MADHAVA MATHEMATICS COMPETITION
 (A Mathematics Competition for Undergraduate Students)
 Organized by
 Department of Mathematics, S. P. College, Pune and
 Homi Bhabha Centre for Science Education, T.I.F.R., Mumbai

Date: 23/01/2022
Max. Marks: 50
Time: 12.00 noon to 1.30 p.m.
N.B.: Part I carries 20 marks, Part II carries 20 marks and Part III carries 10 marks.

Part I: MCQ with single correct answer
N.B. Each question in Part I carries 2 marks for correct the answer and -1 mark for a wrong answer.

1. Let the sequence $\left\{x_{n}\right\}$ be defined as follows: $x_{1}=1$ and x_{n} is the smallest prime factor of n. Then the sequence $\left\{x_{n}\right\}$
(a) is monotonic
(b) diverges to infinity
(c) has a convergent subsequence
(d) is not bounded below

Ans:(c)
2. The equation $x^{6}-x-1=0$ has
(a) no positive real root
(b) exactly one positive real root
(c) exactly two positive real roots
(d) all roots are real and positive

Ans:(b)
3. The value of $\theta(0 \leq \theta \leq \pi / 2)$ for which the number $\frac{2+3 i \sin \theta}{1-2 i \sin \theta}$ is purely imaginary is
(a) $\pi / 6$
(b) $\pi / 3$
(c) $\sin ^{-1}(\sqrt{3} / 4)$
(d) $\sin ^{-1}(1 / \sqrt{3})$

Ans:(d)
4. Consider the curve $y=2 x^{4}+7 x^{3}+3 x-5$. Let $P_{i}=\left(x_{i}, y_{i}\right)$ be four distinct points of intersection of a line with the given curve. Then the value of $\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}$ is
(a) $-7 / 8$
(b) $-7 / 2$
(c) $7 / 8$
(d) $7 / 2$

Ans:(a)
5. If one root of the equation $x^{2}+p x+12=0$ is 4 while the equation $x^{2}+p x+q=0$ has equal roots, the value of q is
(a) $4 / 49$
(b) $49 / 4$
(c) $-49 / 4$
(d) $-4 / 49$

Ans:(b)

6. Which of the following equations has greatest number of real solutions?
(a) $x^{3}=10-x$
(b) $x^{2}+5 x-7=x+8$
(c) $7 x+5=1-3 x$
(d) $e^{x}=x$

Ans:(b)

7. Let $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}\left(a+b, a^{2}-a b+b^{2}\right)=$
(a) 2
(b) 1 or 2
(c) 1 or 3
(d) 2 or 3

Ans:(c)

8. Suppose f is continuous in $[0,2]$ and differentiable in $(0,2)$. If $f(0)=0$ and $\left|f^{\prime}(x)\right| \leq 1 / 2$ for all $x \in[0,2]$, then
(a) $|f(x)| \leq 1$
(b) $|f(x)| \leq 1 / 2$
(c) $f(x)=2 x$
(d) $f(x)=3$ for at least one $x \in[0,2]$.

Ans:(a)

9. Let $A=\{a, b, c, d\}$ and $B=\{1,2,3\}$. The number of functions from A to B such that exactly one element in B has two pre-images is
(a) 12
(b) 18
(c) 24
(d) 36

Ans:(d)
10. Consider a square matrix $A=\left[a_{i j}\right]$ of order 3 , all whose entries are either 0 or 1 . Five of these entries are 1 and four of them are 0 . Also $a_{i j}=a_{j i}$ for all $1 \leq i, j \leq 3$. Then the number of such matrices is
(a) 12
(b) 9
(c) 3
(d) 1

Ans:(a)

Part II: Numerical Questions

N.B. The answer to each question in Part II is an integer. Each question in Part II carries 2 marks. No marks will be deducted for wrong answer.

