{1}=R_{2}, I_{B}(o n)=2\left(I_{B}\right)$ min and $V_{B E}$ (cut-off) $=-1 \mathrm{~V}$. Neglect junction voltages and $\mathrm{I}_{\text {cBo }}$. Assume npn silicon transistors.
6. a) Design an astable multivibrator to produce an unsymmetrical square wave of $T_{A}=0.5 \mathrm{~m} \mathrm{sec} \quad 8 \mathrm{M}$ and $T_{B}=0.4 \mathrm{~m} \sec$. The square wave amplitude is 15 V . Assume $\left(\mathrm{h}_{\mathrm{FE}}\right) \mathrm{min}=20$; (Ic) sat $=5 \mathrm{ma}$ and $\left(\mathrm{V}_{\mathrm{CE}}\right)$ sat $=0$.
b) With neat circuit diagram and relevant wave forms explain fixed bias transistor bistable 7M multivibrator.

Unit - IV

7. a) Explain the working of a transistor Bootstrap time base generator With a neat circuit 7M diagram and necessary waveforms.
b) With the help of a circuit diagram and waveforms explain the frequency division by an 8 M astable multivibrator.
8. a) With a neat circuit diagram and necessary waveforms explain the working of a transistor 7M current time base generator.
b) Explain the working of monostable relaxation circuits as dividers.

Unit - V
9. a) Compare the unidirectional and bidirectional sampling gates. 7M
b) Draw a TTL NAND gate and explain its operation. 8M
10. a) Verify the truth table of RTL NOR gate with circuit diagram of two inputs. 8M
b) For the four diode gate $R_{L}=R_{C}=100 \mathrm{~K} \Omega$ and that $R_{2}=2 \mathrm{~K} \Omega, R_{f}=50 \Omega$. For $V_{S}=25 \mathrm{~V}$, compute 7 M gain $A, V_{\text {min }}$ and $V c_{(\text {min })}$. Compute $V_{n(\text { min })}$ for $V=V_{\text {min }}$.

Four Year B. Tech IV Semester Regular/Supplementary Examinations June - 2014
(Regulations: VCE-R11)
AC M ACHINES-I
(Electrical and Electronics Engineering)
Date: 4 June, 2014
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) Why transformer should not operate with dc supply? Mention characteristics of ideal 9 M transformer. Also obtain the expression for EMF equation of a single phase transformer.
b) A $50 \mathrm{KVA}, 4400 / 220 \mathrm{~V}$ transformer has $R_{1}=3.45 \Omega, R_{2}=0.009 \Omega$, the values of reactance's are 6 M $X_{1}=5.2 \Omega \& X_{2}=0.015 \Omega$. calculate for the transformer:
i. Equivalent resistance as referred to primary
ii. Equivalent resistance as referred to secondary
2. a) A transformer takes 0.8 A when its primary is connected to $200 \mathrm{~V}, 50 \mathrm{~Hz}$. The secondary is open circuited. The power absorbed from the supply is 60 watts. Determine the working current \& magnetizing current.
b) With neat diagram explain and compare the constructional details of a core and shell type single phase transformers.

Unit - II
3. a) Derive an expression for load division between two similar transformers connected in parallel with unequal voltage ratios.
b) A short circuit test when performed on the HV side of a $10 \mathrm{kVA}, 2000 / 400 \mathrm{~V}$ single phase
transformer gave the following test data:
$60 \mathrm{~V}, 4 \mathrm{~A}, 100 \mathrm{~W}$.
If the LV side is delivering a full-load current at 0.8 PF (lag) and at 400V, find the voltage applied to the HV side.
4. a) Define voltage regulation of a transformer. Derive the equation for regulation in terms of transformer parameters and load PF.
b) A single phase, $110 / 200 \mathrm{~V}$ transformer gave the following test results:
$110 \mathrm{~V}, 0.5 \mathrm{~A}, 55 \mathrm{~W}$ on HV side, LV side open
10V, 80A, 400Q on LV side, HV shorted
Draw the equivalent circuit of the transformer and find the regulation and efficiency when supplying 100A at 220V, 0.8PF (lag).

Unit - III

5. a) Mention the advantages $\&$ disadvantages of a delta/delta connection of a three phase transformer.
b) A 3Φ transformer $33 / 6.6 \mathrm{KV} \Delta / \mathrm{Y}, 2 \mathrm{MVA}$ has primary resistance of 8Ω per phase $\&$ a secondary resistance of 0.08Ω per phase, percentage impedance is 7%. Calculate the secondary voltage with rated primary voltage \& hence the regulation for full load at 0.75 PF lagging conditions.
6. a) Derive an expression for the copper savings in an auto transformer as compared with a two winding transformer.
b) A 3-phase step down transformer is connected to 6600 V mains and its takes 10A. Calculate the secondary line voltage, line current and output for the following connections having turns ratio per phase is 12 .
i. Delta-delta
ii. Star-delta

