VARDHAMAN COLLEG Of $\operatorname{\in NGIN\in \in RING~}$

(AUTONOMOUS)

B. Tech I Semester Regular Examinations, February - 2014
(Regulations: VCE-R11A)
ENGINEERING DRAWING
(Common to Mechanical Engineering, Aeronautical Engineering \& Civil Engineering)
Date : 1 February, 2014
Time: 3 Hours
Max. Marks: 75
Answer ONE question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - I

1. a) The distance between Bombay and Pune is 180 km . A passenger train covers this distance in 6 hours. Construct a plain scale to measure time upto a single minute. The representation factor of the scale is $1 / 200000$. Find the distance covered by the train in 36 minutes.
b) Construct angles of 47° and 125° by means of the scale of chords.
2. Trace the paths of the ends of a straight line AP 100 mm long when it rolls, without slipping, on a semi-circle having its diameter $A B 75 \mathrm{~mm}$ long. Assume the line $A P$ to be tangent to the semi-circle in the starting position.
Unit - II
3. The top view of a 75 mm long line $A B$ measures 65 mm , while the length of its front view is 50 mm . Its one end A is in the H.P and 12 mm in front of the V.P. Draw the projections of $A B$ and determine its inclinations with the H.P and the V.P.
4. The end P of a line PQ 130 mm long, is 55 mm in front of the V.P. The H.T of the line is 40 mm in front of the V.P and the V.T is 50 mm above the H.P. The distance between the H.T and V.T is 110 mm . Draw the projections of the line $P Q$ and determine its angles with the H.P and the V.P.
Unit - III
5. A regular hexagonal lamina of side 25 mm is lying in such a way that one of its corners is on HP while the corner opposite to the corner on which it rests is on VP. If the lamina makes 60° to HP, Draw the projections of the lamina.
6. A pentagonal prism is resting on one of the corners of its base on the HP. The longer edge containing that corner is inclined at 45° to the HP , the vertical plane containing that edge and the axis are inclined at 30° to the VP. Take the side of base 45 mm and height 70 mm . Draw the projections of the solid.
Unit - IV
7. A pentagonal pyramid, base 30 mm side and axis 65 mm long, has its base horizontal and an edge of the base parallel to the VP. A horizontal section plane cuts it at a distance of 25 mm above the base. Draw its front view and sectional top view.
8. A cylinder of 40 mm diameter, 60 mm height and having its axis vertical, is cut by a section plane, perpendicular to VP, inclined at 45° to HP and intersecting the axis 32 mm above the base. Draw its front view, sectional top view, sectional side view and true shape of the section.

Unit - V

9. A pentagonal pyramid, side of base 30 mm and height 52 mm , stands with its base on HP and an edge of the base is parallel to VP. It is cut by a plane perpendicular to VP, inclined at 40° to HP and passing through a point on the axis, 32 mm above the base. Draw the sectional top view and develop the lateral surface of the truncated pyramid.
10. Draw the development of the lateral surfaces of the cone of base diameter 50 mm and axis 60 mm long when it is resting with its base on HP. It is cut by a section plane which is perpendicular to VP and inclined at an angle of 60° to HP and bisects the axis.

VARDHAMAN COLLEGE Of $\operatorname{\in NGIN\in \in RING~}$
(AUTONOMOUS)
B. Tech I Semester Regular Examinations, February - 2014
(Regulations: VCE-R11A)
MATHEMATICS - I
(Common for All Branches)
Time: 3 Hours
Max. Marks: 75
Date : 3 February, 2014

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only
Unit - I

1. a) Solve $\cos ^{2} x \frac{d y}{d x}+y=\tan x$
b) Find the orthogonal trajectories of the family of cardioid $r=a(1-\cos \theta)$
2. a) Solve $\left(e^{y}+y \cos x y\right) d x+\left(x e^{y}+x \cos x y\right) d y=0$
b) A bacterial population B is known to have a rate of growth proportional to B itself. If between noon and 2 PM the population triples, at what time, no controls being exerted, should B become 100 times what it was at noon?
Unit - II
3. a) Solve $\left(D^{2}-1\right) y=\left(1+e^{-x}\right)^{2}$
b) Solve $y^{\prime \prime}+2 y^{\prime}+2 y=e^{-x} \sec ^{3} x$ by the method of variation of parameters.
4. Determine q and i in an LCR circuit with $\mathrm{L}=0.5 \mathrm{H}, \mathrm{R}=6 \Omega, \mathrm{C}=0.02, e=24 \sin 10 t$ and initial condition $q=i=0$.
Unit - III
5. a) Employ Lagrange's mean value theorem, prove that

