\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
M ATHEM ATICS-III
(Common to Electronics and Communication Engineering \&
Electrical and Electronics Engineering)
Date: 15 June, 2014 FN
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks

All parts of the question must be answered in one place only

Unit - I

1. a) Prove that $\int_{0}^{4} x^{\frac{3}{2}}(4-x)^{\frac{5}{2}} d x=12 \pi$.
b) Prove that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$, Hence evaluate $\beta\left(\frac{5}{2}, \frac{3}{2}\right)$. 8M
2. a) Prove that $J_{n}^{1}(x)=\frac{1}{2}\left[J_{n-1}(x)-J_{n+1}(x)\right]$.
b) Prove that $\int_{-1}^{1} p_{m}(x) p_{n}(x) d x=0, \quad m \neq n$.

Unit - II

3. a) Determine p such that the function $f(z)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+i \tan ^{-1}\left(\frac{p x}{y}\right)$ be an 7 M analytic function.
b) Show that the function $f(z)=\sqrt{|x y|}$ is not analytic at the origin, although 8 M Cauchy - Riemann equations are satisfied at that point.
4. a) If $f(z)=u+i v$ is analytic find $\mathrm{f}(\mathrm{z})$ if $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$. $\quad 8 \mathrm{M}$
b) Find all the roots of $\tanh z+2=0$. 7M

Unit - III

5. a) Evaluate $\int_{(0,0)}^{(1,2)} 3 x^{2} y d x+\left(x^{3}-3 y^{2}\right) d y$ along the curve $y=3 x$.
b) Evaluate $\int_{c}^{-2} z d z$ along (i) C is $|z|=1$, (ii) C is $|z-1|=1$.
6. a) Expand $f(z)=\frac{z}{(z+1)(z+2)}$ in Laurent's series about the point $z=-2$.
b) If $\phi(a)=\int_{C} \frac{2 z^{2}-z-2}{z-a} d z$ where C is the circle $|z|=\frac{5}{2}$, evaluate $\phi(0), \phi(2)$ and 8 M $\phi(3)$.

Unit - IV

7. a) State the Residue theorem and hence evaluate $\int_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} d z$ where C is the 7M circle $|z|=3$.
b) Determine the pole and find the residue at each pole of the function $\frac{z^{2}}{(z-1)(z-2)^{2}} \quad 8 \mathrm{M}$
8. a) Show that $\int_{0}^{\infty} \frac{d x}{1+x^{4}}=\frac{\pi}{2 \sqrt{2}}$.

7M
b) Show that $\int_{0}^{2 \pi} \frac{d \theta}{\sqrt{2}-\cos \theta}=2 \pi$.

8M

Unit - V

9. a) Find the bilinear transformation that maps the points ($1, i,-1$) onto the points 8M ($i, 0,-i$) respectively.
b) Shown that the relation $w=\frac{5-4 z}{4 z-2}$ transform the circle $|z|=1$ into a circle of radius 7 M unity in the w-plane.
10. a) Define M ultiple, Complete and Planar Graphs with examples and neat diagrams. 7M
b) Find the minimal spanning tree of the graph G given below, using Krushkal's Algorithm. 8M

\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
MATHEM ATICS FOR AEROSPACE ENGINEERING
(Aeronautical Engineering)
Date: 15 June, 2014 FN
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) Express $\int_{0}^{1} x^{m}\left(1-x^{n}\right)^{p} d x$ in terms of the beta functions.
b) Prove that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$, Hence evaluate $\beta\left(\frac{5}{2}, \frac{3}{2}\right)$ 8M
2. a) Prove that $(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)$. 7M
b) Starting from Roudrigues formula compute $P_{0}(x), P_{1}(x), P_{2}(x), P_{3}(x)$ and hence express $x^{3} \quad 8 M$ $+2 x^{2}-4 x+5$ in terms of legendres polynomials.

Unit - II

3. a) Define an analytic function. Show that an analytic function with constant modulus is 7 M constant.
b) If $f(z)=u+i v$ is an analytic function of z and if $u-v=e^{x}(\cos x-\sin y)$, then find 8M $f(z)$ in terms of z.
4. a) If $f(z)$ is a regular function of z, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
b) Show that the function $u(x, y)=e^{x} \cos y$ is harmonic.

Unit - III

5. a) Evaluate $\int_{0}^{2+i} z^{2} d z$ along the line $y=x^{2}$.
b) Evaluate using Cauchy's integral formula $\int_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} d z$ where C is the circle 8 M $|z|=3$
6. a) State and prove Cauchy's theorem.
b) Find the Laurent's expansion of $f(z)=\frac{7 z-2}{\mathrm{Z}(z+1)(z-2)}$ in the region $1<|z+1|<3 \quad 8 \mathrm{M}$

Unit - IV

7. a) Find the poles and residues at each pole for $f(z)=\frac{2 z+1}{z^{2}-z-2} \quad 7 \mathrm{M}$
b) Determine the pole and find the residue at each pole of the function $\frac{z^{2}}{(z-1)(z-2)^{2}}$
8. a) Show that $\int_{0}^{\infty} \frac{d x}{1+x^{4}}=\frac{\pi}{2 \sqrt{2}}$.
b) Prove that $\int_{0}^{\infty} \frac{\cos m \mathrm{x}}{x^{2}+1} d x=\frac{\pi}{2} \mathrm{e}^{-m}, m>0$.

Unit - V

9. a) Discuss the transformation $w=e^{z}$.
b) Find the bilinear transformation which maps the points $z=1, i,-1$ onto the points 8 M $\mathrm{w}=\mathrm{i}, 0,-\mathrm{i}$. Also find the invariant points of this transformation.
10. a) Determine the image of the region bounded by the circle $|z-2|=2$, under the 8 M transformation $w=z^{2}$.
b) Find the image of the infinite strip $0<y<\frac{1}{2}$ under the transformation $w=\frac{1}{z}$

VARDHAMAN CO LLEG E OF ENG INEERING
(AUTONOMOUS)
Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
M ANAGERIAL ECONOM ICS AND FINANCIAL ANALYSIS
(Common to Computer Science and Engineering, Information technology, Electrical and Electronics Engineering, Aeronautical Engineering \& Civil Engineering)
Date: 20 June, 2014 FN
Time: 3 hours
Max Marks: 75

Answer ONE question from each Unit All Questions Carry Equal M arks All parts of the question must be answered in one place only

Unit - I

1. a) Briefly discuss the three fundamental concepts of M anagerial Economics with relevant $\quad 8 \mathrm{M}$ examples.
b) What are the important uses and limitation of microeconomics?7M
2. Define elasticity of demand and explain different types of elasticity of demand with suitable 15 M examples.
Unit - II
3. a) What are isoquants and isocost in production analysis?
b) Discuss the Least Cost Combination of input factors with a suitable diagram.
7M
4. What is breakeven point? Explain with a suitable diagram? 15M
Unit - III
5. What is monopoly market? Discuss its features and conditions of equilibrium? 15M
6. How does an individual firm behave under perfect competition? Also explain the firm and 15M industry equilibrium under perfect competition?
Unit - IV
7. XYZ Company is considering an investment proposal which requires an initial outlay of Rs. $1,00,000$ and has a life of five years with no salvage value. The company's tax rate is 50%. The firm uses straight line depreciation method. The estimated cash flow after tax are as follows:

Years cash flows	1	2	3	4	5
After Tax	10,000	11,000	14,000	15,000	25,000

You are required to calculate:
i. Pay-back period
ii. Net present value. The company's required rate of return is 10%
8. a) Explain the different methods of capital budgeting? 8M
b) What are the steps in capital budgeting? 7M

Unit - V
9. Journalize the following transaction in the books of Krishna M ohan \& Co.

Date	Particulars	Rs.
March 1, 2012	Bought goods from Raj	50,000
March 2 2012	Sold goods for cash	15,000
March 5, 2012	Sold goods to M urthy	30,000
March 12, 2012	Bought goods for cash	75,000
March 18, 2012	Bought furniture for cash	20,000
March 20, 2012	Discount allowed	25,000
March 24, 2012	Received from Murthy on account	17,500
March 28, 2012	Paid raj on account	22,500
March 30, 2012	Paid salaries	15,000
March 31, 2012	Paid landlord rent	4,500

10. With the following financial data, compute:
i. Current ratio
ii. Stock - Turnover ratio
iii. Gross profit ratio

Particulars	Rs.	Particulars	Rs.
Opening stock	$1,00,000$	Cash in hand	$3,00,000$
Closing stock	$2,00,000$	Debtors	$4,00,000$
Purchases	$5,45,000$	Sundry creditors	$3,00,000$
Wages	15,000	Bills payable	$2,50,000$
Administrative expenses	40,000	Bank credit	25,000
Selling \& Distribution expenses	$2,40,000$	sales	$10,00,000$

\square
VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)
Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
BUILDING M ATERIALS AND CONSTRUCTION
(Civil Engineering)
Date: 13 June, 2014 FN
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) Describe the process of blasting rocks. State the precautions to be exercised.

b) Write the properties and uses of the following stone:

i. Granite
ii. Sandstone
iii. Marble
iv. Slate
2. a) Describe the manufacturing method of tiles and list different types of tiles.
b) Enumerate the qualities of good brick.