1. If the matrix $A=\left(\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right)$ satisfies the equation $A^{2}-k A+2 I=0$, then the value of k is \qquad
Ans: 1
2. The remainder when $\sum_{r=1}^{100} r$! is divided by 12 is

Ans: 9
3. $3^{1} \times 3^{1 / 2} \times 3^{1 / 4} \times 3^{1 / 8} \times \cdots=$

Ans: 9

4. Let f be a differentiable real valued function on $(-1,4)$ such that $f(3)=5$ and $f^{\prime}(x) \geq-1$ for all x. Then the greatest possible value of $f(0)$ is

Ans: 8
5. Suppose the remainder when $x^{81}+x^{49}+x^{25}+x^{9}+x$ is divided by $x^{3}-x$ is $a x^{2}+b x+c$. Then the value of b is

Ans: 5
6. If the sum of the series $a+a r+a r^{2}+\cdots$ is 4 and the sum of the series $a^{3}+a^{3} r^{3}+a^{3} r^{6}+\cdots$ is 192 . Then the value of a is \qquad
Ans: 6
7. The sum of the series $1+\frac{1}{1+2}+\frac{1}{1+2+3}+\cdots+\frac{1}{1+2+\cdots+n}+\cdots$ is $\ldots .$.

Ans: 2
8. The number of ways to write $5=a_{1}+a_{2}+\cdots+a_{k}$, where all a_{i} are integers satisfying $1 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{k} \leq a_{1}+1$ is \ldots.

Ans: 5
9. The number of solutions of $\sin ^{5} x+\cos ^{5} x=1$ in $[0, \pi]$ is \ldots.

Ans: 2

10. If $A=\left[a_{i j}\right]$ is a square matrix of order 5 such that the entry $a_{i j}=1$ if and only if $i=j$ or $i+j=6$, and 0 otherwise, then the rank of A is

Ans: 3

Part III: Multiple Select Questions

N.B. Each question in Part III carries 2 marks. No marks will be deducted for wrong answer. Each question may have more than one correct alternatives. A candidate gets 2 marks if he/she selects all the correct answers only and no wrong answers.

1. If the equation $a x^{2}+b x+c=0,(a>0)$ has two roots α, β such that $\alpha<-2$ and $\beta>2$, then
(a) $b^{2}-4 a c>0$
(b) $c<0$
(c) $a+|b|+c<0$
(d) $4 a+2|b|+c<0$

Ans: (a),(b),(c),(d).
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and $a \in \mathbb{R}$. Define $g:[a, \infty) \rightarrow \mathbb{R}$ as $g(x)=\sup \{f(t): t \in[a, x]\}$. Then
(a) g is continuous
(b) g is monotonically decreasing
(c) g is monotonically increasing
(d) g is differentiable whenever f is differentiable.

Ans: (a),(c).
3. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences of non-zero real numbers. We say that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are almost equal if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$. Which of the following sequences are almost equal?
(a) $a_{n}=n+\sqrt{n}, b_{n}=n$.
(b) $a_{n}=n^{2}+\sqrt{n}, b_{n}=n$.
(c) $a_{n}=n!, b_{n}=n^{n}$.
(d) $a_{n}=\left(1+\frac{1}{n}\right)^{n}, b_{n}=e$.

Ans: (a),(d).
4. For which of the following functions $f: \mathbb{R} \rightarrow \mathbb{R}$ the ratio $\frac{f(k)-f(m)}{k-m}$ is constant for all $k, m \quad(k \neq m)$?
(a) $f(x)=x^{2}+x$
(b) $f(x)=x+|x|$
(c) $f(x)=4 x+7$
(d) $f(x)=|x|$

Ans: (c).
5. Let α be a $2022^{\text {nd }}$ root of unity. Then which of the following are possible values of $1+\alpha+\alpha^{2}+\cdots+\alpha^{2021}$?
(a) 0
(b) i
(c) 2021
(d) 2022

Ans:(a),(d)