$$
\begin{aligned}
& \frac{b-a}{\sqrt{1-a^{2}}}<\sin ^{-1} b-\sin ^{-1} a<\frac{b-a}{\sqrt{1-b^{2}}}, \text { where } a<b<1 \text { and deduce that } \\
& \frac{\pi}{6}+\frac{1}{5 \sqrt{3}}<\sin ^{-1}\left(\frac{3}{5}\right)<\frac{\pi}{6}+\frac{1}{8} .
\end{aligned}
$$

b) If $x=r \cos \theta, y=r \sin \theta$ find $J=\frac{\partial(x, y)}{\partial(r, \theta)}$ and $J^{\prime}=\frac{\partial(r, \theta)}{\partial(x, y)}$ and verify that $J J^{\prime}=1 . \quad 7 \mathrm{M}$
6. a) Evaluate $\int_{0}^{3} \int_{0}^{\sqrt{4-y}}(x+y) d x d y$ by changing the order of integration.
b) Find the radius of curvature at any point of the curve

$$
x=a(\theta+\sin \theta), \quad y=a(1-\cos \theta)
$$

$$
\text { :: } 2 \text { :: }
$$

Unit - IV

7. a) i. Find $L\left\{t^{2} \sin a t\right\}$
ii. Find $L\left\{\int_{0}^{t} e^{2 t} \frac{\sin a t}{t} d t\right\}$

$$
4 \mathrm{M}
$$

b) Express $f(t)=\left\{\begin{array}{ll}\cos t, & 0<t \leq \pi \\ 1, & \pi<t<2 \pi \\ \sin t, & t>2 \pi\end{array}\right.$ in terms of Heaviside step function and hence find 8M its Laplace transform.
8. Using Laplace transforms solve, $y^{\prime \prime}+2 y^{\prime}-3 y=\sin t$, given $y(0)=0, y^{\prime}(0)=0$.

Unit - V

9. a) Find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$ if $\vec{F}=\nabla\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, where ∇ is gradient.
b) Show that $\vec{F}=\left(y^{2} \cos x+z^{3}\right) \vec{i}+(2 y \sin x-4) \vec{j}+\left(3 x z^{2}+2\right) \vec{k}$ is irrotational. Find φ 8M such that $\vec{F}=\nabla \varphi$
10. Verify Green's theorem for $\int_{C}[(y-\sin x) d x+\cos x d y]$ where C is the plane triangle 15 M enclosed by the lines $y=0, x=\frac{\pi}{2}, y=\frac{2 x}{\pi}$.

VARDHAMAN COLLEGE Of $\operatorname{\in NGIN\in \in RING~}$
(AUTONOMOUS)

B. Tech I Semester Regular Examinations, February - 2014
 (Regulations: VCE-R11A)
 TECHNICAL ENGLISH
 (Common to Computer Science and Engineering, Information Technology, Aeronautical Engineering \& Civil Engineering)

Date : 5 February, 2014

Answer ONE question from each Unit

All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - I

1. a) C.V.Raman's determination, spirit and contributions will indeed remain special within the context of the practice of science in India. Justify this statement in your own words.
b) Do as directed:
i. Frame a sentence with the phrase
: Carry on
ii. Fill in the blank with Article: \qquad Judge should always be objective and fair
iii. Use prefix to complete the sentence: the pain has become \qquad (tolerable)
iv. Use possessive pronoun
: You can use \qquad umbrella
v. Correct the error : Have you been to north-eastern states?
2. a) Mother Teresa's services for the poor and the down trodden are remarkable. 10M Elaborate the statement.
b) Do as directed:
i. Give the synonym : abandon
ii. Form a new word by adding a prefix : reach
iii. Give the meaning for the idiom : one's cup of tea
iv. Frame a sentence with the phrasal verb : get over
v. A doctor's \qquad should not be ignored. Use the right word : advise / advice
Unit - II
3. a) Comment on the tile of the lesson 'The Connoisseur'.
b) Use suffixes to the given words to form new words:
i. Bride
ii. Wise
iii. Love
iv. King
v. Human
4. a) Give a brief account of Sam Pitroda's Contribution to IT industry. 10M
b) Fill in the blanks:
i. Kabaddi, \qquad typical Indian game, is \qquad sporting version of pranayama. (use suitable articles)
ii. The train was scheduled to leave \qquad 8 pm and we were there \qquad 7:30 pm (use suitable prepositions)
iii. I maintain a daily \qquad (diary /dairy)