Unit - II

3. a) What are the physical properties of Portland cement? Explain.
b) Describe various defects in timber. 7M
4. a) What are the factors affecting workability of concrete? Briefly Explain. 8M
b) What are the uses of chemical admixtures in concrete? 7M

Unit - III
5. a) What do you understand by strap footing? When do you provide this? Draw typical 8M sketch showing common arrangements of strap footing.
b) Name different types of rubble masonry and Ashlar masonry. Explain Ashlar chamfered 7M masonry work in detail.
6. a) Define cavity wall. What are its advantages? Explain with the help of sketch general 9M features of cavity wall.
b) Explain with neat sketches:
i. Flint rubble masonry
ii. Ashlar facing

Unit - IV

7. a) Draw neat sketch of king post truss indicating all the parts. 6 M
b) Explain briefly with sketches: 9M
i. Framed and paneled door
ii. Paneled and glazed door
iii. Fixed window
8. a) What are the functions of ventilators? Explain with neat sketch fixed ventilators? 7M
b) What are the requirements of a good staircase? 8M

Unit - V

9. a) What is scaffolding? Briefly explain different types of scaffolding. 8 M
b) List the different methods of damp proofing. Explain any two. 7M
10. a) Briefly explain the defects that may arise in a plaster work? 7M
b) Explain the various ingredients of a paint? 8 M
\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)

SURVEYING-I

(Civil Engineering)
Date: 15 June, 2014 FN

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) Define Surveying. Also explain in detail what are the uses of Surveying?

8 M
b) Explain: 7M
i. Plane Surveying
ii. Geodetic Surveying

2 a) List the advantages and disadvantages of plane table survey over the other surveys.
b) The distance between two stations was 1200 meter when measured with a 20 meter

Chain. The same distance when measured with a 30 meter Chain was 1195 meter. If the 20 meter Chain was 50 mm too long compute the error of the 30 meter Chain.

Unit - II
3. a) Define:
i. True M eridian
ii. Magnetic M eridian
iii. Arbitrary M eridian
b) The following bearings were observed with a compass. Cal culate the interior angles. 9M

Line	Fore bearing
$A B$	74°
$B C$	115°
$C D$	235°
$D E$	315°
$E A$	$4^{\circ} 30^{\prime}$

4. a) What are the temporary adjustments of a Prismatic Compass?

9M
b) The magnetic bearing of a line is $S 30^{\circ} 15^{\prime} \mathrm{W}$. Find its true bearing if the declination is 6 M S10 ${ }^{\circ} 15^{\prime} \mathrm{E}$.

Unit - III
5. a) Define:
i. line of collimation
ii. Back sight
iii. Fore sight,
iv. Bench mark
v. Reduced level
b) Two points A and B are 1530 meter apart. The following Reciprocal levels were taken 10 M with one level.

Level at	Readings on A	Readings on B
A	2.165	3.810
B	0.910	2.355

Calculate the true level difference betw een A and B.
6. a) Define Contour? 3M
b) What are the characteristics of Contours? 12M

Unit - IV
7. A railway embankment 10 meter wide with side slopes 1.5 H : 1 V is to be laid on a fairly level ground. Calculate the volume contained in a length of 120 meter with the center heights at each 20 meter interval being $2.20,3.70,3.80,4.00,3.80,2.80$ and 2.50 meter respectively.
8. The areas within the contour line at the site and the Reservoir face of a proposed Dam face are as follows:

Contour (RL)	101	102	103	104	105	106
Area (Sq.m)	100	1280	9520	14760	87250	135000

Assuming the Contour interval to be 1 meter, estimate the Reservoir Capacity.
Unit - V
9. a) Explain the measurement of horizontal angle by repetition method using theodolite 7M
b) Explain the Temporary adjustments of theodolite. 8M
10. a) Define the terms: 9M
i. Face left and face right observations
ii. Swinging the telescope
iii. Transiting the telescope
b) How will you measure the vertical angle using the theodolite? 6M
\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
STRENGTH OF M ATERIALS-I
(Civil Engineering)
Date: 18 June, 2014 FN
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) Define:
i. Bulk modulus
ii. Poisson 's ratio
iii. Strain energy
b) A steel bar is 2 m in length \& is subjected to an axial pull of 1100 kN . The bar is 40 mm in

9M diameter for a length of $1 \mathrm{~m}, 30 \mathrm{~mm}$ in diameter for a length of $0.6 \mathrm{~m} \& 20 \mathrm{~mm}$ in diameter for remaining length. Find the total extension of the bar. Take E=200GN/m².
2. a) Draw stress strain curve for mild steel explain salient features. 5M
b) The bar of a circular section as shown in Fig. 1 elongates by 0.45 mm when subjected to 10M an axial pull of 100 kN . Calculate the value of modulus of elasticity.

Fig. 1

Unit - II
3. a) Define:
i. Bending moment
ii. Shear force
iii. Point of contraflexure
b) Draw the typical SFD and BMD for a simply supported beam with a gradually Varying 9M load from zero at one end to w / m at the other end.
4. a) Derive an expression for maximum moment for a simply supported beam of span 5 M L carrying an UDL of w/unit length over its entire length.
b) Draw the SF and BM diagrams for the overhanging beam carrying UDL of $2 \mathrm{KN} / \mathrm{m}$ over 10 M the entire length and a point load of 2 KN as shown in Fig.2. Locate the Point of Contraflexure.

Fig. 2

::2::

Unit - III
5. a) Derive an expression for Hoop stress for a thin cylindrical shell.
b) A cylindrical shell is 3 m long and is having 1 m internal diameter and 15 mm thickness. 10 M Calculate the maximum intensity of shear stress induced also the changes in the dimensions of the shell. If it is subjected to an internal fluid pressure of $1.5 \mathrm{~N} / \mathrm{mm}^{2}$.
6. a) Write the difference between Thin and Thick cylinders. What are assumptions made in the theory of thick cylinders?
b) A thick cylinder of internal diameter 160 mm is subjected to an internal fluid pressure of $40 \mathrm{~N} / \mathrm{mm}^{2}$. If the allowable stress in the material is $120 \mathrm{~N} / \mathrm{mm}^{2}$ find the thickness required.

Unit - IV

7. a) State the assumptions made in the pure bending.
b) A 2 m long cantilever with rectangular section $60 \mathrm{~mm} \times 90 \mathrm{~mm}$ is subjected to an UDL 10 M of $4 \mathrm{KN} / \mathrm{m}$ throughout its length .determine maximum bending stress and its location.
8. a) Explain simple bending theory. What are the assumptions in simple bending theory?
b) A T-section has a flange of $100 \times 12 \mathrm{~mm}$ and a web of $12 \times 88 \mathrm{~mm}$. It is subjected to a shear force of 20 KN . Draw the shear stress distribution across the depth marking the salient values.

Unit - V

9. a) A simply supported beam of span 5 m is subjected to point loads of magnitude 20 KN and 30 KN at distances of 2 m and 3 m respectively from the left support. Determine the maximum slope and deflection under any one load.
b) A uniform load of $10 \mathrm{kN} / \mathrm{m}$ acts on the entire span of a simply supported beam 3 m long. $\mathrm{E}=200 \mathrm{GN} / \mathrm{mm}^{2}, \mathrm{I}=28 \times 10^{-6} \mathrm{~m}^{4}$. Compute maximum deflection and slope angle at each support.
10. a) A simply supported beam of span 6 m is subjected to a concentrated load of 18 KN at 4 m from the left end. Calculate:
i. The position and value of maximum deflection ii. Slope at mid span
b) A simply supported beam of span of 9 m carries two point loads of magnitude 50 KN and 100 KN at a distance of 3 m and 6 m respectively from the left end. Find the deflection under the 50 KN load.
\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
CONCRETE TECHNOLOGY

(Civil Engineering)

Date: 11 June, 2014 FN
Time: $\mathbf{3}$ hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) What are the chemical reactions that take place when water is added to cement? How 7M do these reactions affect the strength of the concrete?
b) What is fineness modulus? Explain the method of determining fineness modulus along 8 M with its significance in making good concrete?
2. a) Explain Transition Zone, heat of hydration and water requirement of concrete? 9 M
b) What are the different tests conducted on wet cement? Explain any one of them? 6M

Unit - II
3. a) What is workability? What is the effect of time and temperature on workability? 7M
b) Explain segregation, bleeding, gel space ratio and water cement ratio? 8M
4. a) Explain any two tests conducted to find the workability of fresh concrete. 8M
b) Why is curing required for concrete? What are the different ways of curing concrete? 7M

Unit - III

5. a) Explain the procedure to conduct the split tensile strength of concrete? 8M
b) What are the applications of non-destructive testing of concrete? 7M
6. a) Why compressive strength is regarded as very significant in concrete? 8M
b) What are the factors affecting the strength of concrete? 7M

Unit - IV
7. a) What are the factors influencing the choice of mix proportions? Explain. 8M
b) What are the different methods available to proportion the concrete mix? Explain 7M merits and demerits of each.
$\begin{array}{lll}\text { 8. a) Design a concrete mix with following data } & 15 \mathrm{M}\end{array}$ M20 mix
43 grade OPC cement
7 days strength $=33 \mathrm{~N} / \mathrm{mm} 2$
Workability-low
Size of aggregate- 20 mm
Specific gravity for course aggregate-2.8
Specific gravity for fine aggregate-2.7
Unit - V
9. a) What are the properties of light weight concrete? 7M
b) What are the applications of fibre reinforced concrete? 8M
10. a) What are the tests conducted on self consolidating concrete? 7M
b) Where do you recommend high density concrete and why? 8M
\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
NETWORK ANALYSIS
(Electrical and Electronics Engineering)
Date: 18 June, 2014 FN
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) State and prove Tellegen's theorem.

