Name :	
Roll No. :	An opening Of Sound of The Conference
Invigilator's Signature :	

CS/B.TECH(BME)/SEM-7/BME-701/2011-12

2011 BIOSIGNAL PROCESSING

Time Allotted : 3 Hours

Full Marks: 70

WEST BENGAL

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

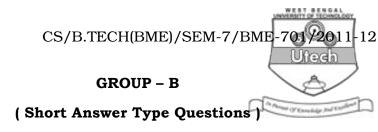
GROUP – A (Multiple Choice Type Questions)

1. Choose the correct alternatives for the following :

 $10 \times 1 = 10$

[Turn over

- i) Adaptive filter is a
 - a) High-pass filter b) Low-pass filter
 - c) Band-pass filter d) Band-reject filter.
- ii) Spikes and waves of EEG signal have frequency range of
 - a) 2 3 Hz b) 2.5 3.5 Hz
 - c) 1.5 2.5 Hz d) 2.5 3.0 Hz.


iii) In Adaptive Noise Canceller reference signal is

- a) Noise b) P-Q-R-S-T Curve
 - EMG Signal d) EEG Signal.

7014

c)

CS/B.TECH(BME)/SEM-7/BME-701/2011-12						
1V)	iv) Theta (θ) waves at the stage of					
	a)	Alert Condition	b)	Dreaming		
	c)	Dreamless Sleep	d)	Drowsiness.		
v) PRD is a parameter for measuring of an algorithm.						
	a)	Accuracy	b)	Predictability		
	c)	Efficiency	d)	Convergency.		
vi)	Maximum efficiency of TP algorithm is					
	a)	50%	b)	40%		
	c)	72%	d)	27%.		
vii)	Cepstral analysis is used for					
	a)	Convolution	b)	Cross-Correlation		
	c)	Auto-Correlation	d)	De-Convolution.		
viii)	The amplitude range of EEG signal is					
	a)	10-100 V	b)	10-1000 μV		
	c)	10-100 μV	d)	10-1000mV		
ix)	Mod	ern Prony's method is	base	ed on fitting N-available		
	data	data points with				
	a)	Unit Impulse Model				
	b)	Damped Sinusoidal Mo	odel			
	c)) Continuous Sinusoidal Model				
	d)	Unit Step Model.				
x)	Cross-correlation technique is used for					
	a)	QRS detection	b)	R-R interval detection		
	c)	S-T segment detection	d)	P-wave detection.		
7014		2				

Answer any three of the following.

 $3 \times 5 = 15$

- Using frequency shifting property, compute the F.T of modulating signal x₁ (n) = naⁿ, where the original signal has been frequency modulated.
- 3. How can we detect the QRS complex from an ECG signal using Automata technique ?
- 4. Briefly explain the Hypnogram Model Parameters.
- What is evoked potential ? How Prony's method is used for the analysis of evoked potential ?
 1 + 4
- 6. Construct a curve fitting graph from the CORTES data set :{1, 3, 2, -4, *0, 2, 5, -4, ** 3, 5, -2, -2, 1, 0}
 where * indicates transition from AZTEC to TP, and **
 indicates transition from TP to AZTEC.
- 7. What is Cepstral Analysis ? Why is it necessary in biomedical signal processing ? What is Real Cepstrum ?

GROUP – C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

8. Compute the auto-correlation of the following signal

 $x(n) = a^n u(n)$, for 0 < a < 1

Also find out the Normalized auto-correlation sequence of the above signal. What is the principle of Adaptive Filtering ? Write the LMS Algorithm for one weight case. 4 + 1 + 5 + 5

7014

[Turn over

- 9. How will you compare the Markov Model with Bohr's Model ? Explain the Markov Chain with an example. Discuss the linear prediction theory used for neurological signal processing. 3+5+7
- 10. i) Draw a flowchart / develop code function for the detection of Arrhythmia from a filtered ECG signal.
 - ii) In an ECG signal, if the peaks are detected at intervals70 and 180, sampled at 120 times per second, then, calculate Heart rate in bpm.
 - iii) How can you separate EMG from baseband noise ?

8 + 2 + 5

- 11. i) Describe the exponential modeling and parameter estimation of Prony's Method.
 - ii) What is *K*-complex in steep EEG ? 10 + 5
- 12. Write the CORTES algorithm for data reduction technique. How does CORTES algorithm overcome the limitations of TP and AZTEC algorithm ? Reconstruct the ECG signal by the following CORTES data, where ** is the mark separating AZTEC data from TP and *** is the mark separating TP from AZTEC. 7 + 3 + 5
- 13. Write short notes on (any *three*)

 3×5

- a) Developing code for TP algorithm
- b) Simple High Speed based QRS width detection algorithm
- c) Mel Bank filtering
- d) Spectral estimation and Spectral analyzer
- e) Dynamic of sleep-wake transition.

7014