Unit - III

5. a) The writer keeps a secret promise to himself before he leaves the village. Bring out the hidden mystery in the story 'Bubbling well Road'.
b) Correct the error in the given sentences:
i. He told me that where my friend was
ii. His trouser were torn
iii. She stays besides the market
iv. I should focus on my carrier
v. Your information are wrong
6. a) Elaborate the key statements in the historic speech given by Martin Luther King.
b) Do as directed:
$\begin{array}{ll}\text { i. Give one word substitute } & \text { : Study of speech sounds } \\ \text { ii. Fill in the blanks } & \text { : You're tired, }\end{array}$?
iii. Use the right word : The office works on all days \qquad Sundays. (accept/except)
iv. Give the meaning of the idiom : to spill the beans
v. Correct the error : They doesn't know about it

Unit - IV

7. a) Assume that you are the manager of an organization. Draft a memo to an employee
stating about his negligence in completing the tasks within the stipulated time.
b) Write a letter to the administrative office of an organization stating your acceptance for the job offered to you. Assume details.
8. a) Write an e-mail of complaint to the General Manager of the BSNL for delay in providing Broadband Internet connection to your house.
b) Draft a job Application letter for the post of software Developer in IGEF Pvt. Limited, Bangalore. Assume necessary information.

Unit - V

9. As a student representative of the class, submit a report to the principal on the ongoing classes for your batch. The report should cover subjects taught, curriculum, outcome, students' response and suggestion for better implementation.
10. Write a report on the recent college Annual Athletic meet in your college. Give all the details.

VARDHAMAN COLLEGE Of $\operatorname{\in NGIN\in \in RING~}$
 (AUTONOMOUS)

B. Tech I Semester Regular Examinations, February - 2014
(Regulations: VCE-R11A)
ENGINEERING PHYSICS
\section*{(Common to Electronics and Communication Engineering, Electrical and Electronics Engineering \& Mechanical Engineering)}
Date : 5 February, 2014
Time: 3 Hours
Max. Marks : 75

Answer ONE question from each Unit

All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - I

1. a) Identify the type of bonding in $\mathrm{CsCl}, \mathrm{Ge}$ and Ag . Explain their properties based on the type of bonding.
b) Calculate the bond energy of NaCl molecule. Given equilibrium spacing between Na^{+} and Cl^{-}ions is 0.24 nm , Ionization energy is 5.1 eV and Electron affinity is 3.6 eV .
2. a) Define Packing factor and coordination number. Draw neat diagrams of b.c.c. and h.c.p. structures, obtain the packing factor and coordination number for b.c.c.
b) Explain with a neat diagram the structure of NaCl .
Unit - II
3. a) Derive the expression for inter planar spacing in terms of Miller indices. In a tetragonal lattice $a=b=0.25 \mathrm{~nm}$ and $\mathrm{c}=0.18 \mathrm{~nm}$. Calculate the spacing between (111) planes.
b) Explain pulsed laser vapor deposition method with a neat sketch. What are its advantages?
4. a) A crystal plate is mounted on an X-ray spectrometer. The glancing angles of incidence for three reflections are $5^{\circ} 58^{\prime}, 12^{\circ} 01^{\prime}$ and $18^{\circ} 12^{\prime}$. Show that these are successive orders of reflection from the same crystal plane. Also, find the interplanar spacing, given the wavelength of incident X-rays is 0.586 nm .
b) Distinguish between top down and bottom up methods. Describe combustion method for preparation of nano powders.

