2	
Name :	
Roll No. :	A Annual (VExamining and Exclored
Invigilator's Signature :	

CS/B.TECH (BME)/SEM-3/BME-301/2010-11

2010-11

BIOPHYSICAL SIGNALS & SYSTEMS SIMULATION

Time Allotted : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

1. Choose the correct alternatives for the following :

 $10 \times 1 = 10$

- i) A system will be linear of it obeys the principle of
 - a) filtering **b**) superposition
 - c) rectification d) none of these.
- ii) Noise in a semiconductor is due to
 - a) diffusion of electrons and holes
 - b) diffusion of holes and protons
 - c) collision of electrons and holes
 - d) collision of holes and protons.
- iii) By using negative feedback in a system we can reduce
 - a) Noise
 - b) Distortion
 - c) External sensitivity to system
 - d) All of these.

[Turn over

				UNVERTITY OF TECHNOLOGY	
CS/B.TE	CH (BME)/SEM-3/BME-301	/201	.0-11	
iv)	Ser	nsitivity of a system hav	ing s	ystem Transfer function	
T & subsystem transfer function G is represented as					
	a)	S_T^G	b)	S_G^T	
	C)	$(S^T)^G$	d)	$(S^G)^T$.	
v)	y[n] = x[n] + x[n - 1] + x[n - 2] is a				
	a)	Causal System	b)	Non-Causal System	
	c)	Stable System	d)	Both (a) & (c).	
vi)	The	e capacitor has			
	a)	No memory	b)	Memory	
	c)	Both (a) & (b)	d)	None of these.	
vii)	To eliminate the interference of power line signal during				
	measurement of Bio-signal we need				
	a)	Low-pass Filter	b)	High-pass Filter	
	c)	Band-pass Filter	d)	Notch Filter.	
viii)	Average frequency range of P.C.G. signal is				
	a)	0·5 Hz – 30 Hz	b)	0∙05 Hz – 100 Hz	
	c)	4 Hz – 250 Hz	d)	80 Hz – 3 kHz.	
ix)	In	cardiovascular system	the	electrical equivalent of	
	pressure drop across a blood vessel is				
	a)	Charge	b)	Voltage	
	c)	Current	d)	Capacitance.	
3013		2			

CS/B.TECH (BME)/SEM-3/BME-301/2010-11

If f_c be the central frequency, f_L be the low cut-off frequency and f_H be the high cut-off frequency of a band-pass filter then the Q-factor this filter is defined as

a)
$$f_c / (f_H - f_L)$$

b) $f_c / (f_H + f_L)$
c) $f_c / (f_H \times f_L)$
d) $(f_H - f_L) / f_c$.

GROUP – B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Show that in a two stage cascade amplifier the equivalent noise factor (F_n) is defined as $F_n = F_1 + (F_2 1)/A_1$. Where F_1 and F_2 are the corresponding noise factor of each amplifier and A_1 is the gain of the first stage amplifier. 5
- 3. Prove the following :
 - a) $\delta[n] = v[n] u[n 1]$
 - b) $u[n] = \sum \delta[k]$ where $k = -\infty$ to n. $(2\frac{1}{2} + 2\frac{1}{2})$
- 4. In a resistor, if maximal thermal energy is generated when the ratio of ω/α is 0.025, then, what is the angular frequency (ω) of the Brownian motion of free electrons ? If the present value of ω is increased by 2.5 times, then, what is the ratio of ω/α [α = 10¹⁴]
- 5. Design an active B.R.F. having gain 5 and $f_{\rm H}$ = 400 $H_{\rm Z}$ and $f_{\rm L}$ = 1*kHz.* 5

3013

[Turn over

- 6. Briefly discuss the procedure for recording Nerve action with proper diagram.
- 7. What is feedback system ? What is the significance of negative and positive feedback ? Which one you should prefer to use in Bio-physical system and why ?

1 + (1 + 1) + (1 + 1)

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

8. a) Determine the Fourier Series (FS) representation for the continuous time signal x [t] where,

 $x [t] = 3 \cos (\pi t/2 + \pi/4)$

b) In case of recording E.M.G. signal with interfering E.C.G. signal, the frequency bands of the two signals are roughly 40-2000 Hz and 0.05 to 80 Hz respectively. In such situations, what type of filter you should prefer for retaining as much of the E.M.G. signal and why ?

Design that filter with proper circuit diagram.

c) In Bio-potential amplifiers, several amplifiers are used in cascade form those are generating noise to the output signal. Consider a two stage E.C.G. amplifier the gain of the first stage is A_1 and that of second A_2 and first stage has a total input noise resistance R_1 , the second R_2 and the output resistance is R_3 . The corresponding noise voltages are V_{n1} , V_{n2} , and V_{n3} respectively.

- 9. a) With schematic diagram describe the immune response to an infection.
 - b) Describe by block diagram, the closed loop operation of the cardiovascular system representing the four chamber of heart.
 - c) Develop the equation for the arterial pressure dynamics with its transfer function. 5 + 5 + 5
- 10. a) What do you mean by modulation of a signal ? Explain it with proper mathematical support.
 - b) Show that time shifting in time domain signal is equivalent to phase shifting in frequency signal.4
 - c) An LTI system with input x(t) and impulse response h(t) is described by the following differential equation :

$$\frac{\mathrm{d}\mathbf{y}(t)}{\mathrm{d}t} - 3\mathbf{y}(t) = 3\mathbf{x}(t).$$

Obtain the transfer function, impulse response, frequency response of the system.

[Turn over

CS/B.TECH (BME)/SEM-3/BME-301/2010-11

4

11. a) Consider a single loop feedback amplifier, the block diagram of which is shown in the given figure : 7

It consists of a linear amplifier with gain A and a negative feedback, network. The later component feeds a controllable fraction G of the output signal back to the input. It is given that the gain of the amplifier is 1000.

- Determine the value of G that will result in a closed loop gain T = 3.
- ii) Suppose the gain A changes by 5%, what is the corresponding % change in the closed loop gain ?
- b) What is voltage divider ? Design a circuit to obtain 3V from a 5V power supply.5
- c) The signal x(t) is defined as $x(t) = e_j^{2t} + e_j^{3t}$. Find out the magnitude of x(t) and plot it. 3
- 12. a) Briefly discuss about the Huxley model of skeletal muscle contraction. 5
 - b) Draw and discuss the equivalent model of nerve membrane. 6

c) Draw the block diagram of E.M.G. modeling.

CS/B.TECH (BME)/SEM-3/BME-301/2010-11 Utech 13. Write the short notes on any *three* of the following : 3 × 5

 \cap

- a) System memory
- b) Time scaling and time shifting
- c) Energy signals and power signals
- d) Distortion analysis using Feedback system.
- e) Properties of Fourier Transform.

3013

[Turn over