Unit - IV

7. a) Explain about the production of rotating magnetic field in an three phase induction motor 7 M air-gap with neat vector diagram.
b) A 3-phase, $400 \mathrm{~V}, 50 \mathrm{~Hz}, 4$-pole induction motor has star connected stator winding. Rotor resistance and reactance are 0.10 hm and 1 ohm respectively. The full load speed is 1440 rpm. Calculate the torque developed on full load by the motor. Assume the stator to rotor ratio as 2:1.
8. a) Draw complete torque-slip characteristics of a three phase induction motor. Show starting torque, breakdown torque and rated torque. Mark the stable and unstable regions.
b) A 3-phase, 200 V induction motor has stator impedance of ($0.07+j 0.4$) ohm/phase while equivalent rotor impedance referred to stator is ($0.08+\mathrm{j} 0.2$) ohm/phase. Neglecting noload current, calculate the maximum mechanical power output and the slip corresponding to maximum output condition. Assume star connected stator.

Unit - V

9. Draw the circle diagram of a $3 \Phi, 6$-pole, $50 \mathrm{~Hz}, 400 \mathrm{~V}, \mathrm{Y}$-connected induction motor.
No-Loa 400V 9A 1250W

Short Circuit 200V 50A 6930W
The stator loss at stand still is 55% of total copper losses \& full load current is 32A.
From circle diagram, determine:
i. PF, slip output, efficiency, speed \& torque at full load
ii. Starting torque
iii. Maximum power output
iv. Maximum torque in synchronous watts \& slip for maximum torque
10. a) State the different methods of speed control of a three phase induction motor and 10 M discuss in detail any two methods.
b) A 400V, $3 \Phi, \mathrm{Y}$-connected induction motor has impedance of $(0.06+\mathrm{j} 0.2) \Omega$ \& an
slip at which it occurs, exciting current may be neglected.

VARDHAMAN CO LLEG E OF ENG INEERING

 (AUTONOMOUS)Four Year B. Tech IV Semester Regular/Supplementary Examinations June - 2014
(Regulations: VCE-R11) KINEM ATICS OF M ACHINERY
(Mechanical Engineering)
Date: 4 June, 2014
Time: $\mathbf{3}$ hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

Unit -I

1. a) Explain Whitworth quick return motion mechanism with neat diagram. 8M
b) With the help of neat sketch, discuss the Oldham's coupling. 7M
2. a) What is the working principle of Scotch yoke mechanism? Explain with neat sketch. 10M
b) How are sliding and turning kinematic pairs different from each other? Explain. 5M

Unit - II
3. a) In a four bar chain ABCD link AD is fixed and in 15 cm long. The crank $A B$ is 4 cm long 8 M rotates at $180 \mathrm{rpm}(\mathrm{CW})$ while link CD rotates about D is 8 cm long $\mathrm{BC}=\mathrm{AD}$ and angle $B A D=60^{\circ}$ as shown in Fig. 1 Find angular velocity of link CD.

Fig. 1
b) In a crank and slotted lever mechanism crank rotates of 300 rpm in counter clockwise direction as shown in Fig.2. Find:
i. Angular velocity of connecting rod and
ii. Velocity of slider

Fig.2.
4. a) How can you show that a Watt mechanism traces an approximate straight line?
b) What are the limitations of a Scott- Russel mechanism? How is it modified?

::2::

Unit - III

5. a) Draw a neat sketch of a Davis Steering gear and explain its working?
b) The ratio between the width of the front axle and that of the wheel base of a steering mechanism is 0.44 . At the instant when the front inner wheel is turned by 18^{0}, what should be the angle turned by the outer front wheel for perfect steering.
6. a) Explain the procedure to make the Kleins construction for a slider crank mechanism?
b) Enumerate the conditions for correct steering.

Unit - IV

7. Draw the cam profile for following conditions: Follower type=Knife edged, in-line; lift=50mm; base circle radius=50mm; out stroke with SHM, for 60° cam rotation; dwell for 45° cam rotation; return stroke with SHM, for 90° cam rotation; dwell for the remaining period. Determine maximum velocity and acceleration during out stroke and return stroke if the cam rotates at 1000 rpm in clockwise direction.
8. a) With neat sketches, explain the following:
i. Knife edge follower
ii. Roller follower
iii. Flat faced follower
iv. Spherical follower
b) Define the following:
i. Tracer Point
ii. Pitch Curve
iii. Base Circle
iv. Prime Circle
v. Pressure Angle

Unit - V

9. a) A 100 mm wide and 10 mm thick belt transmits 5 kW of power between two parallel shafts. The distance between the shaft centers is 1.5 m and the diameter of the smaller pulley is 440 mm . The driving and the driven shafts rotate at 60 rpm and 150 rpm respectively. The coefficient of friction is 0.22 . Find the stress in the belt if the two pulleys are connected by
i. Open belt drive
ii. Cross belt (Take $\mu=0.22$)
b) Write short notes on the phenomenon of creep and slip in a belt.
10. a) An epi-cyclic gear train consists of an arm and two gears A and B having 30 and 40 teeth respectively. The arm rotates about the center of the gear A at a speed of 80 rpm counter clockwise. Determine the speed of the gear B if:
i. The gear A is fixed
ii. The gear A revolves at 240 rpm clockwise instead of being fixed
b) Classify chains and list the application of chain drives in the automobile sector.

