Name :	
Roll No. :	
Invigilator's Signature :	

CS/B.Tech (BME)/SUPPLE/SEM-7/BME-703/2010 2010 POWER & CONTROL SYSTEM

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

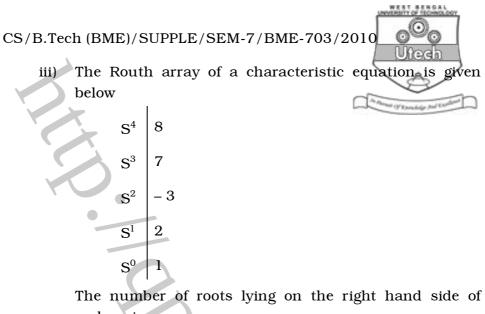
- i) The characteristic equation of a closed loop second order system is given as $s^2 + 4s + 16 = 0$. The resonant frequency in radian/sec of the system is
 - a) 2 b) $2\sqrt{3}$
 - 4

c)

c)

ii) The unit step response of a network is $(1-e^{-at})$. Then the unit impulse response will be

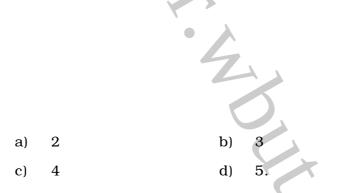
- a) a e^{-at}
- b) $a e^{-t/a}$


d) (1-a) a e

d)

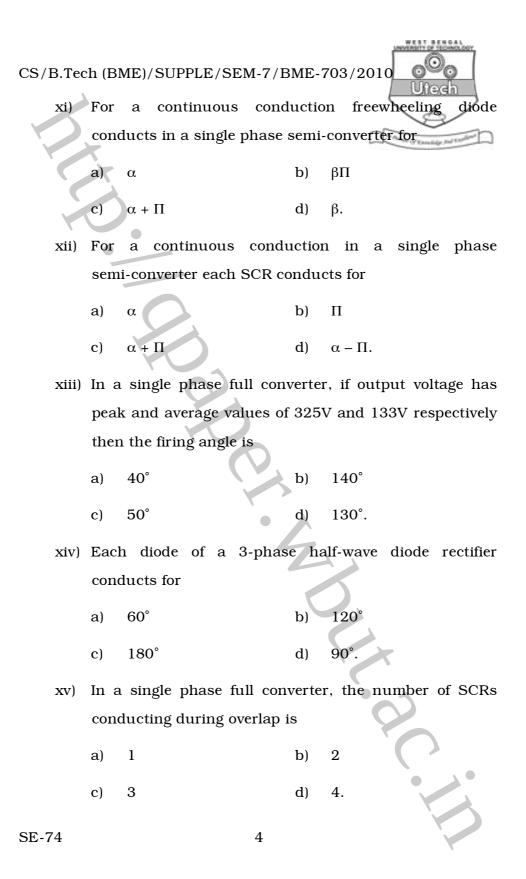
 $1/a e^{-at}$

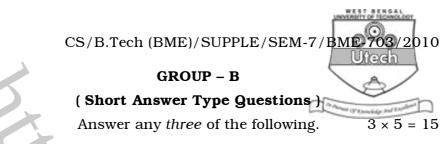
SE-74


[Turn over

s-plane is

a)	1	0	b)	2
c)	3		d)	4.


The signal flow graph of a system is shown in the figure iv) below. The number of forward paths is

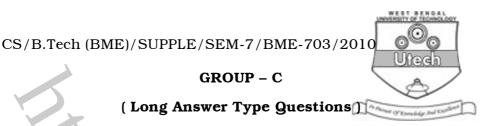


- For a unit step input, a system with forward path V) transfer function $G(s) = 20/s^2$ and feedback transfer function H(s) = (s + 5) has a steady state output of
 - 5 0 b) a)
 - c) 0.2d) 10.

SE-74

vi)	the		m be	<u>Utea</u>	bots of			
	a) move away from the poles							
	b) move away from the zeros							
	c) coincide with the poles							
	d) coincide with the zeros.							
vii)	Whe	n cathode is more posi	tive w	rith respect to and	ode for			
	a thyristor, the number of blocked PN junctions is							
	a)	1	b)	2				
	c)	3	d)	4.				
viii)	i) A thyristor may be termed as							
	a)	DC switch	b)	AC switch				
	c)	either (a) or (b)	d)	square waves sw	itch.			
ix)	di/dt protection for an SCR is achieved by							
	a)	R in series with SCR	b)	L in series with S	SCR			
	c)	R across SCR	d)	L across SCR.				
X)	x) Most suitable solid state device for audio, VHF/UHF							
	and microwave amplifiers is							
	a)	IGBT	b)	S.I.T				
	c)	MOSFET	d)	P.U.T.				
SE-74		3		[Tu	rn over			

- 2. Write short note on any *one* of the following topics :
 - i) Tachogenerator
 - ii) Error detector
 - iii) Synchro.
- 3. Find the overall transfer function of the system shown below :


Use block diagram reduction method.

- 4. State Nyquist stability criterion & define gain margin, phase margin from the Nyquist plot.
- 5. Draw the static characteristics of an SCR, along with proper labelling. Also explain the different operating regions.
- 6. What are the applications of rectifier ?
- 7. Explain the function of a step-down chopper.

SE-74

5

[Turn over

Answer any three questions.

 $3 \times 15 = 45$

- 8. A unity feedback control system has open loop transfer function G(S) = K/S (S + 2) (S + 5). Sketch the root locus and show
 - a) line for $\zeta = 0.5$ and value of *K* for this damping ratio.
 - b) the frequency at which the root locus crosses the imaginary axis and the corresponding value of *K*.

8 + 4 + 3

9. a) Draw the unit step response of 2nd order underdamped system and define the following terms :

Risk time, peak time, maximum peak overshoot, delay time, settling time.

- b) The open loop transfer function of a unity feedback system is G(S) = K/S (10 + S). Determine the gain of K so that the system will have a damping ratio of 0.5. For this value of K determine settling time, peak time and peak overshoot.
- c) Obtain the unit impulse response and step response of a unity feedback system whose open loop transfer function is $G(s) = (2s+1)/s^2$. 5+5+5
- 10. a) Define the terms 'gain margin' and 'phase margin'.
 - b) A unity feedback control system has open loop transfer function G(S) = 200 (S + 5)/S(S + 5) (S + 20). Sketch the Bode plot and show the gain margin, phase margin, gain cross-over frequency and phase cross-over frequency. 4 + 7 + 4

SE-74

CS/B.Tech (BME)/SUPPLE/SEM-7/BME 703/2010 11. a) Explain the two transistor analogy of a thyristor and derive an expression for the anode current using this analogy.

- b) Explain briefly different commutation processes of SCR.
- c) What is G.T.O. ?
- d) Define holding and latching currents of SCR.

7 + 5 + 1 + 2

- 12. Explain the principle of chopper operation. Discuss the control strategies of chopper. What are the applications of chopper ? Classify choppers. 5 + 5 + 5
- 13. What is inverter ? What is rectifier ? Explain the function of a single phase half controlled rectifier using inductive load. What do you mean by free-wheeling diode ? What happens if a free-wheeling diode is connected to the circuit of single phase half controlled rectifier having inductive load.

1 + 1 + 1 + 5 + 1 + 6

7 [Turn over

SE-74