7M

b) Using superposition theorem, calculate the current through ($2+\mathrm{j} 3$) Ω impedance of the 8 M circuit shown in Fig.1.

Fig. 1
2. a) State and prove Reciprocity theorem.
b) State and explain maximum power transfer theorem for D.C excited circuit.

Unit - II

3. a) A $400 \mathrm{~V}, 3-\Phi$ supply is connected to a balanced network of three impedances.

Each consists of a 20Ω resistance and a 15Ω inductive reactance. Determine:
i. The line current,
ii. The power factor
iii. The total power in kW

When the three impedances are star connected and delta connected?
b) Obtain the equival ent resistance $R_{a b}$ for the circuit shown in Fig. 2

Fig. 2
4. a) A balanced 3 phase, star connected load is fed from a 3phase, $400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The current per phase is 25 A (lagging), and the total active power absorbed by the lad is 13.856 kW. Determine:
i. The resistance and inductance of the load per phase,
ii. The total reactive power and
iii. The total apparent power
b) In a three-phase, three-wire circuit, find the phasor line currents to a balanced Y load in which each phase impedance is $Z_{Y}=20 \angle 30^{\circ} \Omega$. Also, $V_{A N}=120 \mathrm{~L} 20^{\circ} \mathrm{V}$, and the phase sequence is ABC .

Unit - III

5. a) Using Laplace Transform, Determine the current $i_{L}(t)$ for $t>0$ for the circuit shown in Fig. 3

Fig. 3
b) In the network shown in Fig. 4 the switch ' k ' is closed at $\mathrm{t}=0$, with the capacitor 7M unchanged. Find the value for $\mathrm{I}, \mathrm{di} / \mathrm{dt}^{2} \mathrm{~d}^{2} \mathrm{i} / \mathrm{dt}^{2}$ at $\mathrm{t}=0^{+}$, for element values as follows, $\mathrm{V}=100 \mathrm{~V}, \mathrm{R}=1000 \Omega$, and $\mathrm{C}=1 \mu \mathrm{~F}$.

6. a) What is the inductance of a coil for which a changing current increasing uniformly from 30 mA to 80 mA in $100 \mu \mathrm{~s}$ induces 50 mV in the coil?
b) Convert the circuit in Fig. 5 to an appropriate S-domain representation:

Unit - IV

7. a) Design a low pass filter (T-network) having a cut off frequency of 2 kHz and nominal characteristic impedance of 500Ω.
b) Design m-derived T and π sections low pass filters for nominal characteristic impedance $R_{0}=600 \Omega$, cutoff frequency $=1800 \mathrm{~Hz}$ and infinite attenuation frequency $\mathrm{f}_{\infty}=2 \mathrm{kHz}$.
8. a) Design a constant k high pass filter (π-network) having a cut off frequency of 1 kHz and 7 M nominal characteristic impedance of 500Ω.
b) Design a constant k band pass filter with cut off frequencies of 2 kHz and 5 kHz and nominal characteristic impedance of 600Ω.

Unit - V

9. a) Draw the locus of I_{2} and I_{1} for the parallel circuit shown in Fig.6.

b) In a R-L series circuit with X-L fixed and R variable, draw the locus of the current and explain it in detail.
10. a) An R-L series circuit with $R=40 \Omega$ and variable inductance is in parallel with $R-C$ series 7M with $R=10 \Omega$ and $\mathrm{X} C=20 \Omega$ draw the current locus for an applied voltage of 220 V .
b) An R-C series circuit with $R=20 \Omega$ and variable capacitance is in parallel with R-L series 8M with $R=5 \Omega$ and $X_{L}=20 \Omega$ draw the current locus for an applied voltage of 220 V .
\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
DC M ACHINES
(Electrical and Electronics Engineering)
Date: 11 June, 2014 FN
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) For a singly excited magnetic system, establish relationship between magnetic field
energy and co-energy.
b) For an electromagnetic system, the λ - I relationship is given by
$\lambda=\left(\mathrm{i}^{0.5} / \mathrm{g}\right)$ where $\mathrm{g}=$ air gap length. Determine the mechanical force on the moving part of the system using:
i. Energy of the system
ii. Co-energy of the system for $i=4 \mathrm{~A}$, and $\mathrm{g}=5 \mathrm{~cm}$
2. a) What is meant by energy balance equation?
b) A doubly- excited magnetic field system has self and mutual inductances of
$L_{11}=L_{22}=2, M_{12}=M_{21}=\cos \theta$ where θ is the angle between the axes of the coils. The coils are connected in parallel to a voltage source $\mathrm{V}=\mathrm{V}_{\mathrm{m}} \cos (\omega \mathrm{t})$. Derive an expression for the instantaneous torque as a function of the angular position θ. Find there from the time-average torque. Evaluate for $\theta=30^{\circ}, \mathrm{v}=100 \sin (314 \mathrm{t})$.

Unit - II

3. a) Name the stator parts of a d.c machine.
b) Derive the expressions for ATd/pole and ATc/pole in case of a d.c generator undergoing 11M armature reaction.
4. a) Develop from first principle, EMF equations for a d.c machine.
b) The terminal voltage of a 8 pole d.c. shunt generator with 780 wave connected armature conductors and running at 500 rpm is 240 V . The armature resistance is 0.24Ω and the field resistance is 240Ω. Find the armature current, the induced emf and the flux per pole if load resistance is 12Ω.

Unit - III
5. a) Describe the experimental procedure involved in obtaining open circuit characteristics of separately excited generator.
b) Explain the necessary reasons for operating generators in parallel?
6. a) Explain the external (V/I) characteristics for a shunt, series generator and compare 8 M them?
b) A 6-pole wave connected d.c machine has 300 armature conductors and each conductor is capable of carrying 80 A without excessive temperature rise. The flux per pole is 0.015 Wb and the machine is driven at 1800 rpm . Calculate the total current, emf, power developed in the armature.

Unit - IV

7. a) Explain why a starter is required for starting a d.c. motor. Describe a 3-point starter, 8M having no volt and over-load protections, for starting a d.c. shunt motor?
b) A $250 \mathrm{~V}, 4$ pole, shunt motor has two circuit armature winding with 500 conductors. The armature circuit resistance is 0.25 ohm, field resistance is 125 ohms and the flux per pole is 0.02 Wb . Armature reaction is neglected. If the motor draws 14 A from the mains, then compute speed and the internal torque developed.
8. a) Explain ward Leonard speed control method with the help of suitable diagram?
b) Derive the torque equation of d.c motor.

Unit - V

9. a) Derive the condition for maximum efficiency for a d.c machine when it is working as a motor.
b) When running on a load, a 400 V shunt motor takes 5 A . Armature resistance is 0.5Ω and field resistance is 200Ω. Find the output of motor and efficiency when running on full load and taking a current of 50 A ?
10. a) Explain the various losses in dc machine? 7M
b) Write short notes on Hopkinson's test?

(Common to Computer Science and Engineering \& Information Technology)

Date: 11 June, 2014 FN
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit

All Questions Carry Equal M arks
All parts of the question must be answered in one place only

Unit - I

1. a) A balanced 3 phase star connected load of ($8+j 6$) ohm per phase is connected to a
b) Obtain the relationship between line and phase quantities of voltage and current in case of a three phase balanced star connected system.
2. a) State and explain the maximum power transfer theorem.
b) A balanced delta connected load consisting of three coils draws $10 \sqrt{3} A$ at 0.5 power factor from 100 V , three phase supply. If the coils are reconnected to star across the same supply. Find the line current and total power consumed.

Unit - II

3. a) Derive the expression for EM F equation of a dc generator.
b) A 500 V shunt motor runs at its normal speed of 250 rpm when the armature current is 200 A . The resistance of armature is 0.12Ω. Calculate the speed when a resistance is inserted in the field reducing the shunt field to 80% of normal value and the armature current is 100A.
4. a) With the help of a schematic explain the Swinburne's test. Mention any two advantages of the best.
b) A 4 pole generator, having wave wound armature winding has 51 slots, each slot containing 20 conductors. What will be the voltage generated in the machine when drives at 1500 rpm assuming the flux per pole to be 7 mWb .

Unit - II

5. a) Derive an expression for the EMF induced in a primary winding of a 1-phase transformer, when fed from 1-phase AC source.
b) i. A 2,200/200 V transformer draws a no-load primary current of 0.6 A and absorbs 400 Watts. Find the magnetizing and iron-loss currents
ii. A 2,200/250 V transformer takes 0.5 A at a power factor of 0.3 on open circuit. Find magnetizing and working components of no-load primary current
6. a) What is the necessity of conducting short circuit (SC) test on transformer? Explain the 8M procedure to conduct the SC test on 1-phase transformer?
b) Discuss about the various losses that occur in the 1-phase transformer.

