

Time: 3 hours

Code No: 07A81205

Max Marks: 80

[16]

[8+8]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. For each of the following datasets, construct a normal plot, and decide if the data appear to be approximately normally distributed.
 - (a) 35, 43, 46, 48, 51, 55, 58, 65
 - (b) 2.0, 3.0, 3.2, 3.5, 3.7, 3.9, 4.0, 4.2, 4.4, 4.4, 4.5, 4.8, 5.0, 5.1, 5.4, 5.8, 6.1 [8+8]
- 2. Explain the Bayesian estimation or Bayesian learning approach to pattern classification problems. [16]
- 3. Discuss the state transition matrix and state-transition coefficients for 4-state leftright Model. [16]
- 4. Class A has a symmetric triangular density ranging from 0 to 4, and class B has a uniform density ranging from 2 to 6. The prior probabilities and costs are the same for both classes.
 - (a) Where are the optimal decision regions?
 - (b) What are the probabilities of error for class A and for class B if these decision regions are used. [16]
- 5. Write short notes on the following:
 - (a) Applications of normal mixtures in unsupervised learning
 - (b) Mixture density
 - (c) Component densities
 - (d) Mixing parameters.
- 6. (a) Given the observation sequence $O = (o_1, o_2, \dots, o_T)$ and the model $\lambda = (A, B, \pi)$ how do we choose a corresponding state sequence $q = (q_1, q_2, \dots, q_T)$ that is optimal in some sense (i.e. best explains the observations)?
 - (b) Explain N-state urn-and-ball model.
- 7. Consider the use of multidimensional scaling for representing the points $x_1 = (1, 0)^t$, $x_2 = (0, 0)^t$, and $x_3 = (0, 0)^t$, in one dimensions. To obtain a unique solution, assume that the image points satisfy $0 = y_1 < y_2 < y_3$. Show that the criterion function $J_e e$ is minimized by the configuration with $y_2 = (1 + \sqrt{2})/3$ and $y_3 = 2y_2$. [16]

Code No: 07A81205

$$\mathbf{R07}$$

8. Distinguish between the preprocessing, feature extraction and classification operations of pattern recognition system. [16]

 $\mathbf{R07}$

Time: 3 hours

Code No: 07A81205

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks * * * * *

1. Explain the class- conditional densities in Bayesian estimation.	[16]
2. (a) How do we adjust the model parameters $\lambda = (A, B, \pi)$ to maximize P(0)	$O/\lambda)?$
(b) Explain the discrete-time Markov process.	[8+8]
3. Explain the related minimum variance criteria in clustering with examples.	[16]
4. Explain the functional structure of a general statistical Pattern classifier with diagram.	th neat [16]
5. (a) Find the mean and variance of a standard normal distribution.	
(b) Explain decision regions for two-dimensional Gaussian data.	[8+8]
6. Explain non-linear component analysis with neat diagram.	[16]
7. Explain about error rate, risk multiplier classifiers of Post processing in precognition system.	pattern [16]
8. (a) In which case Hidden Markov model parameter set to zero initially will at zero throughout the re-estimation procedure.	remain
(b) Constraints of the left-right model have no effect on the re-estimation Justify.	n procedure. $[8+8]$

