	UNVERSITY OF TECHNOLOGY
	000
	Utech
Name :	
Roll No. :	Company and
	- O'Canado Internet

Invigilator's Signature :

CS/B.Tech (BME)/SEM-5/BME-505/2010-11 2010-11 COMMUNICATION CIRCUITS AND SYSTEMS

Time Allotted : 3 Hours

Full Marks : 70

[Turn over

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following : $10 \times 1 = 10$

- A carrier is simultaneously amplitude modulated by two sine waves causing individual modulation of 30% and 40%. The overall modulation index is
 - a) 50% b) 35%
 - c) 70% d) 40%

ii) A 1 kW carrier is modulated to a depth of 60%. The total power in the modulated carrier is

- a) 1 kW b) 1.06 kW
- c) 1.18 kW d) 1.6 kW.

5506

CS/B.Tec	h (Bl	ME)/SEM-5/BME-505	/2010	D-11 000						
iii)	iii) Practical bandwidth of a narrow-band FM signal is									
	equals (f_m = modulating signal frequency)									
	a)	f_m	b)	$2 f_m$						
	c)	$3 f_m$	d)	$1/2 f_m$.						
iv)	In sampling theorem, Nyquist interval T equals									
	a)	$1/2 f_m$	b)	$1/f_m$						
	c)	$1/5 f_m$	d)	$1/10 f_m$.						
v)	Qua	ntization noise occurs	in							
	a)	РСМ	b)	TDM						
	c)	FDM	d)	PWM.						
vi)	To g	generate PCM, the sign	al is	sampled and converted						
	into									
	a)	PWM	b)	PPM						
	c)	РАМ	d)	PDM.						
vii)	In a conventional superheterodyne receiver, the image									
	signal frequency is given by									
	a)	$f_s + f_i$	b)	$f_{\rm s}$ + 2 f_{i}						
	c)	$f_s - f_i$	d)	$f_2 - 2 f_i$.						
viii)	Which of the following gives maximum probability of									
	error ?									
	a)	ASK	b)	FSK						
	c)	PSK	d)	DPSK.						
5506		2								

[Turn over

CS/B.Tech (BME)/SEM-5/BME-505/2010-11

- 5. How do you get FM and vice-versa ?
- 6. Write on various modulation techniques used in Biotelemetry.
- 7. A sub-carrier of 70 kHz is amplitude-modulated by tones of 2·1 and 6·8 kHz. The resulting AM signal is then used to amplitude-modulate a carrier of 12·5 MHz. Calculate all sideband frequencies in the composite signal and draw the frequency domain display of the signal.

GROUP – C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) With detail diagram, explain the operation of envelope detector circuit. 5
 - b) Explain in detail with a block diagram and necessary equation, generation of SSB-SC signal by the phaseshift method. Give the advantages and disadvantages of this method. 5+2

5506

			CS/E	3.Tech (BM	E)/SEM	I-5/BME-505/2010	-11			
	c)	An	AM	signal	is	represented	as			
Y		$V_{AM}(t)$ =	= 20 (1 + 0	$\cdot 5 \cos 628$	0t) cos 6	$6.28 \times 10^{6} t.$	b			
	C	Find out percentage of modulation, modulating signa								
	frequency, carrier frequency and side-band frequenc									
		•					3			
9	a)	What is	sfrequen	cy deviatio	n in FM	system ?	2			
0.	u)	what is	, nequen	ey deviatio		System .	2			
	b)	What is	S NBFM 7	Find out	its expre	ession.	4			
			C	3						
	c)	Describ	e genera	tion of FM	using A	rmstrong method.	6			
	d)	An 800) Hz, 3	V modulat	ing sigr	nals in an FM syst	em			
		produces a deviation of 6 kHz. If the modulating voltage								
		is incr	eased to	6 V, wha	at will l	be the new freque	ncy			
		deviatio	on?	4	Z		3			
10.	a)	Disting	uish betv	ween TDM	and FD	М.	2			
	b)	Explain	i the ope	ration of T	ime divi	sion multiplexing w	rith			
		necessa	ary schei	natic diagr	am.		6			
	c)	Explain	how do	o PPM and	l PWM	signals are genera	ted			
		from PA	AM signa	ls.			5			
			_							
550	6			5		[Turn c	over			

CS/B.Tech (BME)/SEM-5/BME-505/2010-11 A signal x (t) = 2 sin $4000\pi t + 3$ sin d) 5000 + 4 sin 8000 πt has to be truly represented by its samples. Find the minimum sampling rate. 2 11. a) With necessary diagram, explain FSK and ASK 10 transmitter and receiver. Draw ASK, FSK and PSK signal generated by binary b) sequence 0101001. 3

- c) Find out the baud rate and the minimum bandwidth necessary to pass a 15 kbps binary signal using amplitude shift keying.
 2
- 12. a) With the help of a neat diagram, explain the working principle of successive approximation type A/D converter. 7
 - b) What is Delta Modulation ? With the help of a block diagram, show the Delta modulation process.

5506