VARDHAMAN CO LLEG E OF ENG INEERING
 (AUTONOMOUS)

Four Year B. Tech IV Semester Regular/Supplementary Examinations June - 2014

(Regulations: VCE-R11) FLIGHT MECHANICS-I
 (Aeronautical Engineering)

Date: 4 June, 2014
Time: $\mathbf{3}$ hours
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit-I

1. a) Describe with the help of a diagram the mission profile of a civil transport aircraft. What is 9 M involved in performance estimation process?
b) What is Air data measurement? Explain briefly. 6M
2. a) Write down role and design specifications of the performance requirements. 6M
b) With suitable examples explain Static Air Temperature (SAT) and Total Air Temperature 9M (TAT).

Unit - II
3. a) Derive the equation for motion of aircraft with suitable diagrams. 7M
b) Define drag force? Explain any one method used for reducing drag force. 8M
4. a) With graph explain the variation of Specific fuel consumption with altitude of an aircraft. 7M
b) With neat diagrams explain the concept of minimum drag and minimum power and also 8M derive the expression for velocity at minimum drag and minimum power.

Unit - III

5. a) Define the importance of climb gradient and climb rate with respect to flight 9 M performance and also derive the expressions of the same.
b) Describe the pull-down maneuvers with neat sketches and also explain the importance of 6M V-n diagram.
6. Derive the expression for rate of turn and turn radius for level turn and explain maneuver 15 M boundaries graph.

Unit - IV
7. a) How do parametric forms of aerodynamic and thrust forces useful? 7M
b) Discuss briefly the space available and space required for take-off of an aircraft. 8M
8. a) Explain the principle of flight testing with respect to the performance variables Weight, 7M Altitude and temperature.
b) Describe the various aspects of mission profile and fuel planning with relevant sketches. 8M

Unit - V

9. a) Describe payload range diagrams with suitable examples. 8M
b) Draw the landing performance WAT chart and explain? 7M
10. a) Describe the Takeoff field performance runway correction chart with suitable examples. 9M
b) Briefly discuss the operational performance data for flight planning. 6M

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech IV Semester Regular/Supplementary Examinations June - 2014
(Regulations: VCE-R11)
BUILDING PLANNING AND DRAWING
(Civil Engineering)
Date: 4 June, 2014
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

Unit-I

1. a) What is FAR and FSI. Explain with examples. 8 M
b) Explain the limitations of built up area. 7M
2. a) Explain the open space requirement and height of buildings 8 M
b) Describe briefly the main objectives of building bye laws. 7M

Unit - II
3. a) Explain the characteristics of various types of residential buildings. 8M
b) Briefly describe the principles of a building. 7 M
4. Prepare a line diagram as per convenient scale for a school building for a rural area with the 15 M following requirements:
i. \quad Class rooms $=6$
ii. Headmaster's room with attached toilet
iii. Staff room =2
iv. Office room
v. Library
vi. Toilets

Provisions to be made for corridors. Dimensions may be assumed suitably as per standards.

Unit - III

5. a) Explain briefly critical path method. Give the advantages of the same. 7M
b) Write a note on objects of planning and stages of construction management. 8M
6. a) Give the importance of project planning and management. 8M
b) Write briefly the method of planning and scheduling. 7M

Unit - IV
7. Draw and explain with the help of neat sketch the English and Flemish bond at the corner. 15M
8. Draw any two of the following: 15M
i. King Post Truss
ii. Queen Post Truss
iii. Coupled roof or collar roof
::2::
Unit - V
9. For the line diagram given in Fig.1, draw the Plan, Elevation and Section at x-x. Assume 15M suitable dimensions for windows and doors.

Fig. 1
10. Draw Plan, Elevation and Section for the given line diagram in Fig.2. Assume standard 15M dimensions for doors and windows.