Unit - III

5. a) The results of Davison - Germer experiment confirms deBroglie hypothesis. Justify your 8M answer.
b) Discuss the concept of wave particle duality.
6. a) Using the energy band model, describe the classification of metals, semiconductors and 8 M insulators.
b) What are Bloch functions? How it is different from the free electron wave function?
Unit - IV
7. a) Explain the origin of electronic polarization? Does this polarization occur in all materials? Explain the Hysteresis behavior of ferroelectric materials.
b) Sulphur is elemental solid dielectric whose dielectric constant is 3.4. Calculate the electronic polarization if its density is $2.07 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ and atomic weight is 32.07 .
8. a) With the help of suitable diagram explain Meissner's effect. Explain hysteresis of 8M magnetic materials.
b) Find the relative permeability of a ferromagnetic material if field of strength $220 \mathrm{amp} /$ meter produces a magnetization of $3300 \mathrm{amp} /$ meter in it.

:: 2 ::

Unit - V

9. a) Obtain an expression for energy density in terms of Einstein's coefficients. Prove that the probability of the process of stimulated emission is same as the probability of the process of absorption.
b) Discuss the functioning of a semiconductor laser with a help of band diagram.
10. a) Draw refractive indices profiles for multimode step index and graded index fibers. 6M
b) The refractive index of the cladding of an optical fiber is 1.49 and the fractional index change is 0.002 . Calculate the refractive index of the core and the acceptance angle in water (refractive index of water is 1.33).

VARDHAMAN COLLEGE Of $\operatorname{\in NGIN\in \in RING~}$
 (AUTONOMOUS)

B. Tech I Semester Regular Examinations, February - 2014
(Regulations: VCE-R11A)
ENGINEERING CHEMISTRY
(Common to Electronics and Communication Engineering, Electrical and Electronics Engineering \& Mechanical Engineering)
Date : 7 February, 2014
Time : 3 Hours
Max. Marks : 75
Answer ONE question from each Unit
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - I

1. a) What are secondary cells? Explain the construction and working of a Nickel - Cadmium cell.
b) Define equivalent conductance. The solubility product of SrF_{2} in water is 8×10^{-12}. Calculate the solubility in $0.1 \mathrm{M} \mathrm{SrF}_{2}$ solution.
2. a) State Kohlrausch's law of independent migration of ions. Discuss how it can be used in the determination of the equivalent conductivity of a weak electrolyte.
b) Define a battery. Describe in brief a lead-acid battery.
Unit - II
3. a) What is hard water? What are the disadvantages of hard water in domestic requirements?
b) Explain Ion exchange method of softening of hard water. What are its merits and demerits?
4. a) What is reverse osmosis? Describe reverse osmosis method of desalination of brackish water.
b) 1 gm of CaCO_{3} is dissolved in 1 litre of water to prepare the standard hard water. 50 ml of this water requires 18 ml of EDTA solution and 9 ml EDTA after boiling and filtration. Calculate temporary, permanent and total hardness of water.
Unit - III
5. a) What are nanomaterials? Describe Solvo thermal method for preparation of ZnO nano material.
b) Give preparation method and uses of following polymers:
i. PVC
ii. Nylon $(6,6)$
iii. Thiokol rubber
6. a) Explain the following properties of colloids:
i. Electrophoresis
ii. Tyndal effect
iii. Brownian movement
b) What are plastics? Distinguish between thermoplastics and thermosetting plastics.

Unit - IV

7. a) Discuss the relative merits and demerits of solid, liquid and gaseous fuels. 7M
b) Write the significance of proximate and ultimate analysis of coal. 8 M
8. a) What is petroleum? Discuss the refining of petroleum. 12M
b) Explain the calorific value of a fuel. 3 M

Unit - V

9. a) With the help of Gibb's phase rule, calculate the degree of freedom of the following 7M systems:
i. Ice and water in equilibrium
ii. Silver and lead at eutectic point
b) Define the reduced phase rule. With the help of a neat labeled diagram, describe the 8 M phase diagram of lead-silver system.
10. a) What are refractories? Classify refractories based on their chemical properties. Write a8M short note on the thermal conductivity of a refractory.
b) Write a note on setting and hardening of cement.