R07

Set No. 1

Time: 3 hours

Code No: 07A81205

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Classes A and B are bivariate normally distributed with $\mu_x, \mu_y, \sigma_x, \sigma_y$, and ρ_{xy} of 0, 0, 1, 2, 0 for class A and 2, 0, 1, 1, 0 for class B. P(A) = 2/5, P(B) = 3/5, and the cost of misclassifying an A is three times that for a B.
 - (a) What is the equation of the optimal decision boundary?
 - (b) Sketch the optimal decision boundary and a contour of constant probability density for each class. [8+8]
- 2. (a) In a poll of 500 people, 300 were in favor of proposition. Find a 95 percent confidence Interval for the true fraction of people in favor of the proposition?
 - (b) Explain the terms prior probability and posterior probability in Bayes decision theory. [8+8]
- 3. Explain the three basic problems for Hidden Markov Model. [16]
- 4. Show that if our model is poor, the maximum-likelehood classifier we derive is not the best-even among our (poor) model set-by exploring the following example. Suppose we have two equally probable categories (i.e., P(ω_1)=P(ω_2)=0.5). Furthermore, we know that $p(x/\omega_1) \sim N(0,1)$ but assume that $p(x/\omega_2) \sim N(\mu, 1)$. (That is, that parameter θ we seek by maximum-likelihood techniques is the mean of the second distribution.) Imagine, however, that the true underlying distribution is $p(x/\omega_2) \sim N(1,10^6)$.
 - (a) What is the value of our maximum-likelihood estimate μ in our poor model, given a large amount of data?
 - (b) What is the decision boundary arising from this maximum-likelihood estimate in the poor model? [8+8]
- 5. How do you justify that a thre-layer network cannot be used for non-linear principal component analysis, even if the middle layer consists of nonlinear units. [16]
- 6. Let $x_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, x_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, and $x_4 = \begin{pmatrix} 2 \\ 0.5 \end{pmatrix}$, and consider the following three partitions: $D_1 = \{x_1, x_2\}, D_2 = \{x_3, x_4\}$ $D_1 = \{x_1, x_4\}, D_2 = \{x_2, x_3\}$ $D_1 = \{x_1, x_2, x_3\}, D_2 = \{x_4\}$

www.jntuworld.com

www.jntuworld.com

Code No: 07A81205

$\mathbf{R07}$

(b) Find the clustering that minimizes the trace criterion,

$$J_e = |SW| = |\sum_{i=1}^{c} s_i|$$
[16]

- 7. (a) Explain the concept of decision boundary in design of simple classifiers.
 - (b) Explain the design cycle of patern recognition system and also explain the computational complexity in the design. [8+8]
- 8. What are the restrictions placed on the form of the probability density function to ensure that the parameters of the pdf can be re-estimated in a consistent way?

[16]

Set No. 1

 $\mathbf{R07}$

Time: 3 hours

Code No: 07A81205

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Write sum-of sqared functions for multidimensional scaling.
 - (b) How do you compute the gradients of criterion function of multidimensional scaling? [8+8]
- 2. (a) Explain the concept of classification in pattern recognition system with examples.
 - (b) Explain the concept of post processing in pattern recognition system with examples. [8+8]
- 3. (a) Explain the marginal density functions.
 - (b) Use a Z-transformation and the normal tables to calculate P ($-1 \le x \le 2$) where x has the density $P(x) = \frac{1}{3\sqrt{2\pi}} e^{-(x-2)^2/18}$ [8+8]
- 4. (a) Explain the general principle of maximum likelihood estimation.
 - (b) Find the maximum likelihood estimate for μ in a normal distribution. [8+8]
- 5. (a) Write the re-estimation formulas for the coefficients of the mixture density.
 - (b) Discuss the state transition matrix for 4-state ergodic model and 6-state parallel path left- right model with examples. [8+8]
- 6. Some data with features x and y (see the following table) were randomly selected from a population that consists of classes A and B. What is the probability that a new sample with x = 0, y = 1 belongs to class A? Make only necessary assumptions and list them. [16]

Class	Samples	X=0	X=1	Y=0	Y=1
A	6	4	2	5	1
В	4	2	2	3	1

7. If a set of n samples D is partitioned into c disjoint subsets D_1 ,---, D_c , the sample mean \mathbf{m}_i for samples in D_i is undefined if D_i is empty. In such a case, the sum-of-squared errors involves only the nonempty subsets:

$$J_e = \sum_{Di \neq \phi} \sum_{x=Di} ||x - m_i||^2$$

Assuming that $n \ge c$, show there are no empty subsets in a partition that minimizes J_e . Explain your answer in words. [16]

Code No: 07A81205

8. Consider an HMM representation (Parameterized by λ ') of a coin-tossing experiment. Assume a three-state model (Corresponding to three different coins with probabilities)

	State1	State2	State3
P(H)	0.5	0.75	0.25
P(T)	0.5	0.25	0.75

The state - transition probabilities were

	T T		
$a_{11} = 0.9,$	$a_{21} = 0.45,$	$a_{31} = 0.45$	
$a_{12} = 0.05,$	$a_{22} = 0.1,$	$a_{32} = 0.45$	
$a_{13} = 0.05,$	$a_{23} = 0.45,$	$a_{33} = 0.1$	
T 11.			

In this new model λ ', consider the observation sequence O = (H H H H T H T T T T). What state sequence is most likely? What is the Probability of the observation sequence most likely state sequence? [16]

7