MADHAVA MATHEMATICS COMPETITION (A Mathematics Competition for Undergraduate Students) Organized by Department of Mathematics, S. P. College, Pune and Homi Bhabha Centre for Science Education, T.I.F.R., Mumbai

Date: 23/01/2022

Max. Marks: 50

Time: 12.00 noon to 1.30 p.m.

N.B.: Part I carries 20 marks, Part II carries 20 marks and Part III carries 10 marks.

Part I: MCQ with single correct answer

N.B. Each question in Part I carries 2 marks for correct the answer and -1 mark for a wrong answer.

- 1. Let the sequence $\{x_n\}$ be defined as follows: $x_1 = 1$ and x_n is the smallest prime factor of n. Then the sequence $\{x_n\}$
 - (a) is monotonic
 - (b) diverges to infinity
 - (c) has a convergent subsequence
 - (d) is not bounded below

Ans:(c)

- 2. The equation $x^6 x 1 = 0$ has
 - (a) no positive real root
 - (b) exactly one positive real root
 - (c) exactly two positive real roots
 - (d) all roots are real and positive

Ans:(b)

3. The value of θ ($0 \le \theta \le \pi/2$) for which the number $\frac{2+3i\sin\theta}{1-2i\sin\theta}$ is purely imaginary is

- (a) $\pi/6$
- (b) $\pi/3$
- (c) $sin^{-1}(\sqrt{3}/4)$
- (d) $sin^{-1}(1/\sqrt{3})$

Ans:(d)

- 4. Consider the curve $y = 2x^4 + 7x^3 + 3x 5$. Let $P_i = (x_i, y_i)$ be four distinct points of intersection of a line with the given curve. Then the value of $\frac{x_1 + x_2 + x_3 + x_4}{4}$ is
 - (a) -7/8
 - (b) -7/2
 - (c) 7/8
 - (d) 7/2

Ans:(a)

- 5. If one root of the equation $x^2 + px + 12 = 0$ is 4 while the equation $x^2 + px + q = 0$ has equal roots, the value of q is
 - (a) 4/49
 - (b) 49/4
 - (c) -49/4
 - (d) -4/49

Ans:(b)

- 6. Which of the following equations has greatest number of real solutions?
 - (a) $x^3 = 10 x$
 - (b) $x^2 + 5x 7 = x + 8$
 - (c) 7x + 5 = 1 3x
 - (d) $e^x = x$

Ans:(b)

- 7. Let gcd(a, b) = 1, then $gcd(a + b, a^2 ab + b^2) =$
 - (a) 2
 - (b) 1 or 2
 - (c) 1 or 3
 - (d) 2 or 3

Ans:(c)

- 8. Suppose f is continuous in [0, 2] and differentiable in (0, 2). If f(0) = 0 and $|f'(x)| \le 1/2$ for all $x \in [0, 2]$, then
 - (a) $|f(x)| \le 1$
 - (b) $|f(x)| \le 1/2$
 - (c) f(x) = 2x
 - (d) f(x) = 3 for at least one $x \in [0, 2]$.

Ans:(a)

- 9. Let $A = \{a, b, c, d\}$ and $B = \{1, 2, 3\}$. The number of functions from A to B such that exactly one element in B has two pre-images is
 - (a) 12
 - (b) 18
 - (c) 24
 - (d) 36

Ans:(d)

- 10. Consider a square matrix $A = [a_{ij}]$ of order 3, all whose entries are either 0 or 1. Five of these entries are 1 and four of them are 0. Also $a_{ij} = a_{ji}$ for all $1 \le i, j \le 3$. Then the number of such matrices is
 - (a) 12
 - (b) 9
 - (c) 3
 - (d) 1

Ans:(a)

Part II: Numerical Questions

N.B. The answer to each question in Part II is an integer. Each question in Part II carries 2 marks. No marks will be deducted for wrong answer.

1. If the matrix $A = \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix}$ satisfies the equation $A^2 - kA + 2I = 0$, then the value of k is

Ans: 1

2. The remainder when $\sum_{r=1}^{100} r!$ is divided by 12 is

Ans: 9

3.
$$3^1 \times 3^{1/2} \times 3^{1/4} \times 3^{1/8} \times \cdots =$$

Ans: 9

4. Let f be a differentiable real valued function on (-1, 4) such that f(3) = 5 and $f'(x) \ge -1$ for all x. Then the greatest possible value of f(0) is

Ans: 8

5. Suppose the remainder when $x^{81} + x^{49} + x^{25} + x^9 + x$ is divided by $x^3 - x$ is $ax^2 + bx + c$. Then the value of b is

Ans: 5

6. If the sum of the series $a+ar+ar^2+\cdots$ is 4 and the sum of the series $a^3+a^3r^3+a^3r^6+\cdots$ is 192. Then the value of a is

Ans: 6

7. The sum of the series $1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+\dots+n} + \dots$ is

Ans: 2

8. The number of ways to write $5 = a_1 + a_2 + \cdots + a_k$, where all a_i are integers satisfying $1 \le a_1 \le a_2 \le \cdots \le a_k \le a_1 + 1$ is

Ans: 5

9. The number of solutions of $\sin^5 x + \cos^5 x = 1$ in $[0, \pi]$ is

Ans: 2

10. If $A = [a_{ij}]$ is a square matrix of order 5 such that the entry $a_{ij} = 1$ if and only if i = j or i + j = 6, and 0 otherwise, then the rank of A is

Ans: 3

Part III: Multiple Select Questions

N.B. Each question in Part III carries 2 marks. No marks will be deducted for wrong answer. Each question may have more than one correct alternatives. A candidate gets 2 marks if he/she selects all the correct answers only and no wrong answers.

- 1. If the equation $ax^2 + bx + c = 0$, (a > 0) has two roots α, β such that $\alpha < -2$ and $\beta > 2$, then
 - (a) $b^2 4ac > 0$
 - (b) c < 0
 - (c) a + |b| + c < 0
 - (d) 4a + 2|b| + c < 0

Ans: (a),(b),(c),(d).

- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function and $a \in \mathbb{R}$. Define $g : [a, \infty) \to \mathbb{R}$ as $g(x) = \sup\{f(t) : t \in [a, x]\}$. Then
 - (a) g is continuous
 - (b) g is monotonically decreasing
 - (c) g is monotonically increasing
 - (d) g is differentiable whenever f is differentiable.

Ans: (a),(c).

- 3. Let $\{a_n\}$ and $\{b_n\}$ be two sequences of non-zero real numbers. We say that $\{a_n\}$ and $\{b_n\}$ are almost equal if $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$. Which of the following sequences are almost equal?
 - (a) $a_n = n + \sqrt{n}, b_n = n.$ (b) $a_n = n^2 + \sqrt{n}, b_n = n.$ (c) $a_n = n!, b_n = n^n.$ (d) $a_n = (1 + \frac{1}{n})^n, b_n = e.$

Ans: (a),(d).

- 4. For which of the following functions $f : \mathbb{R} \to \mathbb{R}$ the ratio $\frac{f(k) f(m)}{k m}$ is constant for all $k, m \ (k \neq m)$?
 - (a) $f(x) = x^2 + x$
 - (b) f(x) = x + |x|
 - (c) f(x) = 4x + 7
 - (d) f(x) = |x|

Ans: (c).

- 5. Let α be a 2022^{nd} root of unity. Then which of the following are possible values of $1 + \alpha + \alpha^2 + \cdots + \alpha^{2021}$?
 - (a) 0
 - (b) *i*
 - (c) 2021
 - (d) 2022

Ans:(a),(d)