VARDHAMAN COLLEGE Of ©NGINGERING
 (AUTONOMOUS)

B. Tech I Semester Regular Examinations, February - 2014
 (Regulations: VCE-R11A)
 ENVIRONMENTAL SCIENCE

(Common to Computer Science and Engineering, Information Technology, Aeronautical Engineering \& Civil Engineering)

Date : 7 February, 2014
Time : 3 Hours
Max. Marks : 75

Answer ONE question from each Unit

All Questions Carry Equal Marks
All parts of the question must be answered in one place only

Unit - I

1. a) Define the term Environment. Bring out how Environmental Science is considered 8 M Multidisciplinary as well as an interdisciplinary subject.
b) Differentiate between renewable and non-renewable resources. Give examples for both 7M renewable and non-renewable resources.
2. a) Write about Forests as resources and explain the major causes, consequences of 8 M deforestation.
b) What is a mineral? What are the uses of Mineral Resources in our daily life?
Unit - II
3. a) What is meant by ecological succession? Mention how initiation of succession happens 7M and explain the types of succession.
b) Explain the concepts on:
i. food web
ii. food chain
4. a) Define biodiversity and explain the threats to biodiversity.
b) Explain the structure and function of an ecosystem.
Unit - III
5. a) Define water pollution and describe the ill effects of pollutants on water bodies. 8M
b) Explain the various sources of noise pollution and list out its control methods. 7M
6. a) Explain the management of solid waste in an urban area. 7M
b) What is Global Warming? List out the effects of Global Warming on environment. 8M

> Unit - IV
7. a) Discuss the role of information technology in environment and human health with an 8 M example.
b) What is meant by 'Polluter Pay Principle'? 7M
8. a) What are the approaches to green computing? 8M
b) What is meant by green building concept? 7M
Unit - V
9. a) Write about Indian Forest Act and briefly mention about its salient features. 8M
b) Write about Environmental Ethics. 7M
10. a) How NGOs are creating environmental awareness in India. 8M
b) What is meant by Environmental Impact Assessment and write about its importance? 7M

VARDHAMAN COLLEG€ Of $\in \mathbb{N G I N G \in R I N G ~}$
 (AUTONOMOUS)

B. Tech I Semester Regular Examinations, February - 2014
 (Regulations: VCE-R11A)
 PROBABILITY, STATISTICS AND COMPUTATIONAL TECHNIQUES
 (Common to Computer Science and Engineering \& Aeronautical Engineering)
 Date : 10 February, 2014
 Time : 3 Hours
 Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - I

1. a) A coin is biased so that a head is twice as likely to appear as a tail. If a coin is tossed 6 times, find the probabilities of getting:
i. Exactly 2 heads
ii. Atleast 3 heads
iii. Atmost 4 heads
b) In an intelligence test administrated on 1000 students, the average score was 20.

Assuming that the marks obtained by the students follow a normal distribution, find the number of students who have scored:
i. Over 90 marks
ii. Below 40 marks
iii. Between 50 and 80 marks
2. a) The probability distribution of a random variable x is given below

$X=x_{i}$	-2	-1	0	1	2	3
$P\left(X=x_{i}\right)$	0.1	K	0.2	2 K	0.3	K

i. What will be the value of K so that $P(X \leq 0) \geq \frac{1}{3}$?
ii. Find the value of K for which the given data represent a valid probability distribution, for this value of K, find mean, variance, $P(-1 \leq X \leq 2)$ and $P(X>-1)$.
b) The probability that an individual suffers a bad reaction from a certain injection is 0.002 . Determine the probability that out of 1000 individuals:
i. Exactly 3 will suffer a bad reaction
ii. More than two will suffer a bad reaction
Unit - II
3. a) In a sample of 500 men drawn from a population it was found that 60% of them had over weight. What can we infer about the proportion of men having over weight in the population at 99% level of confidence?
b) A die was thrown 9000 times and a throw of 5 or 6 was obtained 3240 times. On the assumption of random throwing, does the data indicate an unbiased die at 0.01 level of significance.
4. a) The nine items of a sample have the following values: $45,47,50,52,48,47,49,53,51$. the distributions.

