MEDICAL IMAGE PROCESSING (SEMESTER - 8)

CS/B.TECH(BME)/SEM-8/BME-801/09

1. \qquad
Signature of Invigilator
2. \qquad Signature of the Officer-in-Charge

CS/B.TECH(BME)/SEM-8/BME-801/09

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct answer for the following :
i) 'Laplacian' is a
a) First Order Smoothing Filter
b) Second Order Smoothing Filter
c) First Order Sharpening Filter
d) Second Order Sharpening Filter. \square
ii) If we use a filter whose characteristics is $\mathrm{H}(u, v)=0$,
for $(u, v)=(\mathrm{M} / 2, \mathrm{~N} / 2)=1$, otherwise.
Then it is a
a) Low-pass Filter
b)
High-pass Filter
c) Notch Filter
d) Butterworth Filter.

iii) In a piecewise linear model of a contrast stretching function, if $r_{1}=s_{1}$ and $r_{2}=s_{2}$, then the function becomes
a) Thresholding function
b) Linear function
c) Image Enhancement function
d) Logarithmic function.
\square
iv) Using Power Law Transformation Technique if an image biased in the dark zone has to be converted into a higher contrast image, we have to use
a) gamma >1
b) \quad gamma $=1$
c) gamma < 1
d) \quad gamma $=0$.
\square
v) In on Order Statistics Filter the most commonly used filter is
a) Min filter
b) Max filter
c) Median filter
d) Mode filter.
\square
vi) Digitizing the coordinate values of an image is
a) Quantization
b)
c) Restoration
d) Equating.

is

vii) If R is the subset of the pixels in an image, then R is eatlec at region of the image if R is a
a) component of a set S
b) connected set
c) disconnected set
d) none of these.
viii) Unsharp masking may be expressed as
a) $\quad f_{s}(x, y)=f(x, y)-f^{-}(x, y)$
b) $\quad f_{s}(x, y)=f(x, y)+f_{1}(x, y)$
c) $\quad f_{s}(x, y)=f^{-}(x, y)-f(x, y)$
d) none of these.
ix) Butterworth filter of the order 20 exhibits the characteristics of
a) ILPF
b) GLPF
c) BPLF
d) None of these.
\square
x) Gaussian Filter function is given by the equation
a) $\mathrm{H}(u)=\mathrm{Ae}^{-u^{2} / 2 \sigma^{2}}$
b) $\quad \mathrm{H}(u)=\mathrm{Be}^{-u^{2} / 2 \sigma^{2}}$
c) $\mathrm{H}(u)=\mathrm{Ae}^{u^{2} / 2 \sigma^{2}}$
d) none of these.
\square

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

$$
3 \times 5=15
$$

2. With a neat block diagram state the various steps involved in Digital Image Processing.
3. How are zooming and shrinking of images achieved? Explain the methods with special emphasis on different interpolation techniques.
4. Explain in brief the different types of Order Statistics Filter and their use in noise removal.
5. Describe the sampling and quantization process to create a digital image.
6. Why is back propagation learning also called generalized delta rule ?

5

(Long Answer Type Guestions)
Answer any three questions.

$3 \times 15=45$
7. a) What is image restoration ? Give two areas whererestoration process can be applied.
b) With a neat block diagram, explain the image degradation model. $5+10=15$
8. a) Explain the various aspects of fidelity criteria in detail.
b) Distinguish between lossy and lossless compression in image processing.
c) What is vector quantization? Explain briefly. $7+4+4=15$
9. a) What are 'bit-planes' ? Explain how the different bit-planes contribute to the overall appearance of an image.
b) What do you mean by 'Histogram' of an image ? Describe 'Histogram Matching' Technique.
10. a) Write the basic steps of filtering in the frequency domain. Explain in brief the characteristics of an Ideal LPF.
b) What is the foundation of designing Sharpening Spatial Filters ? Explain the advantages and disadvantages of first-order and second-order filters. $7+8=15$
11. Write down the working principle of median filter. Which one is better-median or average filter and why ? Discuss about Prewitt and Sobel operator for detecting edge present in an image. Give a brief overview of Laplacian operator.

$$
3+2+3+3+4=15
$$

12. What is the principal objective of image enhancement ? What do you mean by Histogram of a digital image ? What is its application ? Define dark, light, low contrast and high contrast image with respect to their histogram analysis. Write down the necessary conditions of the transformation function used in Histogram Equalization technique. What does it guarantee?

$$
2+3+2+4+4=15
$$

END