Fig. 2
\square

VARDHAMAN CO LLEG E OF ENG INEERING

 (AUTONOMOUS)
Four Year B. Tech VI Semester Regular Examinations M ay - 2014
 (Regulations: VCE-R11)
 DATABASE MANAGEM ENT SYSTEMS
 (Common to Computer Science and Engineering, Information Technology)

Date: 6 June, 2014 Time: 3 hours Max Marks: 75

Answer ONE question from each Unit All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit-I

1. a) Explain with a neat diagram, the Database M anagement System Architecture
b) Explain the three levels of Data Abstraction

10M
2. a) List five responsibilities of a database management system. For each responsibility, 5M explain the problem that would arise if the responsibility were not discharged properly.
b) Construct an E-R diagram for an airline. The database must keep track of customers and their reservations, flights and their status, seat assignments on individual flights and the schedule and routing of future flights. Specify the key attributes of each entity type and the cardinality ratio

Unit - II

3. Explain in detail the evolution of Logical Database Design from E R Diagram.
4. What is a trigger, and what are its three parts? Why can triggers be hard to understand? Explain the differences between triggers and integrity constraints, and describe when you would use triggers over integrity constraints and vice versa. What are triggers used for?

Unit - III

5. a) Consider a relation R with five attributes $A B C D E$. You are given the following dependencies: $A \rightarrow B, B C \rightarrow E$ and $E D \rightarrow A$.
i. List all keys for R.
ii. Is R in 3NF
iii. Is R in BCNF
b) Consider a relation R that has three attributes $A B C$. It is decomposed into relations R1 with attributes $A B$ and $R 2$ with attributes $B C$.
i. State lossless-join decomposition with respect to this example. Answer this question concisely by writing a relational algebra equation involving $\mathrm{R}, \mathrm{R} 1$ and R 2 .
ii. If you are given the following instances of R1 and R2, what can you say about the instance of R from which these were obtained? Answer this question by listing tuples That are definitely in R and tuples that are possibly in R.
Instance of R1 $=\{(5,1),(6,1)\}$
Instance of R2=\{(1,8), (1,9) $\}$
Can you say that attribute B definitely is or is not a key for R ?
6. Explain $1 \mathrm{NF}, 2 \mathrm{NF}, 3 \mathrm{NF}$ and BCNF with an example for each.
7. a) Consider the following actions taken by transaction T on database objects X and Y : $R(X), W(X), R(Y), W(Y)$
i. Give an example of another transaction T 2 that, if run concurrently to transaction T 1 without some form of concurrency control, could interfere with T1.
ii. Explain how the use of Strict 2PL would prevent interference between the two transactions.
iii. Strict 2 PL is used in many database systems. Give two reasons for its popularity.
b) Describe how a typical lock manager is implemented. Why must lock and unlock be atomic operations? What is the difference between a lock and a latch?
8. a) SQL supports four isolation-levels serializable: Read Uncommitted, Read Committed and Repeatable Read. For each of the four isolation levels, give examples of transactions that could be run safely at that level.
b) Compare lock downgrades with upgrades. Explain why downgrades violate 2PL but are nonetheless acceptable. Discuss the use of update locks in conjunction with lock downgrades.

Unit - V

9. Explain the difference between Hash indexes and B+-tree indexes. In particular, discuss how equality and range searches work, using an example.
10. a) Explain the RAID System and how it improves performance and reliability. Discuss choice of RAID levels
b) Consider the following relations:

Emp(eid: integer, ename: varchar, sal: integer, age: integer, did: integer)
Dept(did: integer, budget: integer, floor: integer, mgreid: integer)
Salaries range from $\$ 10,000$ to $\$ 100,000$, ages vary from 20 to 80 , each department has about five employees on average, there are 10 floors, and budgets vary from $\$ 10,000$ to $\$ 1$ million. You can assume uniform distributions of values.
For each of the following queries, which of the listed index choices would you choose to speed up the query? If your database system does not consider index-only plans (i.e., data records are always retrieved even if enough information is available in the index entry), how would your answer change? Explain briefly.

1. Query: Print ename, age, and sal for all employees.
(a) Clustered hash index on ename,age,salfields of Emp.
(b) Unclustered hash index on ename,age,sal fields of Emp.
(c) Clustered B+tree index on ename,age,salfields of Emp.
(d) Unclustered hash index on eid, did fields of Emp.
(e) No index.
2. Query: Find the dids of departments that are on the 10th floor and have a budget of less than $\$ 15,000$.
(a) Clustered hash index on the floor field of Dept.
(b) Unclustered hash index on the floor field of Dept.
(c) Clustered B+tree index on floor,budget fields of Dept.
(d) Clustered B+tree index on the budget field of Dept.
(e) No index.
\square

VARDHAMAN CO LLEG E OF ENG INEERING

(AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations June - 2014
(Regulations: VCE-R11)
M ANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS
(Electronics and Communication Engineering)
Date: 6 June, 2014
Time: $\mathbf{3}$ hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) What is cross elasticity of demand? Explain.
b) Explain in detail, the functional nature of market demand.
2. a) Compute 3 -day moving average from the following daily sales data.

Date and month	Daily sales (Lakhs of tonnes)
Jan 1	40
2	44
3	48
4	45
5	53

b) Explain in detail the barometric technique of forecasting.

