

SAMPLE PAPER

FOR CLASS

12th Pass Students

STREAM : [ENGINEERING]

TIME : 2 Hours

FULL MARKS : 300

INSTRUCTIONS

[A] General

- 1. This Question paper contains THREE Parts, A, B and C (Physics, Chemistry, and Mathematics).
- 2. This Question Paper contains 15 pages including cover page.
- 3. This question paper contains 75 questions. Each subject have 25 single choice answer type questions).
- 4. The Question Paper has blank spaces at the bottom of each page for rough work. No additional sheets will be provided for rough work.
- 5. Blank papers, clip boards, log tables, slide rule, calculators, cellular phones, pagers and electronic gadgets, in any form, are NOT allowed.
- 6. The OMR (Optical Mark Recognition) sheet shall be provided separately.

[B] Answering on the OMR

- 7. In all the parts, each question will have 4 choices out of which only one choice is correct.
- 8. Darken the bubble with Ball Pen (Blue or Black) ONLY.

[C] Filling OMR

- 9. On the OMR sheet, fill all the details properly and completely, otherwise your OMR will not be checked.
- 10. Do not write anything or tamper the barcode in the registration no. box.

[D] Marking Scheme:

11. For each question you will be awarded 4 marks if you darken the bubble corresponding to the correct answer ONLY and zero (0) marks if no bubble is darkened. In all other cases, minus one (-1) mark will be awarded.

Name :																			
Regis	tration N	lo.:																	
		HEAD	OFFICE :	Raj C	omplex	(, Near	Lalita	Hotel,	East Bo	oring (Canal	Road	, Patna	a-8000(01 84	34267	988 8	35418	06988

SECTION – A : PHYSICS

1. The figure shows two large, closely placed, parallel, nonconducting sheets with identical (positive) uniform surface charge densities, and a sphere with a uniform (positive) volume charge density. Four points marked as 1, 2, 3 and 4 are shown in the space in between. If E_1 , E_2 , E_3 and E_4 are magnitude of net electric fields at these points respectively then :

(A) $E_1 > E_2 > E_3 > E_4$ (B) $E_1 > E_2 > E_3 = E_4$ (C) $E_3 = E_4 > E_2 > E_1$ (D) $E_1 = E_2 = E_3 = E_4$ 2. An infinitely long wire carrying current I is along Y axis such that its one end is at point A (0, b) while the wire extends up to + ∞ . The magnitude of magnetic field strength at point (a, 0)

3. An inclined plane is moving with constant velocity v = 4 m/s on a horizontal surface as shown in figure. If a block of mass 2kg is kept at top of the incline and their is no friction between the block and the incline, then the distance travelled by the incline till the block reaches bottom of the inclined, is : (take g = 10 m/s²)

4. A block of mass m is kept on a rough horizontal floor having coefficient of friction μ. A constant horizontal force F is applied on the block towards right due to which it is moving with a constant acceleration a. Free body diagram of the object is shown in the figure.

Where should we put another charge on the line AB from A, so that it stays in equilibrium 10. A ●R +40d d (A) (B) 2 6 A man can jump upto height h on earth. How much he will be able to jump on a planet whose 11. radius is half of earth's radius and mass is half of the mass of earth $(B) \frac{h}{2}$ (A) h (C) 2 h (D) 4 h 12. In the arrangement shown, if current is increasing in the wire, the direction of induced current in the loop will be Increasing (B) anticlockwise (C) zero (A) clockwise (D) none 13. Energy of second excited state of Li⁺⁺ (given the energy of ground state electron in H-atom is -13.6 eV) (A) -13.6 eV (B) -3.4 eV (C) -1.51 eV (D) -0.54 eV The dimension of coefficient of viscosity is 14. (C) $M^{-1}L^{-1}T^{-2}$ (B) $ML^{2}T^{-1}$ (A) $ML^{-1}T^{-2}$ (D) ML-1T-1 Two vibrating tuning forks producing progressive waves given as $y_1 = 4 \sin (100 \pi t)$ and $y_2 = 6$ 15. sin (106 π t) are held near the ear of a person. The person will hear (A) 3 beats per sec with intensity ratio between maxima and minima equal to 5:1 (B) 3 beats per sec with intensity ratio between maxima and minima equal to 25:1 (C) 6 beats per sec with intensity ratio between maxima and minima equal to 5:1 (D) 6 beats per sec with intensity ratio between maxima and minima equal to 25:1 16. An object is spread from 2f to ∞ in front of a convex lens of focal length f, as shown in the figure. The length of the image of the object will be (A) f (B) 2 f (C) f/2 (D) ∞ 17. An object of mass 40 kg and having velocity 4 m/s collides with another object of mass 60 kg having velocity 2 m/s in same direction. The loss of energy when the collision is perfectly inelastic is (A) 392 J (D) 110 J (B) 440 J (C) 48 J

