<i>Name</i> :	
Roll No.:	On Physical Coll State State Confession
Invigilator's Signature :	

2012

BIOPHYSICAL SIGNALS AND SYSTEMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1.	Choose the	correct	alternatives	of the	following
----	------------	---------	--------------	--------	-----------

 $10 \times 1 = 10$

i) f (t) will be periodic signal of fundamental				ndamental time period T
	if		, α λ	
	a)	f(t-T) = f(T)	b)	f(t + T) = f(t)
	c)	f(-t) = f(T)	d)	none of these.
ii)	i) The capacitor has			
	a)	no memory	b)	long time memory
	c)	flash memory	d)	none of these.

- iii) A system will be linear if it obeys the principle of
 - a) filtering b) superposition
 - c) rectification d) none of these.
- iv) In wavelet analysis, increased frequency leads to
 - a) Increasing window width
 - b) Increasing window height
 - c) Decreasing window width
 - d) Decreasing window height.

3123(N) [Turn over

- v) Noise in a semiconductor is due to
 - a) diffusion of electrons and holes
 - b) diffusion of holes and protons
 - c) collision of electrons and holes
 - d) collision of holes and protons.
- vi) By using negative feedback in a system we can reduce
 - a) Noise
 - b) Distortion
 - c) External sensitivity to system
 - d) all of these.
- vii) Sensitivity of a system having system Transfer function T & subsystem transfer function G is represented as
 - a) S_T^G

b) S_0^2

c) $(S^T)^G$

- d) $(S^G)^T$.
- viii) Nominal characteristic resistance of the BPF Rk is
 - a) \sqrt{LC}

b) $\frac{\sqrt{I}}{C}$

c) $\frac{\sqrt{C}}{L}$

- d) $L\sqrt{C}$.
- ix) In cardiovascular system the electrical equivalent of pressure drop across a blood vessel is
 - a) Charge
- b) Voltage
- c) Current
- d) Capacitance.
- x) In the electrical model of Blood vessel the Capacitor incorperate to indicate its
 - a) Resistivity
- b) Elasticity
- c) Permeability
- d) Conductivity.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Define Energy signal and Power Signal.

- 3. How could you reduce the noise by using feedback system? $2\frac{1}{2} + 2\frac{1}{2}$
- 4. Check whether the following systems are linear or non-linear:

i)
$$\frac{d}{dt}[y(t)] + 2[y(t)] = x(t)$$

- ii) Y(n) = n X(n) $2\frac{1}{2} + 2\frac{1}{2}$
- 5. Draw and discuss the equivalent model of nerve membrane.
- 6. What do you mean by noise? Define different kind of noise with equation. 1 + 4

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Find the power and rms value of the signal $x(t) = A\cos(\omega_0 t + \varphi)$ 2 + 6 + 4 + 3
 - b) A pair of sinusoidal signals with a common angular frequency is defined as

$$X_1[n] = \sin(5\pi n)$$

$$X_2[n] = \sqrt{3} \cos(5\pi n)$$

- i) Specify the condition, which the period N of both X_1 [n] and X_2 [n] must satisfy for them to be periodic.
- ii) Evaluate the amplitude and phase angle of composite sinusoidal signal : Y $[n] = X_1 [n] + X_2 [n]$
- c) A discrete time signal defined as $x[n] = C \alpha^n$, where $C \& \alpha$ both are real.

Draw the curves when

i)
$$\alpha < -1$$

ii)
$$-1 < \alpha > 0$$

iii)
$$0 < \alpha > 1$$

iv)
$$\alpha = 1$$

v)
$$\alpha > 1$$
.

$$(3+2)+5+5$$

- 8. a) Derive the synthesis and analysis equations of the Fourier transformation.
 - b) A discrete time signal x [n] is shown in the figure below:

Sketch and label each of the following carefully:

- i) 2x[n]
- ii) x[n/2]
- iii) x [3n]
- iv) $\left(\frac{1}{2}\right) \times [3n-1]$
- v) x [3n + 1].
- c) Draw a model to show recording of nerve action potential. 4 + 7 + 4
- 9. Write short notes on any three of the following:
- 3×5

- a) System Linearity
 - b) Time Reversal and time shifting
- c) Even and Odd signals
- d) Sensitivity analysis by Feedback.
- e) Notch Filter and its importance for biomedical signal analysis.
- 10. a) What do you mean by Laplace Transform?
 - b) Find the Z-transform and the region of convergence (ROC) of the discrete time signal x (n) given as

$$x(n) = a^n \text{ for } n \ge 0$$
$$= 0 \text{ for } n < 0$$

c) Obtain the convolution of the two continuous time functions given below:

$$x(t) = e^{-t^2}$$
 and $h(t) = 3t^2$.