Unit - IV

7. a) With a neat sketch, explain the principle of operation of 3-phase induction motor. 7 M
b) Draw and explain the Speed/Torque characteristics of a 3-phase induction motor $\quad 8 \mathrm{M}$
8. a) A 6 -pole, 3 -phase induction motor runs at a speed of 960 RPM and the shaft torque is 8 M $135.7 \mathrm{~N}-\mathrm{Mt}$. Calculate the rotor copper loss if the friction and windage losses amount to 150 Watts. The frequency of supply is 50 Hz .
b) With neat sketch, explain the operation of capacitor start 1-phase induction motor? 7M

Unit - V

9. a) Discuss in brief about the Principle of operation of 3-phase alternator? 8M
b) Explain in detail how do you achieve, self starting of synchronous motor? 7M
10. a) Derive the expression for induced EMF of a synchronous generator. 8M
b) A 3 phase, 16 pole alternator has a star connected winding with 144 slots and 107 M conduction per slot. The flux per pole is 0.03 Wb sinusoidally distributed and the speed is 375 rpm . Find the frequency, phase and line emfs. Assume a winding factor of 0.96 .
\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
PRINCIPLES OF ELECTRICAL ENGINEERING
(Electronics and Communication Engineering)
Date: 11 June, 2014 FN
Time: $\mathbf{3}$ hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) State and explain Thevenin's theorem. Compare Thevenin's equivalent with Norton's equivalent.
b) In the network shown below, if the load is variable both in resistance and reactance, for 9M what value the load Z will receive maximum power? What is the value of maximum power?

2. a) State and Explain Superposition theorem.
b) Using superposition theorem, find the current through 1Ω resistor across $A B$ of the network shown below.

Unit - II
3. a) Derive an expression for the current response in a R - L series circuit excited with 6M constant voltage source.
b) A series RLC circuit with $\mathrm{R}=200 \Omega, \mathrm{~L}=0.1 \mathrm{H}$ and $\mathrm{C}=100 \mu \mathrm{~F}$ has a constant voltage of 200 V applied at $\mathrm{t}=0$. Find the current transient assuming zero initial charge across capacitor.
4. a) For the circuit shown in Fig. 1, find the current equation when the switch is changed from position 1 to position 2 at $t=0$.

Fig. 1
b) Determine the voltage at the terminals of a coil having $\mathrm{R}=10 \Omega$ and $\mathrm{L}=15 \mathrm{H}$ at the instant when the current is 10 A and increasing at $5 \mathrm{~A} / \mathrm{sec}$. Also find the stored energy in the inductor. Compute the same exercise for the case when the current decreases at 5A/sec.

Unit - III

5. a) Mention various parts of $D C$ machine and mention their function and the materials used
b) A 500 V shunt motor has 4 poles and 492 wave connected conductors. The flux per pole 7M is 50 mwb . The full load current is 20A. Its armature resistance is 0.1Ω and shunt field resistance is 250Ω. Find the speed at full load.
6. a) What is the principle of operation of $D C$ generator? Why commutator and brushes are necessary?
b) A DC shunt motor is connected to 250 V supply has armature resistance of 0.1Ω and of field winding as 100Ω. Find the ratio of speed as a generator to the speed of as a motor when line current in each case is 80 A .

Unit - IV

7. a) With neat sketch, explain the principle of operation of 1-phase transformer.
b) A $200 / 400 \mathrm{~V}, 10 \mathrm{kVA}, 50 \mathrm{~Hz}$, single-phase transformer has, at full-load, a copper loss of 8 M 120 W . If it has an efficiency of 98% at full load unity power factor, determine the iron losses.
What would be the efficiency of the transformer at half load 0.8 power factor lagging?
8. a) What is the necessity of conduction open circuit ($O C$) test on 1-phase transformer?

Describe how this test is conducted experimentally.
b) In a $25-\mathrm{kVA}, 1$-phase transformer, the iron and full-load copper losses are respectively 8 M 350 and 400 W . Calculate:
i. The efficiency at half load 0.8 power factor
ii. The load at which the efficiency is maximum

Unit - V

9. a) With neat sketch, explain the direct-on-line (DOL) starting method of 3-phase induction motor.
b) Why starter is used in starting process of induction motor? With neat sketch, describe the starting method of induction motor by Star-Delta Starter.
10. a) Give the constructional details of squirrel cage and slip ring induction motors with the help of neat diagrams.
b) With neat sketch explain the operation of Shaded-pole motor.
\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
M ECHANICS OF SOLIDS
(Common to Mechanical Engineering \& Aeronautical Engineering)
Date: 13 June, 2014 FN
Time: 3 hours
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) With usual notations, obtain an expression for the elongation of a uniformly tapering rod 10 M of circular cross section subjected to load P.
b) A round compound rod is made of uniform rod of diameter 30 mm attached with a 200 mm long tapering rod with big end diameter $30 \mathrm{~mm} \&$ small end diameter 20 mm as shown in Fig.1. The compound rod is subjected to an axial tensile force of 40 KN . Determine the length L 1 of the uniform rod if the total deformation is limited to 0.2 mm

Fig. 1
2. a) A 70 mm long block has cross section of $50 \mathrm{~mm} \times 10 \mathrm{~mm}$. The block is subjected to forces 60 KN (tensile) on ($50 \mathrm{~mm} \times 10 \mathrm{~mm}$) mm face and 110 KN (compressive) on the 70 mm x10 mm face. Determine the force to be applied on $70 \mathrm{~mm} \times 50 \mathrm{~mm}$ face such that there is no change in volume of the block. Take $\mathrm{E}=200 \mathrm{Gpa} \&$ Poisson's ratio as 0.3.
b) Explain the terms:
i. Resilience
ii. Poisson's ratio
iii. Factor of safety

Unit - II
3. a) Classify types of beams and type of loads and explain any two of them with neat sketch.
b) A simply supported beam $A B$ of 6 m span is loaded as shown in Fig.2. Draw the shear 6M force and bending moment diagrams.

Fig. 2
4. a) Write general procedure for drawing shear force diagram and bending moment diagram.
b) Draw the SFD and BM D for the cantilever beam shown in Fig. 3

7M
8M

5M

 Fig.4. Calculate the compressive bending stress and plot the stress distribution across the section of the beam. The maximum tensile stress is limited to 300 M Pa . Calculate the value of W .

Fig. 4
6. a) A high strength steel band saw, 20 mm wide by 0.8 mm thick runs over a pulley 600 mm in diameter. What maximum flexural stresses is developed? What minimum diameter pulley can be used without exceeding a flexural stresses of 400 M Pa ? Take $\mathrm{E}=200 \mathrm{GPa}$
b) A rolled I section of size $50 \mathrm{~mm} \times 75 \mathrm{~mm}$ is used as a beam, with an effective span of 3 m . The flanges are 5 mm thick and web is 3.75 mm thick. Calculate the uniformly distributed load the beam can carry if the maximum intensity of shear stress induced is limited to $40 \mathrm{~N} / \mathrm{mm}^{2}$.

Unit - IV

7. a) Derive an expression El $d^{2} y / d x^{2}=M$ with usual notation.
b) Name the three important methods of finding slope in deflection of beams and explain one method.
8. a) Derive the moment-curvature relationship from the fundamentals.
b) A 3.5 m long simply supported beam carries a point load of 25 KN at its mid span. Determine the magnitude of UDL the beam can carry with the maximum deflection to be the same as that in case of point load, which is 2.5 mm . Take E=200 Gpa.

Unit - V

9. a) With usual notations, obtain an expression for change in volume of a thin cylindrical shell subjected to internal pressure P.
b) A thin cylindrical pressure vessel of 1 m inner diameter and 1.5 m long is subjected to an internal pressure P. Thickness of the cylinder wall is 15 mm . Taking allowable stress for the material of the cylinder as 90 MPa , determine (i) Magnitude of maximum internal pressure P that the vessel can withstand (ii) Change in dimensions \& volume. Take $\mathrm{E}=200 \mathrm{GPa} \& \mathrm{v}=0.3$.
10. a) Derive Lame's equations for thick cylinders.
b) A thick cylindrical vessel of 500 mm inner diameter is subjected to an internal pressure of 9 MPa . Taking allowable stress for the material of the cylinder as 40 MPa , determine (i) Wall thickness of the cylinder (ii) Circumferential stress at the outer radius and (iii) \% error involved if thickness is calculated based on thin vessel theory.
\square
VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)
Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
MECHANICS OF FLUIDS
(Common to Mechanical Engineering, Aeronautical Engineering \& Civil Engineering) Date: 16 June, 2014 FN

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) Define the following terms:
i. Mass density
ii. Specific weight
iii. Specific gravity
b) Calculate the specific weight, density and specific gravity of one litre of a liquid which 8 M weighs 7 N .
2. a) Explain about types of fluids?
b) Determine the specific gravity of a fluid having viscosity 0.05 poise and kinematic 8M viscosity 0.035 stokes.

