Code No: 07A80405

 $\mathbf{R07}$

Set No. 2

IV B.Tech II Semester Examinations, April/May 2012 DIGITAL DESIGN THROUGH VERILOG Common to Bio-Medical Engineering, Electronics And Computer Engineering, Electronics And Communication Engineering Time: 3 hours Max Marks: 80 Answer any FIVE Questions

All Questions carry equal marks

1.	(a)	Explain about XC4000 series I/O block.	
	(b)	Explain about CLB as a read/write memory cell. [8	8+8]
2.	(a)	Explain function declaration and invocation.	
	(b)	Design verilog module parity calculation using function. [8	8+8]
3.	(a)	Explain 6116 static RAM with block diagram.	
	(b)	Explain Read cycle timing of SRAM. [8	8+8]
4.	(a)	Design data flow model for Dice game.	
	(b)	Explain PLA realization for Moore and Mealy machines. [8	8+8]
5.	(a)	Design verilog module to identify the highest priority interrupts.	
	(b)	Write test bench, simulation results of above question with explanation.[8	8+8]
6.	(a)	Explain HDL advantages compared to Traditional Schematic Based Desig	gn.
	(b)	Explain trends on HDL's? [8	8+8]
7.	(a)	Design CMOS switch with a single control line.	
	(b)	Design code, testbench, results for CMOS switch with a single control lin [8	ne. 8+8]
8.	(a)	Design for the conversion of two pairs of BCD's into the corresponding by	yte.
	(1)		

(b) Write verilog module for the conversion of two pairs of BCD's into the corresponding byte? [8+8]

Code No: 07A80405

two digit).

_	
	\mathbf{K}
- 1 -	

IV B.Tech II Semester Examinations, April/May 2012 DIGITAL DESIGN THROUGH VERILOG Common to Bio-Medical Engineering, Electronics And Computer Engineering, Electronics And Communication Engineering Time: 3 hours Max Marks: 80 Answer any FIVE Questions

All Questions carry equal marks

1.	(a) Explain memory Controller SM Chart for Read cycle.	
	(b) Explain and Draw Chip select timing for Write to RAM.	[8+8]
2.	(a) Explain SM chart for binary multiplier.	
	(b) Write HDL code for the binary multiplier.	[8+8]
3.	(a) Classify and explain strengths and contention resolution.	
	(b) Design a module to illustrate use of the wand-type net and test be stimulation results?	ench with $[8+8]$
4.	(a) Explain NMOS enhancement with conditions.	
	(b) Write about Basic switch primitives.	[8+8]
5.	Design behavioral model of HDL XC4000 CLB.	[16]
6.	(a) Explain the Pin-to-Pin Delay with example.	
	(b) Explain and specify blocks of Path Delay Modeling.	[8+8]
7.	Define a task to compute the factorial of a 4 bit number. The output is value. The result is assigned to the output after a delay of 10 time units.	a 32 bit [16]
8.	 (a) Design a Module to add two pairs of BCD nibbles (2 decimal no's ea digit). 	ch of two
	(b) Write a verilog code to add two pairs of BCD nibbles (2 decimal no's	each of

[8+8]

Code No: 07A80405

 $\mathbf{R07}$

Set No. 1

IV B.Tech II Semester Examinations, April/May 2012 DIGITAL DESIGN THROUGH VERILOG Common to Bio-Medical Engineering, Electronics And Computer Engineering, Electronics And Communication Engineering Time: 3 hours Answer any FIVE Questions

All Questions carry equal marks

*	*	*	*	*
*	*	*	*	*

1.	(a)	Design SM chart for Dice game test.	
	(b)	Write Tester for Dice game (HDL module).	[8+8]
2.	(a)	Explain micro processor Bus Interface.	
	(b)	Explain Intel 486 basic 3-3 Bus cycle.	[8+8]
3.	(a)	Design a JK flip flop using NAND gates.	
	(b)	Write a verilog code for JK flip flop using NAND gates.	[8+8]
4.	Exp	lain signal paths within adder subtractor logic cell.	[16]
5.	(a)	Write about \$ readmemb with example.	
	(b)	Write value change dump file.	[8+8]
6.	(a)	Design verilog code of OR gate using for and disable.	
	(b)	Write simulation results of above question with explanation.	[8+8]
7.	(a)	Design basic functional unit of a dynamic shift register.	
	(b)	Write the verilog code for basic functional unit of a dynamic shift reg	ister.
			[8+8]
8.	Exp	lain bottom up design methodology with example?	[16]

4