$$
\text { :: } 2 \text { :: }
$$

Unit - III
5. a) Find a real root of the equation $\tan x=x$ by Regula Falsi method correct to 3 decimals. 8 M
b) Using Lagrange's interpolation formula, find a polynomial which passes through ($0,-12$), 7 M $(1,0),(3,6),(4,12)$.
6. a) Using Newton-Raphson method, find a real root of the equation, $x \sin x+\cos x=0$ near $x=\pi$, carryout iterations upto four decimal places where x is in radians.
b) Find $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}$ at $x=1.1$ for the table below:

x	1	1.2	1.4	1.6	1.8	2
y	0	0.128	0.544	1.296	2.432	4

Unit - IV
7. Evaluate $\int_{0}^{6} \frac{d x}{\left(1+x^{2}\right)}$ by 15M
i. Trapezoidal rule
ii. Simpson's $1 / 3$ rule
iii. Simpsons $3 / 8$ rule with $h=1$
8. a) Derive an equation for Newton cotes quadrature formula.
b) The velocity $v(\mathrm{kms})$ of a moped which starts from rest, is given at fixed intervals of 8M time $\mathrm{t}(\mathrm{min})$ as follows. Estimate the approximate distance covered in 20 min .

t	2	4	6	8	10	12	14	16	18	20
v	10	18	25	29	32	20	11	5	2	0

Unit - V

9. a) Employing Taylor's series method, find an approximate solution given 7M $y^{\prime}=2 y+3 e^{x}, y(0)=0$ at $x=0.1$ and $x=0.2$.
b) By using Milne's predictor-corrector method, find an approximate solution of 8 M $y^{\prime}=\frac{2 y}{x}, x \neq 0$ at $x=2$ given $\mathrm{y}(1)=2, \mathrm{y}(1.25)=3.13, \mathrm{y}(1.5)=4.5$ and $\mathrm{y}(1.75)=6.13$.
10. Solve $y^{\prime}=x+y^{2}, y(0)=1$ to find $y(0.4)$ by Adam's predictor corrector method. Starting 15 M solutions required are $y(0.1), y(0.2), y(0.3)$ to be obtained by Taylor series method.

VARDHAMAN COLLEGE OF ENGINEGRING
 (AUTONOMOUS)

B. Tech I Semester Regular Examinations, February - 2014
(Regulations: VCE-R11A)
BASIC ELECTRICAL ENGINEERING
(Common to Information Technology, Electronics and Communication Engineering \&
Electrical and Electronics Engineering)
Date : 10 February, 2014
Time: 3 Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only
Unit - I

1. a) What is an electrical circuit? Differentiate between
i. Active and passive elements
ii. Independent and dependent sources
b) Use Kirchhoff's laws, determine the currents flowing in each branch of the network 7M shown in fig.1.

fig. 1
2. a) Assume ' n ' number of resistors is connected in series and entire combination is supplied 7M by a single $D C$ voltage source of ' V ' volts. Prove that, the voltage drop across ' nth resistor is directly proportional to the supply voltage ' V ' volts.
b) For the network shown in fig.2, determine the total power consumed in 0.8Ω resistor 8 M by source transformation method.

fig. 2

$$
\text { :: } 2 \text { :: }
$$

Unit - II
3. a) A star network in which N is star point made up as follows. $\mathrm{AN}=70 \Omega, \mathrm{BN}=100 \Omega$, $\mathrm{CN}=90 \Omega$. Find an equivalent delta network.
b) In the network shown in fig.3, find the current in the 10Ω resistor using nodal equations by inspection.

fig. 3
4. a) Using nodal analysis, find the node voltages V_{1} and V_{2} in fig.4.

b) Write the mesh current matrix equation for the network shown in fig. 5 and solve for the currents.