Unit - II
3. a) Write a note on Cobb - Douglas production function. 5M
b) Explain with a neat sketch, the behavior of costs in short run. 10 M
4. A firm has a fixed cost of Rs. 10,000 ; selling price per unit is Rs. 5 and variable cost per unit is 15 M

Rs. 3.
i. Determine break-even point in terms of volume and also sales value
ii. Calculate the margin of safety considering that the actual production is 8000 units

Unit - III

5. a) What are the features of perfect competition? 9M
b) Write a note on Price Determination Under Monopolistic Competition. Explain Short and 6M long run equilibrium with profit and loss. Illustrate the same with graphs.
6. a) With a neat sketch, explain the short-run equilibrium price that results in economical 8 M losses.
b) Explain the two equivalent measures of producer surplus with graphs.

Unit - IV
7. a) Write the characteristic features of business. 6M
b) Explain public enterprises and its types citing examples. 9M
8. a) Explain the three rates of return that appear frequently in Engineering Economy studies. 8M
b) What is capital budgeting? Explain the features of capital budgeting proposals. 7M

Unit - V
9. In the year 2005, the bad debts amounted to Rs. 2000. It was desired to open a provision for doubtful debts account by calculating 5\% on sundry debtors which amounted to Rs. 40,000. In 2006, the actual bad debts amounted to Rs. 1600 and the provision for doubtful debts was required to be maintained at 5% on sundry debtors which stood at Rs. 50,000 on $31^{\text {st }}$ December 2006. In 2007 the actual bad debts amounted to Rs. 400 and the doubtful debt provision was required to be maintained at 5% on sundry debtors which stood at Rs. 30,000 on $31^{\text {st }}$ December 2007. Pass the journal entries and show the bad debts account and the provision for doubtful debts account for the three years. Show also the effect of the transactions on the Profit and loss account and the balance sheet of each year.
10. a) Explain the objectives of double entry system
b) Explain the advantages and the disadvantages of double entry system of accounting

VARDHAMAN CO LLEG E OF ENG INEERING

(AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations June - 2014
(Regulations: VCE-R11)
POWER SYSTEM GENERATION
(Electrical and Electronics Engineering)
Date: 6 June, 2014
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit-I

1. a) Discuss the function of:
i. Penstock
ii. Surge tank
iii. Spill way
iv. Trash rack applicable to hydel power plant
b) A hydro-electric power station is supplied from a reservoir of capacity $3 \times 10^{7} \mathrm{~m}^{3}$ at a head of 150 m . Determine the total energy available in kWh , if the overall efficiency of the plant is 70\%.
2. a) Briefly discuss various non-conventional methods of generating electrical energy.
b) Discuss in brief about pumped storage power plant.

Unit - II

3. With a neat schematic layout, explain the various components of typical coal-fired power 15M station.
4. a) Why air pre-heater is required in water tube boiler system? Explain how it saves fuel in 8 M the plant.
b) Discuss in brief about cooling towers and condensers of thermal power station.

Unit - III
5. a) Explain the functions of the following:
i. Control rods
ii. Moderator
iii. Coolant used in a nuclear reactor
b) Briefly explain the various components of a Gas power station. 6M
6. a) With neat sketch, explain the nuclear chain reaction process. 7M
b) Compare BWR and PWR. 8 M

Unit - IV
7. a) With a neat layout explain all the components of a substation. 8M
b) Explain the single bus bar scheme with bus sectionalizer. 7M
8. a) Differentiate Gas insulated and air insulated substation. 8M
b) Draw and briefly explain the single line diagram of gas insulated substation. 7M

::2::

Unit - V
9. a) A power station is to supply four regions of loads whose peak loads are $15,000 \mathrm{~kW}, 8 \mathrm{M}$ $10,000 \mathrm{~kW}, 9,000 \mathrm{~kW}$ and $11,000 \mathrm{~kW}$ respectively. The diversity factor of the loads at the station is 1.5 and the average annual load factor is 50%. Calculate the maximum demand on the station and the annual energy from the station. Suggest the installed capacity and the number of units taking all aspects into account.
b) Discuss in brief about methods of power factor improvement in power system.
10. a) Discuss about the significance of load factor and diversity factor with respect to cost of 8 M electrical supply.
b) Mention the disadvantages of low power factor and advantages of improved power 7M factor.

