

Invigilator's Signature :

Name :

CS/B.Tech(BME)/SEM-5/CS-502/2009-10 2009

DATA STRUCTURE AND ALGORITHM

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

Choose the correct alternatives for the following : 1.

 $10 \propto 1 = 10$

[Turn over

- i) Complexity of the Binary search algorithm is
 - b) $O(2^n)$ O(n)a)
 - $O(\log 2^n)$ $O(n^2).$ c) d)
- Hashing is a method of ii)
 - sorting searching a) b)
 - deleting. inserting c) d)

No. of elements present in queue is iii)

- Rear + Front 1 b) Rear – Front – 1 a)
- Rear Front + 1 Rear + Front. d) c)

55725

CS/B.Tech(BME)/SEM-5/CS-502/2009-10					
iv) The maximum number of nodes possible in a complete					
	binary tree of height ' <i>n</i> ' is				
	a)	2 <i>n</i> + 1	b)	2n – 1	
	c)	2 + 6n	d)	$2^{n} - 1.$	
v) With every use of a memory allocation function, which					
	function should be used to deallocate the memory				
	which is no longer needed ?				
	a)	release ()	b)	free()	
	C)	mallo()	d)	callo ().	
vi)	Which data structure is used for BFS of graph ?				
	a)	Stack	b)	Queue	
	c)	Linked list	d)	Both (a) & (b).	
vii)	For Bubble sort if number of elements is 8 then what is				
	the number of comparisons needed to sort the list ?				
	a)	28	b)	25	
	c)	26	d)	27.	
viii)	The tree traversal technique in which the root is traversed before its children is known as				
	a)	post-order	b)	pre-order	
	c)	in-order	d)	last-order.	
ix)	A linear list in which elements can be added or remov				
	at either end but not in the middle is known as				
	a)	queue	b)	dequeue	
	c)	stack	d)	graph.	
X)	The	The in-order traversal of a Binary search tree produces			
,	the numbers in order.				
	a)	ascending	b)	descending	
	c)	reverse	d)	none of these.	
	0,		ω,		
55725		2			

[Turn over

- 8. a) Write the code to create and display the node of a linked list.
 - b) Write an algorithm or *c* function to insert a node at beginning & end position of a circular linked list.
 - c) Represent the following polynomial by linked list (show the diagram only) :

 $10x^8 - 9x^5 + 3x^3 + 2x^2 - 8x - 5.$

- d) What is doubly linked list ? Write an algorithm or *c* function to insert a node after a particular node in a doubly linked list.
 2 + 5 + 2 + (1 + 5)
- 9. a) What is binary search tree ?
 - b) Construct an expression tree for the expression :

$$E = (\partial x + y - z) / (5a * 3b / 6c).$$

- c) Write down the algorithms or c functions for PUSH & POP operations on stack.
- d) The pre-order and in-order traversal sequences of nodes in a binary tree are given below :

Pre-order — M A D H U S M I T A

In-order — M A D H U S M I T A

Construct the binary tree and state the logic to construct the tree. 2+2+6+(3+2)

- 10. Write short notes on any *three* of the following : $3 \approx 5$
 - a) Threaded Binary Tree
 - b) Hashing Function
 - c) B Tree
 - d) Digraph
 - e) Inverted file
 - f) AVL Tree.

55725