					_	
Por No.						
Reg. No. :					\ \	

Question Paper Code: 11329

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2011

Fourth Semester

Electronics and Instrumentation Engineering

${ m EI}~2252 - { m TRANSDUCER}~{ m ENGINEERING}$

(Common to Instrumentation and Control Engineering)

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Explain primary transducer and secondary transducer with an example.
- 2. Define odds.
- 3. Define resolution and sensitivity.
- 4. Draw the time response of a first-order instrument to a unit impulse signal.
- 5. Explain the working principle of constant-current hot-wire anemometer.
- 6. Draw any two potentiometer circuits used for displacement measurement.
- 7. Explain the working of a variable reluctance transducer.
- 8. What is meant by pt-100?
- 9. Write any two applications of smart sensors.
- 10. What is meant by MEMS?

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	Explain what is meant by active transducer and passive transducer with an example. (6)
		(ii)	Explain the functional blocks of a measurement system with neat diagram. (10)
			Or
	(b)	(i)	Discuss:
			(1) Observational error and
			(2) Random error. (6)
		(ii)	The following values were obtained from the measurement of current: (10)
			12.35 A, 12.71 A, 12.48 A, 10.24 A, 12.63 A and 12.58 A.
			Calculate:
			(1) The arithmetic mean
			(2) The average deviation
			(3) The standard deviation
			(4) Variance.
12.	(a)	(i)	Obtain the ramp response of a first order instrument. (8)
		(ii)	Explain the frequency response of a first order instrument. (8)
			Or
	(b)	(i)	Derive the operational transfer function of a second-order instrument. (8)
		(ii)	Obtain the step response of a second-order instrument. (8)
13.	(a)	(i)	Describe the construction of LVDT and explain its operation with the aid of a diagram. (10)
		(ii)	List the advantages, disadvantages and applications of LVDT. (6)
			Or
	(b)	(i)	Explain variable distance type and variable area type capacitive transducers and give their applications. (10)
		(ii)	Write a brief note on capacitor microphone. (6)

2 **11329**

14.	(a)	(i)	Define – Gauge factor. Derive its expression. (12
		(ii)	List the different types of strain gauges and their applications. (4
			Or
	(b)	(i)	Describe the RTD and explain, how it can be used to measure temperature. (10
		(ii)	Discuss about the construction of thermistor and its resistance temperature characteristics.
15.	(a)	(i)	Define piezo-electric effect. Explain how a piezo-electric crystal is used for the measurement of force with necessary derivations. (12
		(ii)	Brief out the operation of a Half-Effect transducer. (4
			Or
	(b)	(i)	Explain the working and V-I characteristics of a photodiode and phototransistor. (8
		(ii)	Explain how a fibre optic sensor work and list out its advantages. (8

11329