## B. Tech III Year I Semester Examinations, December-2011 <br> MACHINE TOOLS <br> (MECHANICAL ENGINEERING(MECHATRONICS))

Time: 3 hours
Max. Marks: 75

## Answer any five questions All questions carry equal marks

1. Explain about Discontinuous chip, Continuous chip, and continuous chip with built up edge? Explain the conditions favoring their formation.
2.a) Discuss about tool holders of lathe machine.
b) List and describe commonly used attachments on lathe with suitable sketches.
[7+8]
2. What is indexing? Explain some common methods of indexing in milling machines?
[15]
3. Explain the theory of grinding. What is the principle of metal removal? Discuss the elements of grinding.
5.a) What is a deviation? Explain its importance in the system of limits.
b) Explain the disadvantages associated with trail and error method of assembly. [7+8]
6.a) Write a detailed note on the manufacture of slip gauges.
b) Explain the different methods of getting magnification in dial indicators.
[7+8]
7.a) What is a straight edge? Explain how it can be used to test straightness?
b) Explain the importance of sampling length in surface roughness measurement?
8.a) Sketch and explain Taylor-Hobson Talysurf surface roughness measuring instrument?
b) The heights of peak and valleys of 22 Successive points on a surface are 32, 28, $41,24,35,19,31,21,40,18,44,24,41,25,40,26,35,18,40,18,39,21$ microns respectively, measured over a length of 20 mm . Determine CLA and RMS values of roughness surface?

## B. Tech III Year I Semester Examinations, December-2011 MACHINE TOOLS (MECHANICAL ENGINEERING(MECHATRONICS)) Time: 3 hours

Answer any five questions
All questions carry equal marks

1. Define the various tool parts of a single point cutting tool. What are the standard angles of cutting tool? Describe them with neat sketches.
2.a) Differentiate between capstan lathe, Turret lathe and Engine lathe.
b) How do you classify automatic machines? Briefly explain about turret lathe. [7+8]
2. Make a neat sketch of universal milling machine indicating the various controls and constructional features. Give brief description.
3. Discuss the selection of grinding wheel according to I.S. specification and specify the precautions to be taken before mounting of grinding wheel.
[15]
4. Give the complete classification of clearance fit. Explain them with the help of suitable examples.
5. A hole and shaft system had the following dimensions:

60 H 8 /c 8
The multiplier of grade 8 is 25 . The fundamental deviation for ' $C$ ' shaft is $-(9.5$ +0.8 D ). The diameter slip is $50-80$. Design the suitable 'GO' and 'NOGO' gauges for shaft and hole.
7.a) Describe a method to find out the flatness of surface plate?
b) Discuss the method of testing the straightness by spirit level and auto collimator?
8.a) With the help of a neat diagram explain the components of a surface texture?
b) Discuss what you understand by the following terms in connection with surface finish measurement:
i) Waviness
ii)Lay iii)Envelope method iv)Crest line method.
[7+8]

## B. Tech III Year I Semester Examinations, December-2011 MACHINE TOOLS (MECHANICAL ENGINEERING(MECHATRONICS))

Time: 3 hours
Max. Marks: 75

## Answer any five questions All questions carry equal marks

1.a) Show with a neat sketch the forces acting on a chip in orthogonal machining. Derive an expression to calculate the coefficient of friction between tool chip interfaces.
b) During an orthogonal machining operation on mild steel, the results obtained are: uncut chip thickness $=0.285 \mathrm{~mm}$, chip thickness $=0.65 \mathrm{~mm}$, width of the cut $=2.5 \mathrm{~mm}$, rake angle $=0^{0}$, horizontal cutting force $=800 \mathrm{~N}$, thrust force $=400 \mathrm{~N}$. Compute the coefficient of friction between the tool and chip interface. Determine also the ultimate shear stress of the work material.
[7+8]
2. With the help of neat sketches explain the different work holding methods of jobs on turret lathe.
[15]
3. What is a milling machine? How do you classify the milling machine? Give the working principle of milling machine with a neat sketch? Mention the size and specification of milling machine?
[15]
4. Make a comparison of grinding machine with lapping, honing and broaching machines with regard to the construction, working and applications.
[15]
5.a) A hole and shaft pair has a basic of size 25 mm and are to have a clearance fit with maximum clearance of 0.02 mm and a minimum clearance of 0.01 mm . The hole tolerance is to be 1.5 times the shaft tolerance. Determine limits for both hole and shaft (i) using a hole basis system (ii) using a shaft basis system.
b) What are the advantages of interchangeable assembly?
6.a) Sketch and discuss the features of various snap gauges.
b) Explain the constructional features of an inside micrometer.
7. Explain the working principle of tool maker's microscope. What are the uses and specific applications of tool maker's microscope? Explain?
8.a) Calculate the $R_{a}$ value ofa surface for which the sampling length was 8.0 mm , the graph was drawn to a vertical magnification of 1000 and the areas above and below the datum line were

| Above: | 180 | 90 | 155 | $55 \mathrm{~mm}^{2}$ |
| :--- | :--- | :--- | :--- | :--- |
| Below: | 70 | 90 | 170 | $150 \mathrm{~mm}^{2}$ |

b) What are roughness comparison specimens and how they assess surface roughness? What are the limitations?
[8+7]

## B. Tech III Year I Semester Examinations, December-2011 MACHINE TOOLS (MECHANICAL ENGINEERING(MECHATRONICS))

## Answer any five questions All questions carry equal marks

1.a) For a single point tool the following angles are given in degrees: front relief angle $=5^{0}$, side relief angle $=6^{0}$, back rake angle $=9^{0}$, side rake angle $=14^{0}$, end cutting edge angle $=12^{0}$, side cutting edge angle $=0^{\circ}$, nose radius $=2 \mathrm{~mm}$, determine lip angle, cutting angle, nose radius?
b) Explain about Ceramics, Diamonds, and cemented carbides tool material in detail. [8+7]
2.a) Make a comparative analysis of various tool holders of lathe machine.
b) Draw and explain the features of locating elements of lathe machine.
3. Differentiate between shaping, planning and slotting machines with regard to construction, working, application, advantages and disadvantages.
4.a) What are different working motions of a honing tool? Give the kinematic scheme to obtain them.
b) Explain the constructional features of speed and feed units of lapping tool. [7+8]
5.a) Calculate the fundamental deviation and tolerances and hence the limit of size for shaft and hole for the fit designated as 60 mm H8- f7. The diameter steps are 50 mm and 80 mm
b) Why is it impossible to obtain an exact dimension on manufactured component.
[7+8]
6.a) Discuss Taylors principle of gauge design.
b) Explain how slip gauges can be calibrated by brook level comparator.
7. What is optical flat? Explain its construction, working principle. What are its uses?
[15]
8.a) In the measurement of surface roughness, heights of 10 successive peaks and valleys were measured from a datum as follows:

Peaks: $45 \quad 42 \quad 40 \quad 35 \quad 35 \mu \mathrm{~m}$
Valleys: $30 \quad 25 \quad 25 \quad 24 \quad 18 \mu \mathrm{~m}$.
Determine the $R_{Z}$ value of the surface.
b) Write short note on grades for specifying the surface texture.