Unit - II

3. a) Define the following:
i. Steady and Unsteady flows
ii. Uniform and non- Uniform flows
iii. Laminar and turbulent flows
b) The diameters of a pipe at sections 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through the pipe if the velocity of water flowing through the pipe at section 1 is $5 \mathrm{~m} / \mathrm{sec}$. Determine the velocity at section 2 .
4. a) State and derive Bernoulli's theorem, with assumptions.
b) A Venturimeter is to be fitted in a pipe 0.25 m diameter where the pressure head is diameter of the throat to ensure that the pressure head does not become negative. Take $\mathrm{K}=0.96$.

Unit - III

5. a) Derive an expression for the loss of head due to sudden enlargement.

7M
b) Find the loss of head when a pipe diameter of 200 mm is suddenly enlarged to a 8M diameter of 400 mm .the rate of flow of water through the pipe is 250 litres $/ \mathrm{sec}$.
6. a) Define:
i. Hydraulic gradient line
ii. Total energy line
b) The rate of flow of water through a horizontal pipe is $0.25 \mathrm{~m}^{3} / \mathrm{s}$. The diameter of the pipe which is 200 mm is suddenly enlarged to 400 mm The pressure intensity in the smaller pipe is $11.772 \mathrm{~N} / \mathrm{cm}^{2}$.
Determine:
i. loss of head due to sudden enlargement
ii. Pressure intensity in large pipe

Unit - IV

7. a) With neat sketch explain laminar and turbulent boundary layer. 8M
b) What are the methods of controlling boundary layer? 7M
8. a) Derive an expression for drag and lift of submerged bodies in the liquid. 10 M
b) Find the difference in drag force exerted on a flat plate of size $2 \mathrm{mX2m}$ when the plate 5 M is moving at a speed of $4 \mathrm{~m} / \mathrm{sec}$ normal to its plane in (i) water (ii) air of density 1.24 $\mathrm{kg} / \mathrm{m}^{3}$. Coefficient of dragis given as 1.15 .

Unit - V

9. a) Obtain an expression for velocity of sound for adiabatic process. 7M
b) Derive the continuity equation for one-dimensional compressible flow in a differential 8 M form.
10. a) Obtain an expression for the velocity of sound in terms of bulk modulus. 7M
b) Derive the Bernoulli's equation for isothermal process in a compressible flow. 8M
\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
THERM ODYNAM ICS
(Common to Mechanical Engineering \& Aeronautical Engineering)

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) State the Zeroth law of thermodynamics and explain with the neat diagram the working of constant volume gas thermometer for measurement of temperature.
b) A new scale N of the temperature is devised in which the Ice point is assigned $100^{\circ} \mathrm{N}$ and the steam point is assigned $400^{\circ} \mathrm{N}$. Establish the relationship between the N -scale and the Celsius scale. At what temperatures will both the Celsius and the new thermometer readings would be identical numerically.
2. a) Write the steady flow energy equation and explain all terms involved.
b) A system contains $0.15 \mathrm{~m}^{3}$ of air at a pressure of 3.8 bar and $150^{\circ} \mathrm{C}$. It is expanded 8M adiabatically till the pressure falls to 1 bar. The gas is then heated at constant pressure till its enthalpy increases by 70 kJ . Determine the total work done.

Unit - II

3. a) State Clausius and Kelvin Plank statements of second law of thermodynamics and show how these statements are violating second law of thermodynamics?
b) It is proposed to design a refrigeration plant for a food store which is to be maintained at $-5^{\circ} \mathrm{C}$. The ambient temperature is $25^{\circ} \mathrm{C}$ and the estimated heat transfer from the store is at the rate of 5 kW . If the system operates on reversed Carnot heat engine cycle, determine the performance index and the minimum power required to operate the refrigeration plant.
4. a) Sketch the Carnot cycle on the T-S diagram, and derive an expression for its efficiency
b) $0.04 \mathrm{~m}^{3}$ of nitrogen contained in a cylinder behind a piston is initially at 1.05 bar and $15^{\circ} \mathrm{C}$. The gas is compressed isothermally and reversibly until the pressure is 4.8 bar, calculate
i. The change of entropy
ii. Heat flow and
iii. The work done. Sketch the process on a P-V and T-S diagram. Assume nitrogen to act as a perfect gas molecular weight of nitrogen $=28$.

Unit - III

5. a) Define the following with respect to a pure substance
i. Critical point
ii. Triple point
iii. Saturation point
b) i. What is quality of steam? What are the different methods of measurement of
ii. Steam at $0.3 \mathrm{M} \mathrm{pa}, 250^{\circ} \mathrm{C}$ is cooled at constant volume.

At what temperature will the steam become saturated vapour? What is the quality at $80^{\circ} \mathrm{C}$?
6. a) i. Prove that for an ideal gas $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{V}=R$
ii. Write the Vander waal's equation of state and explain the different terms
b) A certain gas has $C_{p}=1.968$ and $C_{V}=1.507 \mathrm{KJ} / \mathrm{Kg} \mathrm{K}$. find its molecular weight and gas constant. A constant volume chamber of $0.3 \mathrm{~m}^{3}$ capacity contains 2 Kg of this gas at $5^{\circ} \mathrm{C}$. heat is transferred to the gas until the temperature is $100^{\circ} \mathrm{C}$. find the work done, heat transferred and changes in internal energy, entropy and enthalpy.

Unit - IV

7. a) State the Dalton's law of partial pressures. On what assumption this law is based?
b) Determine the gas constant, density and partial pressures of the components of a gas mixture consisting of 10 mass fractions of air and 1 mass fraction of lighting gas. Take the density of lighting gas $0.5 \mathrm{~kg} / \mathrm{m}^{3}$ at $101325 \mathrm{~N} / \mathrm{m}^{2}$ pressure and 273 K temperature.
8. a) i) What do you mean by Gravimetric and volumetric analysis in the case of a gas mixture?
ii) Derive the relation between partial pressure, mole fraction and volume fraction.
b) A closed vessel of $0.4 \mathrm{~m}^{3}$ capacity contained air at $80 \mathrm{KN} / \mathrm{m}^{2}$ and 300 K . Hydrogen was added and the pressure in the vessel raised to $82 \mathrm{KN} / \mathrm{m}^{2}$ at the same temperature. Find final masses of $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2}$ in the vessel and their respective partial pressures. Air contains 77% of N_{2} on mass basis. Take gas constant R=287 J/kg K for air and $4124 \mathrm{~J} / \mathrm{kg}$ K for H_{2}

Unit - V

9. a) Derive with usual notations an expression for the air standard efficiency of a Otto cycle. Represent the cycle on T-S and P-V diagram.
b) An engine of 250 mm bore and 275 mm stroke on constant volume (Otto) cycle. The clearance volume is $0.00263 \mathrm{~m}^{3}$. The initial pressure and temperature are 1 bar and $50^{\circ} \mathrm{C}$. If maximum pressure is 25 bar , find:
i. Air standard efficiency of cycle ii. Mean effective pressure
10. a) Represent Otto, diesel and duel cycle on same T-S diagram when heat supplied on each cycle is same. Compare them.
b) The compression ratio of a diesel engine is 14 and cutoff ratio is 2.2, at the beginning of the cycle air at 0.98 bar and $100^{\circ} \mathrm{C}$, find i) Temperature and pressure at salient point, ii) Air std. efficiency.

Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
METALLURGY \& M ATERIAL SCIENCE
(Mechanical Engineering)
Date: 20 June, 2014 FN
Time: 3 hours
Max Marks: 75

Answer ONE question from each Unit All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) Explain the term unit cell. List all the Bravais lattices in decreasing order of symmetry.

7M
b) Give a test method for determining grain size of metals. Write the Hall-Petch relation 8M and sketch a typical plot of yield strength Vs grain size.
2. a) Enumerate on the need for alloying. State Hume Rothery rules for substitutional solid solution.
b) Enumerate on electron compounds with examples.8M

Unit - II
3. a) Explain with example the construction of Eutectic Equilibrium phase diagrams?8M
b) Explain how phase diagrams help to asses the properties of the materials and establish 7M the relationship between them?
4. a) Explain the following:
i. Pearlite
ii. Austenite
iii. Ledeburite
b) Draw a neat Iron-carbon equilibrium diagram and Write the invariant reactions of Iron 9M carbon diagram.

Unit - III

5. a) Enumerate on different types of Cast Iron-highlight the general characteristics and 7M applications.
b) Explain the term Hardenability, describe the test that is carried out to assess the 8 M Hardenability of steels?
6. a) With a neat sketch explain Time - Temperature - Transformation diagram for a steel7M with eutectoid composition. Explain the term critical cooling rate.
b) Enumerate on surface hardening methods highlighting the process principle, process 8 M parameters and merits of each of the process.

Unit - IV

7. a) Explain composition, microstructure, properties and application of Aluminium-silicon 7M alloy and Aluminium-Zinc alloys?
b) Explain the properties and applications for the following: 8M
i. Ceramics
ii. Nano materials
8. a) Explain different types of ceramic materials. Highlight the general characteristics and 7M applications?
b) Explain different crystal structures of crystalline ceramics? 8M

Unit - V

9. a) Explain the classification of composite materials?
b) Write a brief note on different reinforcement materials used in Metal Matrix 8 M Composites.
10. a) What issues are encountered in the manufacture of M etal M atrix composites? 7M
b) Explain a manufacturing method for producing Glass Fiber Reinforced Plastics? 8M
\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
ELECTRONIC DEVICES
(Common to Electronics and Communication Engineering \& Electrical and Electronics Engineering)
Date: 16 June, 2014 FN
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit

All Questions Carry Equal M arks
All parts of the question must be answered in one place only

Unit - I

1. a) Draw the block diagram of a CRO and explain briefly the function of each block?

