R07

Set No. 2

Max Marks: 80

IV B.Tech I Semester Examinations,December 2011 DIGITAL IMAGE PROCESSING Electronics And Communication Engineering

Time: 3 hours

Code No: 07A70401

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Describe the techniques used for color image smoothing?
 - (b) What is the need of graylevel slicing in color images. [8+8]
- 2. (a) Explain the statement that Fourier transform is viewed as a "mathematical prism".
 - (b) Get the expressions for magnitude spectrum, phase spectrum and power spectrum of Fourier transform. [8+8]
- 3. Write about various edge Detectors available in function edge. [16]
- 4. What is Error Free Compression? Explain about variable length coding. [16]
- 5. (a) Discuss the concept FWT and draw the flow graph for N=8.(b) Compare the FFT and FWT. [8+8]
- 6. (a) What is a Image Formation Model.
 - (b) Write about Various Image Observation Models with Examples. [8+8]
- 7. Consider the image segment shown below
 - 1(q)3 1 2 $\mathbf{2}$ 20 21 21 1 $\mathbf{2}$ (p)10 1
 - (a) Let $V = \{0,1\}$ and compute the D4, D8 and Dm distances between p and q
 - (b) repeat for $V = \{1, 2\}$ [16]
- 8. (a) Give the algorithm for histogram equalization.
 - (b) What is the histogram distribution for high contrast, low contrast images.

[8+8]

 $\mathbf{R07}$

Set No. 4

Max Marks: 80

IV B.Tech I Semester Examinations,December 2011 DIGITAL IMAGE PROCESSING Electronics And Communication Engineering

Time: 3 hours

Code No: 07A70401

Answer any FIVE Questions All Questions carry equal marks *****

1.	What is Thresholding? Explain about Local Thresholding.	[16]
2.	What is Noise? what are the spatial and frequency properties of noise?	[16]
3.	(a) Define sequency.	
	(b) Discuss modified Hadamard transform. [6+	-10]
4.	Draw a figure of a basic DPCM/DCT encoder for motion compensated video copression.	om- [16]
5.	Draw and Explain the schematic diagram how pixels of an RBG color image formed from the corresponding pixels of the three components images.	are [16]
6.	Develop an algorithm for converting a one pixel thick, 8-connected path to connected path.	• 4- [16]
7.	What is histogram of an Image? Sketch histograms of basic Image types. Disc how histogram is useful for Image enhancement.	uss [16]
8.	What are the techniques used for image smoothing? Explain any two techniq of :	ues

- (a) Frequency domain
- (b) Spatical domain used for smoothing the image. [16]

www.jntuworld.com

R07

Set No. 1

IV B.Tech I Semester Examinations,December 2011 DIGITAL IMAGE PROCESSING Electronics And Communication Engineering

Time: 3 hours

Code No: 07A70401

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Explain the following properties of 2D-Fourier Transform:
 - (a) Distributives and scaling
 - (b) Rotation
 - (c) Periodicity and conjugate symmetry
 - (d) Seperability.
- 2. Derive transformation matrices for
 - (a) Translation
 - (b) Scaling
 - (c) Rotation about X-axis.

3. Discuss the following intensity transformations.

- (a) Image negatives
- (b) Contrast stretching
- (c) Compression of dynamic range. [16]
- 4. Explain in detail about the CMY and HIS color spaces. [16]
- 5. The white bars in the test pattern shown in figure 5b are 7 pixels wide and 210 pixels high. The separation between bars is17 pixels. What would this image look like after application of
 - (a) A 9×9 min filter?
 - (b) A 5×5 min filter?

[16]

[16]

[16]

.

3

www.jntuworld.com

Code No: 07A70401

$\mathbf{R07}$

Set No. 1

- 6. Does fast algorithm is applicable for computation Hadamard transform, if so what are the problems encountered in implementation. [16]
- 7. An 8 level image has the gray level distribution given in table.

\mathbf{r}_k	$\mathbf{P}_r(\mathbf{r}_k)$	Code 1	$\mathbf{L}_1(r_k)$	Code 2	$\mathbf{L}_2(\mathbf{r}_k)$
$r_0 = 0$	0.19	000	3	11	2
$r_1 = 1/7$	0.25	001	3	01	2
$r_2 = 1/7$	0.21	010	3	10	2
$r_3 = 3/7$	0.10	011	3	001	3
$r_4 = 4/7$	0.08	100	3	0001	4
$r_5 = 5/7$	0.06	101	3	00001	5
$r_6 = 6/7$	0.03	110	3	000001	6
r ₇ =1	0.02	111	3	000000	6

- (a) Compute the average word length for each code and compare the to entropy form part.
- (b) Divide the symbols into two blocks of four and construct the best Huffman shift code. [16]
- 8. Answer the following from the given 3×3 region of image and various masks used to compute the gradient at point labled₂⁵

Assume that the Sobel masks are used to obtain G_x and G_y . Show that the gradient computed by

 $\nabla f = mag(\nabla f)[G_x^2 + G_y^2]^{1/2}$ and $\nabla f = |Gx| + |Gy|$ give identical results for edges oriented in the horizontal and vertical directions. [16]

Z1	Z2	Z3	
$\mathbf{Z4}$	Z5	Z6	
Z7	Z8	$\mathbf{Z9}$	

www.jntuworld.com

R07

Set No. 3

[16]

[16]

[16]

[8+8]

IV B.Tech I Semester Examinations,December 2011 DIGITAL IMAGE PROCESSING Electronics And Communication Engineering Max Marks: 80

Time: 3 hours

Code No: 07A70401

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

1. Obtain Slant transform matrix for N=8.

- 2. Explain the following Order-Statistics Filters.
 - (a) Max and min filters
 - (b) Median filter
 - (c) Midpoint filter.

3. What is Sparse Matrix? How it is used by Hough Transform? Explain. [16]

- 4. Explain the following:
 - (a) Arithmetic operations on Images
 - (b) Logical operations on Images.
- 5. (a) Develop a procedure for computing the median of an nxn neighborhood.
 - (b) Propose a technique for updating the median as the center of the neighborhood is moved from pixel to pixel. [16]
- 6. Explain the following:
 - (a) Spatial processing
 - (b) Color vectoring processing.
- 7. An 8 level image has the gray level distribution given in table.

\mathbf{r}_k	$\mathbf{P}_r(\mathbf{r}_k)$	Code 1	$\mathbf{L}_1(r_k)$	Code 2	$\mathbf{L}_2(\mathbf{r}_k)$
$r_0 = 0$	0.19	000	3	11	2
$r_1 = 1/7$	0.25	001	3	01	2
$r_2 = 1/7$	0.21	010	3	10	2
$r_3 = 3/7$	0.10	011	3	001	3
$r_4 = 4/7$	0.08	100	3	0001	4
$r_5 = 5/7$	0.06	101	3	00001	5
$r_6 = 6/7$	0.03	110	3	000001	6
$r_7 = 1$	0.02	111	3	000000	6

(a) Construct the best 2-bit binary shift code.

www.jntuworld.com

Code No: 07A70401

R07

Set No. 3

- (b) Construct the best B_1 code for the distribution. [16]
- 8. Show that if a filter transfer function H(4,v) is real and symmetric, then the corresponding spatical domain filter h(x,y) also B real and symmetric. [16]