[4]

Sound waves of wavelength λ travelling with velocity v in a medium enter into another medium 18. in which their velocity is 4v. The wavelength of sound in 2^{nd} medium is

(A) 4 λ (B) λ (C)λ/4 (D) 16 λ

- A boy is sitting in a car moving with uniform velocity. The boy throws a ball vertically upwards 19. which falls back into his hands. A man standing on the road watches the motion of the ball. The path of the motion of the ball will be
 - (A) a straight line for the man (C) a parabola for the boy

- (B) a straight line for the boy (D) none of these
- 20. An ideal gas changes from state A to state B whose temperature (7) versus pressure (P) graph is given as shown. The work done by the gas is this process is

Space for Rough Work

SECTION – B : CHEMISTRY

26.	The equation which is balanced and represents the incorrect product(s) is : (A) $Li_2O + 2KCI \rightarrow 2LiCI + K_2O$									
	(B) $\left[\text{CoCl}(\text{NH}_3)_5 \right]^+ + 5\text{H}^+ \rightarrow \text{Co}^{2+} +$	5NH ⁺ + Cl ⁻								
	(C) $\left[Mg(H_2O)_6 \right]^{2+} + (EDTA)^{4-} - \frac{exc}{2}$	^{ess NaOH} →[Mg(EDTA)] ⁻² + 6H ₂	0						
	(D) $CuSO_4 + 4KCN \rightarrow K_3[Cu(CN)_4]$	+K ₂ SO ₄								
27.	The colour of light absorbed by an aqu	ueous solution o	f CuSO ₄ is							
	(A) Orange-red (B) Blue-gree	en (C)	Yellow	(D) Violet						
28.	Among the followin <mark>g comp</mark> lexes (K–P)									
	K ₃ [Fe(CN ₆)](K), [Co(NH ₃) ₆]Cl ₃ (L), Na	a ₃ [Co(ox) ₃](M),	[Ni(H ₂ O) ₆]Cl ₂ (N)							
	K ₂ [Pt(CN ₄)](O), [Zn(H ₂ O) ₆](NO ₃) ₂ (P)									
	the diamagnetic complexes are									
	(A) K, L, M, N (B) K, M, O,	P (C)	L, M, O <mark>, P</mark>	(D) L, M, N, O						
29.	Extraction of metal from the ore cassiterite does not involves									
	(A) carbon reduction of an oxide ore	(B)	self-reaction of	a sulphide ore						
	(C) removal of copper impurity	(D)	<mark>remov</mark> al of iron	impurity						
30.	Extraction of copper from copper pyrite	e <mark>(CuFeS₂) d</mark> oe	<mark>s not in</mark> volves							
	(A) crushing followed by con <mark>centra</mark> tion of the ore by froth-flotation									
	(B) removal of iron as slag									
	(C) self-reduction step to produce 'bli	ster copper' follo	<mark>owin</mark> g evolution c	of SO ₂ .						
	(D) refining of 'blister copper' by carb	on reduction								
31.	Which of the following reactions produ	ices N ₂ O is								
	(i) Zn+dil.HNO ₃ \longrightarrow	(ii)	NH ₄ NO ₃	›						
	(iii) $SnCl_2 + HNO_3 \longrightarrow$	(iv)	$NO + SO_2 + H_2$	0 →						
	(v) NO+H ₂ S \longrightarrow	(vi)	NH ₂ OH•HCI+	$NaNO_2 \longrightarrow$						
	(A) only (i) & (ii)	(B) c	only (i),(ii) & (iii)							
	(C) only (i),(ii),(iv) & (v)	(D) (i), (ii), (iii), (iv), (\	/) & (vi)						
	Spa	ce for Rough Work								

[9]

- 39. Which of the following is incorrect for a crystal of CaF_2 ?
 - (A) Ca^{+2} forms ccp and F⁻ occupies all tetrahedral voids.
 - (B) Co-ordination no. of F⁻ is 4
 - (C) Co-ordination no. of Ca^{2+} is 4
 - (D) There are 4 formula units of CaF_2 per unit cell.