9M
b) What are the important applications of CRO? Explain them in detail? 6M
2. a) What is Hall Effect in semiconductor? Deduce an expression for hall coefficient. 8 M
b) Discuss the charge densities in an extrinsic semiconductor. 7M

Unit - II
3. a) Explain the static and dynamic forward resistances of a diode? 6M
b) Write the diode current equation; explain the impact of each component on the 9 M behavior of the diode?
4. a) Explain the transition capacitance and state the expression for it? 8M
b) Explain the working of Zener diode and sketch its V-I characteristics? 7M

Unit - III
5. a) Can an UJT be used as an oscillator? If yes, what kind of signals are generated by the 8 M circuit? Obtain an expression for frequency of oscillations.
b) With a neat diagram, explain the construction and working of SCR? 7M
6. a) Draw the circuit diagram of half-wave rectifier and explain its operation with the help 8 M of waveforms.
b) Derive an expression for ripple factor, rectifier efficiency and DC load current for a full- 7M wave rectifier.

Unit - IV

7. a) Discuss the input and output characteristics of a common base configuration? 10 M
b) Obtain a relationship between a and β of a BJT. 5 M
8. a) An NPN transistor has a dc base bias voltage, $\mathrm{V}_{\mathrm{B}}=10 \mathrm{~V}$ and an input base resistor, 8 M $R_{B}=10 K \Omega$, what will be the value of the base current into the transistor?
b) Determine the resistance offered by a FET whose drain current changes by 7 mA for a 7 M change of 5 V in gate-source voltage, given its amplification factor is 10.

Unit - V
9. a) Derive the expression for the stability factor ($S_{\text {vBE }}$) for self-bias configuration. 8 M
b) Compare performance of the three configurations of a BJT circuit. 7M
10. a) Discuss the diode compensation technique for leakage current (Ico). 7M
b) Explain with the help of the load line the effect of variation of $\mathrm{Vcc}, \mathrm{I}_{\mathrm{B}}$ on Q -point of a 8 M transistor?
\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
SIGNALS AND SYSTEMS
(Electronics and Communication Engineering)
Date: 18 June, 2014 FN
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) Calculate the Energy and Power for the signal: $x(t)=3[u(t)-u(t-5)]$.
b) Find the Fourier Series representation for the continuous time periodic signal, $x(t) \quad 10 \mathrm{M}$ shown in the Fig. 1 Sketch the amplitude and phase spectrum.

Fig. 1
2. a) For the signal shown in Fig.2, sketch the following:
(i) $g(2 t)$
(ii) $g(2 t-2)$

Fig. 2
b) Define the trigonometric and exponential Fourier series. Derive the relationship
between the trigonometric and exponential Fourier series coefficients.

Unit - II
3. a) Define the Hilbert transform and state its properties.
b) Find the Fourier transform of the signals $x(t)$ and $y(t)$ shown in Fig. 3 and Fig.4. 10M

Fig. 3

Fig. 4
4. a) State and prove the Differentiation in time property and Parseval's theorem for Fourier transform.
b) The output of a continuous-time system is $y(t)=2 \mathrm{e}^{-3 t} u(t)$ for the input signal 8M $x(t)=e^{-2 t} u(t)$. Find the frequency response and impulse response of the system. Find the input energy E_{x} and output energy E_{y}.
::2::
Unit - III
5. a) A continuous - time system is described by the following input - output relationship

6M $Y(t)=\sin (6 t) X(t)$. Determine whether this system is:
i. Memoryless
ii. Time - invariant
iii. Linear
iv. Causal
v. Stable
b) Determine the convolution between signals $\mathrm{x}(\mathrm{t})$ and $\mathrm{h}(\mathrm{t})$ shown in Fig. $5 \&$ Fig.6.

Fig. 5

Fig. 6
6. a) Compute the convolution of two sequences $x_{1}(n) h(t)$ and $x_{2}(n)$ given below
$x_{1}(n)=\{1,2,3\}$ and $x_{2}(n)=\{2,1,4\}$
b) Consider a continuous time signal $\mathrm{x}(\mathrm{t})$. Let $\delta(\mathrm{t})$ and $\mathrm{u}(\mathrm{t})$ represent continuous time unit impulse and unit step function respectively. Show that
$x(t) * \delta(t)=x(t)$
$x(t) * \delta\left(t-t_{0}\right)=x\left(t-t_{0}\right)$
$x(t) * u(t)=\int_{-\infty}^{t} x(\tau) d \tau$

Unit - IV

7. a) Find the Laplace transform of the signal
$x(t)=e^{-a t} u(t)+e^{-b t} u(-t)$
b) State and prove time convolution property for Laplace transform.
8. a) For the following transform pair $L\{x(t)\}=\frac{2 s}{x^{2}-2}$, determine the Laplace transform of $x(2 t)$.
b) Find the inverse unilateral Laplace transform of
$X(s)=\frac{3 s^{2}+8 s+6}{(s+2)\left(s^{2}+2 s+1\right)}$

Unit - V

9. a) Define Sampling theorem for low pass signals. Specify the Nyquist frequency and

Nyquist interval for the following signals:
i. $\quad \mathrm{x}(\mathrm{t})=2 \cos (250 \pi \mathrm{t})$
ii. $y(t)=3 \sin (450 \pi t)+5 \cos (680 \pi t+0.45 \pi)$
iii. $\quad \operatorname{Sinc}^{2}(200 \mathrm{t})$
b) State and prove the following properties for z-transform:
i. Linearity
ii. Differentiation in z-domain
10. a) Find the Z transform of the sequence $x[n]=-b^{n} u[-n-1]$. Find the poles and draw the region of convergence.
b) Find the inverse Z-transform of the following:
$X(z)=\frac{4+2 z^{-1}}{\left(4-z^{-1}\right)\left(2-z^{-1}\right)\left(1-z^{-1}\right)}$
for ROC (i) $|z|>1$ (ii) $|z|<0.25$ (iii) $0.5<|z|<1$
\square

Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
PROBABILITY THEORY AND STOCHASTIC PROCESSES
(Electronics and Communication Engineering)
Date: 20 June, 2014 FN
Time: 3 hours
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) A pair of fair dice are thrown in gambling problem. Person A wins if the sum of numbers showing up is six or less and one of the dice shows a four. Person B wins if the sum is five or more and one of the dice shows a four. Find
i. The probability that A wins
ii. The probability of B winning
iii. The probability that both A and B wins
b) Find a value of constant A such that is a valid probability density function.

$$
f_{x}(x)= \begin{cases}0 & x<-1 \\ A\left(1-x^{2}\right) \cos \left(\frac{\pi x}{2}\right) & -1 \leq x \leq 1 \\ 0 & 1<x\end{cases}
$$

2. a) Obtain the moment generating function of normal distribution.
b) Show that the mean value and variance of the uniform density function are 7M

$$
\bar{x}=\frac{(a+b)}{2} \text { and } \sigma_{x}^{2}=\frac{(b-a)^{2}}{12}
$$

Unit - II

3. a) List the properties of the joint distribution function for two random variables X and Y ? 6 M
b) Two random variables X and Y have the density function

$$
f_{x, y}(x, y)= \begin{cases}\frac{2}{43}(x+0.5 y)^{2} & , 0<x<2 \text { and } 0<y<3 \\ 0 & , \text { elsewhere }\end{cases}
$$

i. Find all the first and second order moments
ii. Find the covariance
iii. Are X and Y un correlated
4. a) Given the joint function

$$
f_{x, y}(x, y)=\left\{\begin{array}{cl}
\frac{\left(x^{2}+y^{2}\right)}{8 \pi} & ; x^{2}+y^{2}<b \\
0 & ; \text { elsewhere }
\end{array}\right.
$$

i. Find a constant so that this is a valid joint density function
ii. Find $P\left\{0.5 b<x^{2}+y^{2} \leq 0.8 b\right\}$
b) Two random variables X and Y have means $\mathrm{E}[\mathrm{X}]=1$ and $\mathrm{E}[\mathrm{Y}]=2$ and variances
$\operatorname{Var}[\mathrm{X}]=4$ and $\operatorname{Var}[\mathrm{Y}]=1$ and a correlation coefficient is 0.4 . New random variables W and V are defined by: $V=X+2 Y, W=X+3 Y$. Find:
i. Means
ii. Variances
iii. Correlations coefficient ρ_{Vw} of V and W

Unit - III

5. a) Explain cross correlation function and list its properties
b) Consider the random process, $\mathrm{X}(\mathrm{t})$ given by $x(t)=A \cos (2 \pi f c t+\theta)$, where A and f_{c} are constants and θ is a random variable that is uniformly distributed over the interval $(-\pi, \pi)$. Determine the auto correlation function of $X(t)$.
6. a) If $X(t)$ is WSS process given by $X(t)=10 \cos (100 t+\theta)$, where θ is uniformly distributed in $(-\pi, \pi)$, then prove that $X(t)$ is correlated ergodic.
b) Suppose we are given a cross power spectrum defined by
$S_{X Y}(\omega)=\left\{\begin{array}{c}a+j b w / \omega, \quad-\omega<w<\omega \\ 0, \quad \text { otherwise }\end{array}\right.$
Where a and b are real constants, $\omega>0$, find cross correlation function.