Four Year B. Tech IV Semester Regular/Supplementary Examinations June - 2014
(Regulations: VCE-R11)
PROBABILITY AND STATISTICS
(Mechanical Engineering)
Date: 6 June, 2014
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit-I

1. a) A lot consists of 10 good articles, 4 with minor defects and 2 with major defects. Two 8 M articles are chosen from the lot at random (without replacement). Find probability that:
i. Both are good
ii. Both have major defects
iii. At least 1 is good
iv. At most 1 is good
v. Exactly 1 is good
vi. Neither has major defects
vii. Neither is good
b) Two defective tubes get mixed up with 2 good ones. The tubes are tested, one by one, 7M until both defectives are found. What is probability that the last defective tube is obtained on:
i. The second test,
ii. The third test and
iii. The fourth test
2. a) A can hit a target four times in 5 shots, B three times in 4 shots and C twice in 3 shots. $9 M$ Calculate the probability:
i. A, B, C all may hit
ii. B, C may hit and A may loose
iii. C, A may hit and may loose
b) State and prove Baye's theorem.

Unit - II
3. a) Explain the important properties of Normal Distribution and its applications
b) Consider a project that yields an average cash flow of Rs. 500 lakhs with a standard 8M deviation of Rs. 60 lakhs. Calculate the following probabilities:
i. Cash flow will be more than 560 lakhs
ii. Cash flow will be less than Rs. 420 lakhs
iii. Cash flow will lie between Rs. 460 lakhs and Rs. 540 lakhs
iv. Cash flow will be more than Rs. 680 lakhs
4. a) The mean weight of 500 male students at a certain college is 151 lb and the standard 7 M deviation is 15 lb . assuming that the weights are normally distributed, find how many students weigh
i. Between 120 and 155 lb
ii. More than 185 lb
b) A machine produces following units per hour. The data is randomly collected for 10 hours. 8 M The production is $63,64,69,71,70,69,63,70,65$, and 66 . If the mean production is 65 units, calculate the value of t.

Unit - III

5. a) Enumerate the steps involved in testing of hypothesis.
b) A machine turns out 16 defective items in a batch of 500 . After overhauling, it turns out 3 defective items in a batch of 100 . Has the machine improved after overhauling?
6. a) In a certain continuous production process it was found that the mean measurement of some characteristics of the product occasionally shifts due to slight changes in the machine setting, while the variability is seldom affected. The periodic checkup are made to ensure that the mean is not off the mark and σ is stable. Suppose that in this production process the target value of μ is $\mu_{0}=50$ and σ is known to be 2.5 . The sample measurements on a day are $43,51,50,41,53,52,47,54,51,45,48$ and 47 . The production manager will welcome any change of μ towards higher values, however he will like to safeguard against decreasing values of μ. Formulate the null hypothesis and test the same.
b) A certain control process produces 15 percent defectives. A supplier of a new basic raw material claims that the use of his material would reduce the fraction of defective. On making a production trial run with this new material, it was found that from an output of 400 units, 52 were defective. Would you accept the suppliers claim?

Unit - IV

7. a) From a random sample of 10 pigs fed on diet A, the increases in weight in a certain period were $10,6,16,17,13,12,8,14,15,9 \mathrm{lbs}$. for another random sample of 12 pigs fed on diet B, the increases in the same period were $7,13,22,15,12,14,18,8,21,23,10,17 \mathrm{lbs}$. Test whether diets A and B differ significantly as regards their effect on increases in weight ?

Diet A			Diet B		
x_{i}	$x_{i}-\bar{x}$	$\left(x_{i}-\bar{x}\right)^{2}$	y_{i}	$y_{i}-\bar{y}$	$\left(y_{i}-\bar{y}\right)^{2}$
10	-2	4	7	-8	64
6	-6	36	13	-2	4
16	4	16	22	4	49
17	5	25	15	0	0
13	1	1	12	-3	9
12	0	0	14	-1	1
8	-4	16	18	3	9
14	2	4	8	-7	49
15	3	9	21	6	36
9	-3	9	23	8	64
			10	-5	25
			17	2	4
120	0	120	180	0	314

b) Following table gives the number of units produced by two workers:

Worker A: 33, 27, 32, 35, 42, 34, 38,28, 43, 41, 37, 30
Worker B: 16, 20, 27, 26, 22, 23, 24, 18, 19, 25.
Calculate the value of F.

Cont... 3
8. A milk producers union wishes to determine whether the preference pattern of consumers for the newly introduced Yogo Srikand over the Standard Topiwala Srikand is dependent upon the income levels. A random sample of 500 individuals were taken and the responses were classified into 3×3 contingency table as given On the basis of the above information will you conclude that preference pattern is independent of the income level.