5. a) Find the average and effective values of
i. Cosine wave $v(t)=V_{m} \cos (\omega t+\theta)$
ii. Half-rectified sine wave
b) The voltages across two series connected circuit elements are $v_{1}=100 \sin \omega t V$ and $v_{2}=50 \sin \left(\omega t-30^{\circ}\right) V$. If the circuit current is $(4+j 2) \mathrm{A}$, find the complex power of the circuit.
6. a) A capacitor C is connected in series with a 40Ω resistor across a supply of frequency 60
i. The value of Capacitance C,
ii. The supply voltage,
iii. The phase angle between the supply voltage and current
iv. The PD across the resistor and capacitor. Draw the phasor diagram.
:: 3::
b) A 10Ω is in series with a 2Ω capacitive reactance and the combination is connected across a 5Ω resistor. If the input current to this combination is $100^{0} \mathrm{~A}$. Find the power factor of the circuit.
Unit - IV
7. a) Obtain an expression for coefficient of coupling.
b) A solenoid has 1200 turns and carries a current of 2 A . The iron core has a length of 0.4 m and cross section of $80 \mathrm{~cm}^{2}$, the relative permeability 1000 . Calculate self induced emf in the solenoid, if the current is switched off in 0.01 second.
8. a) A cast steel electromagnet has an air gap length of 3 mm and iron path of length 40 cm . Find the number of ampere-turns necessary to produce a flux density of $0.7 \mathrm{wb} / \mathrm{m} 2 \mathrm{in}$ the gap. Neglect leakage and fringing. Assume ampere turns required for air gap to be 70% of the total ampere turns.
b) State Faraday's laws of electromagnetic induction.
Unit - V
9. a) For the resistive network shown in fig.6, draw the graph and tree of the network. Also develop the fundamental tie-set matrix

b) Find the Y -parameters of the two-port network for the circuit shown in fig.7.

fig. 7
10. a) For the network shown in fig.8, draw the directed graph, tree and show the loops

fig. 8
b) Determine the Z-parameters of the network shown in fig.9.

VARDHAMAN COLLEGE Of ENGINGERING
 (AUTONOMOUS)

B. Tech I Semester Regular Examinations, February - 2014
 (Regulations: VCE-R11A)
 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

(Common to Mechanical Engineering \& Civil Engineering)
Date : 10 February, 2014 Time: 3 Hours

Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - I

1. a) Compare conductor, semiconductor and insulator.
b) A dc circuit comprises of two resistors; resistor A of value 25 ohm and resistor B of unknown value, connected in parallel, together with a third resistor C of value 5 ohm, connected in series with the parallel branch. Find the voltage to be applied across the whole circuit and the value of the resistor B if the potential difference across C is 90 V , and the total power consumed is 4320 W .
2. a) If a coil of 150 turns is linked with a flux of 0.01 Wb when carrying current of 10 A , calculate the inductance of the coil. If this current is uniformly reversed in 0.01 S , calculate the induced emf.
b) State Kirchhoff's current law. In the circuit shown in fig.1, determine the values of $E, 9 \mathrm{M}$ R_{1} and R_{2} by applying KCL at junction A.

fig. 1
Unit - II
3. a) An alternating voltage $e=200 \sin (314 t)$ is applied to a device which offers an ohmic resistance of 20 ohm to the flow of current in one direction, while preventing the flow of current in the opposite direction. Calculate RMS, average values and form factor for the current over one cycle.
b) A 4 ohm resistor is connected in series to a 10 milli henry inductor across a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ voltage source. Find input current, voltage drop across resistor, power factor of the circuit and the real power consumed in the circuit.
4. a) Obtain the form factor of a sinusoidal ac wave.
b) A supply of $400 \mathrm{~V}, 50 \mathrm{~Hz}$ is applied to a series RC circuit. Find the value of C if the power 8M absorbed by the resistor is 500 W at 150 V .

$$
\text { :: } 2 \text { :: }
$$

Unit - III
5. a) Using the Thevenin's theorem, find the current i through 2Ω in fig.2.

fig. 2
b) Find R_{L} for maximum power transfer and the maximum power that can be transferred in the network shown in fig.3.

fig. 3
6. a) Calculate the amplitude of the pulse signal in the below fig. 4 (scope setting 100 $\mathrm{mV} / \mathrm{cm}$).

fig. 4
b) Explain the operation of cathode ray oscilloscope with the help of neat block diagram and also mention the salient features of permanent magnet moving coil instrument.

$$
\text { :: } 3 \text { :: }
$$

Unit - IV
7. a) Determine the output waveform for the network of fig. 5 shown and calculate the $V_{d c} 8 \mathrm{M}$ and the required PIV of each diode.

fig. 5
b) With the help of circuit diagram and waveforms explain the operation of half wave rectifier.
8. a) Design a circuit using four diodes to get the desired V_{0} for the applied input V_{i} shown in the fig.6. Explain the operation of circuit.

fig. 6
b) Explain the following with respect to diode:
i. Formation of depletion layer
ii. Effect of temperature on barrier voltage
Unit - V
9. a) Explain the operation of N-P-N transistor.
b) Explain the input-output characteristics of a common emitter configuration. 7M
10. a) Explain the following with respect to Transistor:
i. Current gain
ii. Voltage gain
b) Explain the output characteristics of a common base configuration.