Unit - IV

7. a) Derive a relation between power spectrum and auto correlation of a random process
b) Consider a random process that has the auto correlation function
$R_{x x}(\tau)=\left(A_{0}^{2}\right) \cos \left(\omega_{0} \tau\right)$. Find its power spectrum.
8. a) If $X(t)$ and $Y(t)$ are uncorrelated random processes, then find the power spectral density of Z if $Z(t)=X(t)+Y(t)$. Also find the cross-spectral density $S_{X X}(\omega)$.
b) State any four properties of cross power density spectrum. If the cross-correlation of two process $\mathrm{X}(\mathrm{t})$ and $\mathrm{Y}(\mathrm{t})$ is $\frac{A B}{2}\left[\sin \omega_{0} \tau+\cos \left(\omega_{0}(2 t+\tau)\right)\right]$ where A, B and ω_{0} are constants. Find the cross power spectrum.

Unit - V

9. a) Define in-phase component and quadrature-phase component. Show that a narrowband noise process can be expressed as in-phase and quadrature components of it.
b) Define average noise figure and average noise temperature. Derive mathematical expressions for both.
10. Obtain an expression to find the noise figure and noise temperature of a multistage 15M amplifier with a neat figure.
\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
DIGITAL LOGIC DESIGN
(Common to Computer Science and Engineering, Information Technology, Electronics and Communication Engineering \& Electrical and Electronics Engineering)

Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit

All Questions Carry Equal M arks

All parts of the question must be answered in one place only

Unit - I

1. a) Perform the following operations indicating the complete procedure:
i. $\quad(110101.1011)_{2}=(?)_{10}$
ii. $\quad(255.65)_{10}=(?)_{2}$
iii. $\quad(10110101.0111011)_{2}=(?)_{8}$
iv. $\quad(265.354)_{8}=(?)_{2}$
b) Draw the logic circuit to implement the SOP expression below and then show how much 7M of hardware may be reduced if the Boolean expression is simplified
$Y=\bar{A} \bar{B} \bar{C}+\bar{A} \bar{B} C+\bar{A} B C$
2. a) Perform the following arithmetic using l's complement method.
i. +6
ii. -6
iii. +6
$+9 \quad+9 \quad-9$
b) Write the canonical form of the following SOP expressions and express the same in m notation:
i. $\quad f(a, b, c)=\bar{b}+a b c+\bar{a} \bar{c}$
ii. $\quad f(x, y, z)=x \bar{y}+\bar{x} y z+x z$
iii. $\quad f(a, b, c, d)=a b c+\bar{a}(\bar{c}+d)$

Unit - II

3. a) Explain the following terms with suitable examples:
i. Prime implicants
ii. Essential prime implicants
iii. Redundant groups
iv. Quad
v. Octet
b) Draw the 2-level NAND circuit for the following Boolean expression
$\mathrm{F}=(\mathrm{a} \overline{\mathrm{b}}+\mathrm{c} \overline{\mathrm{d}}) \mathrm{e}+\mathrm{bc}(\mathrm{a}+\mathrm{b})$ Also obtain the minimal SOP expression using 5 -variable K map and draw the circuit using NAND gates.
4. a) Realize the function: $f(w, x, y, z)=\sum m(0,1,5,6,7,9,12,15)$ using a 4:1 MUX and $\quad 8 \mathrm{M}$ external gates, considering w and z as select lines.
b) Using QM method, obtain the prime implicants for the function 7M $F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum m(0,5,7,8,9,10,11,14,15)$

Unit - III

5. a) With a neat logic diagram and function table, explain the working of a JK flip-flop. The

8M arrangement should include preset and clear facilities.
b) Obtain the governing equations and the state table for the sequential circuit given in Fig.1.

Fig. 1

6. a) Write the timing waveforms and the characteristic equation of a clocked SR Flip-flop.
b) Write the circuit diagram along with their truth tables for different types of flip-flops. Also explain the 'race around' condition in a flip-flop.

Unit - IV

7. a) Implement the following functions using $3 \times 4 \times 3$ PLA, with both true and complemented 10 M outputs:
$f_{1}(a, b, c)=\sum m(3,6,7)$
$f_{2}(a, b, c)=\sum m(0,1,2,6,7)$
$f_{3}(a, b, c)=\sum m(0,1,3,4,5)$
b) Implement the following functions using a PROM:
$f_{1}(a, b, c)=\sum m(2,3,4,6)$
$f_{2}(a, b, c)=\sum m(0,1,5,7)$
$f_{3}(a, b, c)=\sum m(4,5)$
8. a) Draw the logic diagram of a RAM memory cell and explain it in detail.
b) Using the 4 -input, 3 -output PAL, implement the functions:
$f_{1}(a, b, c)=\sum m(0,3,5,6,7)$
$f_{2}(a, b, c)=\sum m(1,2,3,5,7)$

::3::

Unit - V
9. a) Explain the state box and decision box of ASM chart in detail. 6M
b) For the state diagram given in Fig.2, obtain the state table

9M

Fig. 2
10. a) How ASM charts are different from SM charts and conventional flow charts? 5M
b) Draw the ASM chart for a binary multiplier and briefly explain.
\square
VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)
Four Year B. Tech III Semester Supplementary Examinations June - 2014(Regulations: VCE-R11)ELECTRONIC DEVICES AND CIRCUITS(Common to Computer Science and Engineering \& Information Technology)Date: 16 June, 2014 FN
Time: 3 hours Max Marks: 75
Answer ONE question from each Unit
All Questions Carry Equal M arks
All parts of the question must be answered in one place only
Unit - I1. a) Explain PN diode characteristics in forward and reverse bias conditions?10M
b) The voltage across a germanium diode at room temperature is 0.7 V and 2 mA current 5Mflows through it, if the voltage across diode increases to 0.75 V . Calculate diode current.Assume $\mathrm{V}_{T}=26 \mathrm{mV}$.
2. a) With necessary circuit and waveforms, explain a full wave rectifier circuit. Derive an 10 M expression for the ripple factor.
b) Briefly explain zener and avalanche breakdown.5M

Unit - II

3. a) Draw and explain the input and output characteristics of a transistor in CE 8M configuration. Indicate the cutoff, saturation and active regions.
b) Compare all the three transistor configuration with respect voltage gain, current gain, input resistance and output resistance.
4. a) Define $D C$ load line and Q point.
b) Define $\alpha, \beta \& y$ of a transistor. A transistor has $\alpha=-0.9$. if $\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}$, find the values of $\beta, \quad 9 \mathrm{M}$ $\gamma, I_{B} \& I_{C}$.

Unit - III

5. a) Discuss briefly the advantages of h parameters. $5 M$
b) Derive an expression for CE h parameters in terms of $\mathrm{CC} h$ parameters. 10 M
6. a) Derive an expression for current gain and input impedance of a transistor amplifier in 15 M terms of h-parameters.
b) A transistor is connected as a common - emitter amplifier is driving a load of $10 \mathrm{~K} \Omega$. It is supplied by a source of $1 \mathrm{~K} \Omega$ internal resistance. The hybrid parameters of the transistor used are $h_{\text {ie }}=1100 \Omega, h_{\text {fe }}=50 \Omega, h_{\text {re }}=2.5^{*} 10^{-4}, h_{0 e}=1 / 40 \mathrm{~K}$. Find:
i. Current gain
ii. Voltage gain
iii. Input impedance
iv. Output impedance

Unit - IV
7. a) For an n channel silicon FET with $\mathrm{a}=3 \times 10^{-4} \mathrm{~cm}$ and $\mathrm{N}_{\mathrm{D}}=10^{15}$ electrons $/ \mathrm{cm}^{3}$, find:
i. The pinch off voltage
ii. The channel half width for $\mathrm{V}_{G S}=0.5 \mathrm{~V}_{P} \& I_{D}=0$
(Take $\varepsilon=12 \varepsilon_{0}$ and $\varepsilon_{0}=8.849 \times 10^{-12} \mathrm{~F} / \mathrm{m}$)
b) How do the constructional features of a M OSFET differ from that of a JFET. With the 10 M help of suitable diagram explain different types of M OSFET.
8. a) When the reverse gate voltage of JFET changes from 4.0 to 3.9 V , the drain current 5 M changes from 1.3 to 1.6 mA . Find the value of transconductance.
b) With neat diagrams, explain the construction and characteristics of an n channel 10 M depletion M OSFET.