Preference Income	Prefer Yogo	Indifferent	Prefer Topiwala	Total
Low	170	30	80	280
Medium	50	25	60	135
High	20	10	55	85
Total	240	65	195	500

Unit - V

9. a) Customers arrive at one-man barber shop according to a poisson process with the mean inter arrival time of 12 min . customers spend an average of 10 min in the barber's chair. What is the expected number of customers in the barber shop and in the queue? Calculate the percentage of time an arrival can walk straight into the barber's chair without having to wait.
How much time can a customer expect to spend in the barber's shop?
Management will provide another chair and hire another barber, when a customers waiting time in the shop exceeds 1.25 h . How much must the average rate of arrivals increase to warrant a second barber?
What is average time customers spend in queue?
What is probability that the waiting time in the system is greater than 30 min ?
Calculate the percentage of customers who have to wait prior to getting into the barber's chair.
What is the probability that more than 3 customers are in the system?
b) A duplicating machine maintained for office use is operated by an office assistant who earns Rs 5 per hour. The time to complete each job varies according to an exponential distribution with mean 6 min . assume a poisson input with an average arrival rate of 5 jobs per hour. If an 8-h day is used as a base determine:
i. The percentage idle time of the machine
ii. The average time a job is in the system and
iii. The average earning per day of the assistant
10. a) Explain the following terms:
i. Service discipline
ii. Waiting time
iii. Server
b) Arrival at a telephone booth are considered to be Poisson, with an average time of 10 minutes between one arrival and the next. The length of the phone call is assumed to be distributed exponentially with a mean of 3 minutes:
i. What is the probability that a person arriving at the booth will have to wait
ii. What is the average length of the queue that is formed from time to time
iii. The telephone department will install a second booth when convinced that an arrival would expect to have to wait at least three minutes for the phone. By how much the flow of arrivals be increased in order to justify a second booth.
\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech IV Semester Regular/Supplementary Examinations June - 2014
(Regulations: VCE-R11) M ECHANISM S AND M ECHANICAL DESIGN
(Aeronautical Engineering)
Date: 6 June, 2014
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) Differentiate between M achines and Mechanisms. 5M
b) What is Link? Briefly explain the classification of Kinematic pairs. 10M
2. a) Sketch and explain Peaucellier M echanism. 5M
b) List and Explain any three inversions of Four bar chain mechanism. 10M

Unit - II
3. In a slider crank mechanism shown in Fig 1, the crank is 200 mm long and rotates at 40 $\mathrm{rad} / \mathrm{sec}$ in a CCW direction. The length of the connecting rod is 800 mm . When the crank turns through 60° from Inner-dead centre. Determine
i. The velocity of the slider
ii. Velocity of point E located at a distance of 200 mm on the connecting rod extended.
iii. The position and velocity of point F on the connecting rod having the least absolute velocity
iv. The angular velocity of connecting rod.
v. The velocity of rubbing of pins of crank shaft, crank and cross head having pins diameters 80,60 and 100 mm respectively.

Fig. 1
4. Explain the procedure to draw velocity and acceleration vector diagram for a slider crank 15M mechanism shown in Fig. 2 using Klein's construction

Fig. 2

Unit - III

5. In the toggle mechanism shown in Fig. 3 the slider D is constrained to move in a horizontal path the crank OA is rotating in CCW direction at a speed of 180 rpm the dimensions of various links are as follows:
$O A=180 \mathrm{~mm}, \mathrm{CB}=240 \mathrm{~mm}, \mathrm{AB}=360 \mathrm{~mm}$ and $\mathrm{BD}=540 \mathrm{~mm}$
Find using I centre method,
i) Velocity of slider
ii) Angular velocity of links $A B, C B$ and $B D$

Fig. 3
6. a) A four bar mechanism has links $\mathrm{AB}=300 \mathrm{~mm}, \mathrm{BC}=\mathrm{CD}=360 \mathrm{~mm}$ and $\mathrm{AD}=600 \mathrm{~mm}$. Angle $B A D=60^{\circ}$. Crank $A B$ rotates in CW direction at a speed of 100rpm. Locate all the instantaneous centers and determine the angular velocity of link BC.
b) The rotor of the turbine of a ship has a mass of 2500 kg and rotates at a speed of 3200rpm C.C.W when viewed from stern. The rotor has radius of gyration of 0.4 m . Determine the gyroscopic couple and its effect when
i. The ship steers to left in a curve of 80 m radius at speed of 15 knots ($1 \mathrm{knot}=1.86 \mathrm{hm} / \mathrm{h}$)
ii. The ship pitches 5° above and 5° below the normal position and the bow is descending with its maximum velocity. The pitching motion follows SHM with time period 40s
iii. The ship rolls and at this instant its angular velocity is $0.4 \mathrm{rad} / \mathrm{s}$ C.W from stern. Also find maximum angular acceleration during pitching

Unit - IV

7. Draw the cam profile for following conditions:

Follower type =roller follower, in-line; lift $=25 \mathrm{~mm}$; base circle radius $=20 \mathrm{~mm}$; roller radius $=$ 5 mm ; out stroke with Uniform Acceleration and Retardation Motion (UARM) for $120^{\circ} \mathrm{cam}$ rotation; dwell for 60° cam rotation; return stroke with UARM, for 90° cam rotation; dwell for the remaining period. Determine max. velocity and acceleration during out stroke and return stroke if the cam rotates at 1200 rpm in clockwise direction.
8. Draw the cam profile for following conditions: Follower type = Knife edged, in-line; lift = 50 mm ; base circle radius $=50 \mathrm{~mm}$; out stroke with Simple Harmonic Motion (SHM), for 60° cam rotation; dwell for 45° cam rotation; return stroke with SHM, for 90° cam rotation; dwell for the remaining period. Determine maximum velocity and acceleration during out stroke and return stroke if the cam rotates at 1000 rpm in clockwise direction.