VARDHAMAN COLLEGE OF ENGINGERING
(AUTONOMOUS)
B. Tech I Semester Regular Examinations, February - 2014
(Regulations: VCE-R11A)

COMPUTER PROGRAMMING

(Common for All Branches)
Date : 12 February, 2014
Time: 3 Hours
Max. Marks : 75

Answer ONE question from each Unit
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only

Unit - I

1. a) "In the early days of computers, there was only one environment, the mainframe computer hidden in a central computing department. With the advent of minicomputers and personal computers, the environment changed with computers on virtually every desktop". Explain briefly any two computing environments.
b) Write a function $\operatorname{Add}()$ that returns sum of two integers. The function should not use any of the arithmetic operators.
2. a) Outline the basic structure of a C program. Explain the significance of preprocessor directives with an example.
b) Write a program that inputs one five-digit number, separates the number into its individual digits and prints the digits separated from one another by three spaces each.
[Hint: Use combinations of integer division and the remainder operation.] For example,
if the user types in 42139, the program should print : $4 \quad 2 \quad 1$
Unit - II
3. a) Define user-defined function. Give the general format of declaring a function. Compare local and global variables.
b) The grade of an examination is decided based on the following rules:

Marks	Grade
$0-39$	F
$40-59$	D
$60-69$	C
$70-79$	B
$80-89$	A
$90-100$	S

Write a C program to read the name and marks of a student and display the grade using switch statement.
4. a) What are arrays? How one and two dimensional arrays are declared and initialized? Give example for each.
b) Read in 20 numbers, each of which is between 10 and 100, inclusive. As each number is read, print it only if it is not a duplicate of a number already read. Provide for the "worst case" in which all 20 numbers are different. Use the smallest possible array to solve this problem.
Unit - III
5. a) Write a C Program to compute sum of the array elements using pointers. 7M
b) Write a C program that asks the user to enter a string and a character and checks how 8Mmany times that character is repeated in the string entered by the user.
6. a) What is the difference between single quoted and double quoted declaration of char 6Marray? Illustrate with a suitable example.
b) Write a C program to find the length of a given string and reverse the string without using string library function.
Unit - IV
7. a) What is a structure? How is it different from union? Give example for each of them. 8M
b) Define a structure with the following fields: title of book, author name, number of 7Mpages, and publisher's name. Write a C program to read 10 books data and print the details.
8. a) Illustrate the following with an example:
i. Structure within a structure
ii. Array of structures
iii. Bit fields
b) Trace the output for the following programs:

```
i)
#include<stdio.h>
int main()
{
    union var
    {
        int a, b;
        };
        union var v;
        v.a=10;
        v.b=20;
        printf("%d\n", v.a);
        return 0;
    }
```

```
ii)
```

ii)
\#include<stdio.h>
\#include<stdio.h>
int main()
int main()
{
{
struct value
struct value
{
{
int bit1:1;
int bit1:1;
int bit3:4;
int bit3:4;
int bit4:4;
int bit4:4;
} bit={1, 2, 13};
} bit={1, 2, 13};
printf("%d, %d, %d\n", bit.bit1, bit.bit3,
printf("%d, %d, %d\n", bit.bit1, bit.bit3,
bit.bit4);
bit.bit4);
return 0;
return 0;
}

```
}
```


Unit - V

9. a) Explain briefly about fopen() and fclose() with an example. 8M
b) Write a file copy program which copies the contents of the file "prog.c" to "prog.old". 7M
10. a) What are the various file access modes and explain each of them with an example. 8M
b) Write a program to count the number of lines and characters in a file. 7M
Note: Each line of input from a file or keyboard will be terminated by the newline character ' n '. Thus by counting newlines we know how many lines there are in our input.