Unit - V

9. a) Explain the effect of negative feedback on gain? 7M
b) With the help of a neat circuit diagram explain transistor Colpitts oscillator. 8M
10. a) With the help of a neat circuit diagram, explain the working of Hartley oscillator. 8M
b) A quartz crystal is characterized by $\mathrm{L}=2.5 \mathrm{H}, \mathrm{R}=1 \mathrm{~K} \Omega, \mathrm{Cs}=0.01 \mathrm{PF}$ and $\mathrm{Cm}=10 \mathrm{PF}$. 7 M Determine the series and parallel resonant frequencies of crystal.
\square
VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)
Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
DATA STRUCTURES THROUGH C
(Mechanical Engineering)
Date: 18 June, 2014 FN
Time: 3 hours
Max M arks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) Differentiate between iterative and recursive technique. 7M
b) Write a C program to search for an item using linear search technique. 8M
2. a) Write a recursive C program to find the factorial of N numbers. 8 M
b) What is recursion? Discuss the properties of recursive algorithms. 7M

Unit - II
3. a) Explain the working of bubble sort with an example? Mention the time complexity to 7M sort using bubble sort.
b) Analyze the worst case performance of quick sort and also discuss the advantages and disadvantages of quick sort.
4. a) Write the merge sort algorithm for sorting of numbers. Illustrate the working of merge 10 M sort with an example.
b) Show the various passes of bubble sort on an unsorted list $11,15,2,13,6$.

Unit - III
5. a) What is a stack? Illustrate the working of push and pop operations in the stack with an 8 M example.
b) Write a C program to implement an ordinary queue.
6. a) Convert the following infix expression into its corresponding post fix expression: 5 M ($\left(A+(B-C)^{*} D\right)^{\wedge E+F)}$
b) Write a C program to implement circular queue which should perform the following operations; function to check overflow, function to under overflow, insert an item at rare end and function to delete an item from the front end.

Unit - IV
7. Explain Insert/Delete a node at the rear, front end from circular singly linked list? 15 M
8. a) Write the ' C ' function for Sorting elements in descending order using single linked list. 7 M
b) Write the ' C ' function to return the Nth node from the end of the linked list in one 8 M pass.

Unit - V

9. What is a Binary Search Tree? Explain the different operations of Binary search tree. 15 M Construct a Binary Search Tree for the following sequence of numbers. Traverse the Binary Search Tree created above in Preorder, Inorder and Postorder? $45,32,90,21,78,65,87,132,90,96,41,74,92$.
10. a) Illustrate the threaded binary tree with an example. 7 M
b) Explain BFS and DFS graph traversal techniques with an example? 8 M
\square

VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)

Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
DISCRETE M ATHEM ATICAL STRUCTURES
(Common to Computer Science and Engineering \& Information Technology) Date: 15 June, 2014 FN

Time: 3 hours
Max Marks: 75

Answer ONE question from each Unit
 All Questions Carry Equal M arks
 All parts of the question must be answered in one place only

Unit - I

1. a) Prove that $\mathrm{q} \wedge \neg(p \rightarrow q)$ is a contradiction without using truth table.
b) Define tautology? Show that $q \wedge(p \Rightarrow \neg q) \Rightarrow \neg p$ is tautology without using

Truth table?

2. a) Establish the validity of the following arguments using the rules of inference:

$\begin{aligned} & p \rightarrow(q \rightarrow r) \\ & p \vee s \\ & t \rightarrow q \\ & -s \end{aligned}$

b) Negate the following: $[\forall x \exists y[(p(x, y) \wedge q(x, y)) \rightarrow r(x, y)]]$.

Unit - II
3. a) Let $A=\{1,2,3,4,12\}$, consider the partial order of divisibility on A. That is, if a and $b \in A, a<b$ if and only if $a \mid b$. Draw the Hasse diagram of the Poset (A, \leq)
b) Assume R and S are relations from A to A. If $A=\{1,2,3,4\}, R=\{(1,2),(2,3),(3,4),(4,2)\}, \quad 8 \mathrm{M}$ and $S=\{(1,3),(2,4),(4,2),(4,3)\}$, then compute $R \circ S, S \circ R$ and $R \circ R$.
4. a) Define Unary relation? What are the properties of unary relations on set A ?7M
b) Consider the directed graph as shown in below Fig.1. Determine all the paths of length 18 M and 2.

Fig. 1
::2::

Unit - III

5. a) For any group G, prove that G is abelian if and only if $(a b)^{2}=a^{2} b^{2} \forall a, b \in G$. $6 M$
b) Define and give an example for each: 9 M
i. Complete lattice
ii. Bounded lattice
iii. Complemented lattice
iv. Distributive lattice
6. a) Define lattice. List out the properties of lattice
b) Define and give an example for each: 10M
i. Lattice homomorphism
ii. Direct Product of Lattices

Unit - IV

7. a) How many arrangements are there of all the letters in SOCIOLOGICAL (i)?
i. In how many of the arrangements in are A and G adjacent
ii. In how many of arrangements in are all vowels adjacent
b) In how many ways can 10 (identical) dimes be distributed among five children if: 9M
i. There are no restrictions
ii. Each child gets at least one dime
iii. The oldest child gets at least two dimes
8. a) Determine the coefficient of:
i. $\quad x y z^{2}$ in $(x+y+z)^{4}$
ii. $\quad x y z^{2}$ in $(2 x-y-z)^{4}$
iii. $\quad x y z^{-2}$ in $\left(x-2 y-3 z^{-1}\right)^{4}$
b) A bag contains 6 white marbles and 5 red marbles. Find the number of ways in which four marbles can be drawn from the bag if:
i. They can be any colour
ii. Two white and 2 red
iii. They are of same colour

Unit - V

9. a) Determine the generating function for the number of ways to distribute 35 pennis (from 8 M unlimited supply) among five children.
b) If $a_{n}, n \geq 0$, is a solution of the recurrence relation $a_{n+1}-d a_{n}=0$ and $a_{3}=153 / 49$, $7 M$ $a_{n}=1377 / 2401$, what is d ?
10. a) Find the coefficient of x^{32} in $\left(1+x^{5}+x^{9}\right)^{10} \quad 8 \mathrm{M}$
b) Determine the constant in $\left(3 x^{2}-(2 / x)\right)^{15}$. 7 M
\square
VARDHAMAN CO LLEG E OF ENG INEERING (AUTONOMOUS)
Four Year B. Tech III Semester Supplementary Examinations June - 2014(Regulations: VCE-R11)OBJECT ORIENTED PROGRAM M ING THROUGH JAVA
(Common to Computer Science and Engineering \& Information technology)
Date: 18 June, 2014 FN
Time: 3 hoursMax Marks: 75
Answer ONE question from each Unit
All Questions Carry Equal M arks
All parts of the question must be answered in one place only
Unit - I
11. a) Write a program to arrange the numbers in ascending order. 8M
b) What is Java Virtual M achine? List the properties of JAVA programming language. 7M
12. a) Write a java program to check whether the given string is palindrome or not? 7M
b) Write a program give example for command line arguments: 8Mi. To find the sum of command line arguments and count the invalid integersentered
ii. To get the name using command line

Unit - II

3. a) Illustrate the concept of dynamic dispatch with a suitable example. 7M
b) Design a class called person with attributes name and age. Extend the person class to a new class called faculty with attributes qualification and salary. Further derive a class called guest faculty having ppl (pay per lecture) attribute. Define appropriate methods to accept and display information. Finally, design a test program to validate the inheritance chain.
4. a) Write a Program to read a file and check whether the file exists, readable, writable and also print the length.
b) Illustrate with an example how interfaces can be extended.

Unit - III

5. a) What is a thread? Briefly discuss different stages in the life cycle of a thread. 7M
b) Explain different unchecked and checked exceptions defined in Java.lang? 8M
6. a) Write a program to demonstrate two threads at different priorities, which do not run on 8 M a preemptive platform in the same way as they run on a non-preemptive platform.
b) What is the use of finally keyword? Write a program to illustrate the use of finally 7M clause?
Unit - IV
7. a) Explain briefly checkbox AWT control of Java with its constructors and methods? 8M
b) List any seven event listeners along with a line description for each. 7M
8. a) Write short notes on Flow Layout and Border Layout. 7M
b) Explain briefly the following AWT Controls: 8M
i. Labels
ii. Buttons

Unit - V

9. a) "Swing Supports a Pluggable Look and Feel"- Comment. 7M
b) Write a program to demonstrate parameter passing to applets?
8M
10. a) Explain the following swing components with their constructors / methods: 8 M
i. JTextField ii. JTree
b) Write a program to create a Applet life cycle.
\square

VARDHAMAN CO LLEG E OF ENG INEERING

(AUTONOMOUS)
Four Year B. Tech III Semester Supplementary Examinations June - 2014
(Regulations: VCE-R11)
MACHINE DRAWING
(Mechanical Engineering)
Date: 15 June, 2014 FN
Time: 3 hours
Max M arks: 75

Answer Two questions from Unit-1
 Unit-2 is Compulsory

All parts of the question must be answered in one place only

Unit - I

1. Draw the three views of hexagonal bolt of 100 mm length, 25 mm nominal diameter and a 15 M thread length of 50 mm , with a washer and a hexagonal nut. Dimension the views.
2. Draw the sectional front view and top view of a single riveted butt joint with two equal cover 15 M plates to connect two plates of 9 mm thickness.
3. Draw the top half sectional front view and side view of knuckle joint. Indicate the required 15M dimensions.

Unit - II
4. The details of PLUM M ER BLOCK are shown in Fig.1. Draw the following views of the assembled 45M PLUM MER BLOCK.
i. Left of Sectional front view
ii. Top View

Fig.1: Parts of PLUM MER BLOCK