[^0]
9. a) State and explain the Law of Gearing.
b) In an epicyclic gear train, the internal gears $A \& B$, and compound gears $C \& D$ rotate independently about the axis 0 . The gears $E \& F$ rotate on pins fixed to the arm G, and gear E meshes with $A \& C$, and Gear F meshes with $B \& D$. All the wheels have same module and number of teeth are $T_{C}=28, T_{D}=26, T_{E}=T_{F}=18$. Sketch the arrangement, find the number of teeth on $A \& B$, if the arm makes 100 rpm clockwise and A is fixed. Find the speed of gear B.
10. a) A solid shaft is transmitting $1 M W$ at 240 rpm . Determine the diameter of the shaft, if the maximum torque transmitted exceeds the mean torque by 20%. Take maximum allowable shear stress as 60 MPa .
b) A helical spring is made from a wire of 6 mm diameter and has outside diameter of 75 mm . If the permissible shear stress is 350 M Pa and modulus of rigidity $84 \mathrm{KN} / \mathrm{mm}^{2}$, find the axial load which the spring can carry and the deflection per active turn (Neglect effect of curvature).
\square
VARDHAMAN CO LLEG E OF ENG INEERING
(AUTONOMOUS)
Four Year B. Tech IV Semester Regular/Supplementary Examinations June - 2014
(Regulations: VCE-R11)

SURVEYING-II

(Civil Engineering)
Date: 6 June, 2014
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

Unit - I

1. a) With a neat diagram explain prismatic compass.
b) Compute the interior angle AOB from the following bearings.
i. $\quad O A=44^{\circ} 20^{\prime}$
$O B=178^{\circ} 40^{\prime}$
ii. $\quad O A=100^{\circ} 10^{\prime}$
$O B=212^{\circ} 45^{\prime}$
iii. $\quad O A=N 42^{\circ} 31^{\prime} E$
$O B=N 76^{\circ} 47^{\prime} E$
iv. $O A=S 74^{0} 07^{\prime} E$
$O B=N 42^{\circ} 04^{\prime} W$
2. a) What does traverse surveying mean? Distinguish between closed And open traverse?
b) In a closed traverse ABCDE, the observed FB of the lines was as follows. Calculate the interior angles and apply check.

Line	Fore bearings
$A B$	$60^{\circ} 30^{\prime}$
$B C$	$122^{\circ} 00^{\prime}$
$C D$	$46^{\circ} 00^{\prime}$
$D E$	$205^{\circ} 30^{\prime}$
$E A$	$300^{\circ} 00^{\prime}$

Unit - II

3. a) What is meant by orientation of plane tabling? Name different methods and explain in 8 M brief "Orientation by back sighting ".
b) Explain the working operation of plane table.
4. a) What are the accessories used in plane table survey. Explain each of them briefly with 10 M neat sketches.
b) What are the advantages and disadvantages of plane table surveying?

Unit - III

5. a) List the different systems of Tacheometric measurement. Describe Subtense method. 7M
b) Briefly explain the method for finding out the additive and multiplicative constants of 8 M Tachometric Survey.
6. A line PQ was observed by Tachometric survey and the following details were observed: 15M

Staff Point	Vertical Angle	Staff intercept	Axial hair Readings
P	$+8^{\circ} 36^{\prime}$	2.350	2.105
Q	$+6^{\circ} 6^{\prime}$	2.055	1.895

Find the length of $P Q$ and the $R L$ of Q if that of P is 321.500 . Take $K=100$.

::2::

Unit - IV

7. a) What are the main functions of GIS?
b) List the various sub systems of GIS and briefly explain each of them.
11M
8. a) Write a brief note on applications of GPS. 7M
b) Briefly explain Kinematic Technique Survey using GPS technique. 8M

Unit - V

9. a) With a neat sketch explain various elements of a simple curve.

10M
b) How curves are designated? Derive the equation for "degree of curvature" for a chord of 5 M length 30 m .
10. Calculate the data to set out a compound curve, for the following details:
i. Total deflection angle $=80^{\circ}$
ii. Deflection angle for smaller curve $=35^{\circ}$
iii. Radius of smaller curve $=300 \mathrm{~m}$
iv. Radius of larger curve $=400 \mathrm{~m}$
v. Chainage of intersection $=2600.000 \mathrm{~m}$
vi. Take peg interval of 30 m

[^0]:

