Name :	
Roll No. :	A Demonstration and Excland
Invigilator's Signature :	

CS/B.TECH(BME)/SEM-5/CS-502/2011-12 2011

DATA STRUCTURE AND ALGORITHM

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following : $10 \times 1 = 10$

i) The best case complexity of insertion sort is

- a) $O(n^2)$ b) $O(n\log_2 n)$
- c) $O(n^3)$ d) O(n).

 ii) In a height balanced tree, height of two sub-trees of every node never differ by more than

- 1.

[Turn over

- a) 2 b) 0
- c) 1 d)

 $\mathrm{CS/B.TECH(BME)/SEM-5/CS-502/2011-12}$

iii) The technique of linear probing for collision resolution

- can lead to
- a) clustering

b) efficient storage utilization

c) overflow

- d) underflow.
- iv) Inserting a node after a specific node in a doubly linked list requires
 - a) four pointer exchanges b) two pointer exchanges
 - c) one pointer exchange d) no pointer exchange.
- No. of null pointers in any Binary Tree consisting on n nodes is
 - a) n b) n+1
 - c) n-1 d) none of these.
- vi) Breadth first search
 - a) scans all incident edges of a vertex before moving to an another vertex
 - b) scans adjacent unvisited vertex as soon as possible
 - c) is same as backtracking
 - d) is same as depth first search.

[Turn over

CS/B.TECH(BME)/SEM-5/CS-502/2011-12

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Write an algorithm to insert a node into a non-empty binary search tree.
- 3. What is Graph ? When will a vertex of a graph be called sink source ? Describe with an example. 2 + 3
- 4. Construct a B-tree of order 4 with following data :

34, 12, 21, 3, 18, 67, 44, 87, 47, 54, 56, 17, 8, 30, 45, 5, 7

5. Given below are the pre-order and in-order traversals of a binary tree. Draw the actual tree and write its post-order traversal.

Pre-order : A B D I F J C F G K

In-order : D I B E J A F C K G.

4 + 1

1

- a) Write a function to reverse the direction of all the Linksof a single Linked List.
 - b) What are the disadvantages of Linear Queue ?

7

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

Write an algorithm on Merge sort. 7. a)

- What are the best case and worst case complexity of b) Merge Sort? 1
- Write an algorithm for BFS traversal of a graph. c) 5
- Compare the best case time complexity of selection sort d) with insertion sort. 2
- What is queue ? Write an algorithm to insert an element 8. a) 'ITEM" into a circular queue named "CQUEUE" whose size is "MAXLEN". 2 + 5
 - What is 'Double Ended Queu' ? What are the variations b) of Double Ended Queue ? 2 + 3

What is 'priority queue'? c) 3 5317 5 [Turn over

c) Discuss the BFS algorithm with an example. 5

d) Find out the adjacency Matrix of the following graph : 4

10. a) Prove that the maximum number of nodes in a binary tree of depth K is 2^{K} 1. 5

b) Write a C-function to delete 1st mode of the Doubly Link List. 4

2

c) What is Tail recursion ?

d) Prove that the number of degree vertices in a graph is always even.

CS/B.TECH(BME)/SEM	1-5/CS-502/2011 Utech
11. a) Write a C-function to insert any node the Circular Link List.	e at any position of
b) Discuss the advantages of Single Link	ed List over Array.
	2
c) Write down the C-function of Insertion	n sort. 4
d) Write an algorithm to insert a node	in a binary search
tre.	5
5317 7	[Turn over