40. 1 mole of a salt MCl₃(S) is added to 1 litre pure water at 27°C. What will be the osmotic pressure of the solution if $K_{sp}(MCl_3) = \frac{10^{-12}}{3}$

(A)	24.63 atm		(B)	98.52 at	tm
$\langle \mathbf{O} \rangle$	0.00004			0 0000	

- (C) 0.00821 atm (D) 0.03284 atm
- 41. 0.1 mole CH₃COOH and 0.05 mole (CH₃COO)₂Ca is added in water to form 1 litre solution. pH of solution is found to be equal to 5 at a temperature T (constant). Now which of the following is incorrect?
 - (A) pka of $CH_3COOH = 5$
 - (B) pka of $CH_3COOH = 5.3$
 - (C) If 0.05 mole NaOH is added in the solution then new pH will be equal to 5.477.
 - (D) If 0.05 mole HCl is added in the solution then new pH will be equal to 4.523.
- 42. The fuel cell used for providing electrical power in the Apollo space programme used O₂(g) and H₂(g) as fuels. In the cell, hydrogen and oxygen are bubbled through porous carbon electrodes into concentrated aqueous sodium hydroxide solution. How much charge in terms of Faraday must be obtained from the cell so as to obtain 3.6 kg of pure water?

(A) 800 (B) 400 (C) 500 (D) 600 43. Radial wave function for an orbital of H atom is, $R(r) = ke^{\frac{-r}{a_0}}$ If ratio of probability of finding electron in a very thin shell (of thickness dr) at a distance a_0 to that at distance $\frac{a_0}{2}$ is $\frac{x}{e}$ than x is? (A) 4 (B) 3 (C) 2 (D) 1

44. Which would be the major product of the following reaction?

An alkene with the molecular formula $C_{10}H_{18}$ is treated with ozone and then with zinc and acetic acid. The product isolated from these reactions is: 45.

Π

What is the structure of the alkene?

(C)

Ш

(D) IV

III

Space for Rough Work

Space for Rough Work

Space for Rough Work

SECTION – C : MATHEMATICS

51.	The domain of $y = \sqrt{\sqrt{\sin x} + \sqrt{\cos x} - 1}$								
	(A) [2nπ, (2n+1)π]	(B) [2nπ, (3n + 1)π]	(C) $\left[2n\pi, (4n+1)\frac{\pi}{2}\right]$	(D) None of these					
52.	The period of $y = \tan \frac{5}{1}$	$\frac{5\pi}{7}$ [x] is :							
	(A) $\frac{17}{5}$	(B) $\frac{34}{5}$	(C) 17	(D) None of these					
53.	If A (3, 3), B (4, 3) and C (3, 4) be the vertices of a triangle, then the distance between it's orthocentre and circumcentre is								
	(A) √2	(B) $\frac{1}{\sqrt{2}}$	(C) 2√2	(D) none of these					
54.	If the sum of the distar	nces of a point from two p	perpendicular lin <mark>es in</mark> a pl	la <mark>ne is 1, th</mark> en its locus					
	(A) square		(B) a circle						
	(C) straight line		(D) two intersecting line	s					
55.	$\lim_{x \to \infty} \frac{x^{p} + x^{p-1} + 1}{x^{q} + x^{q-2} + 2}, \text{ when}$	ere p > 0, q > 0 is							
	(A) 0 if p < q		(B) 1 if p = q						
	(C) infinite, if p > q		(D) All of the above						
56.	If the coordinates of a	trian <mark>gle are</mark> rational points	, then the rational points	is / are					
	(A) orthocenter	(B) circumcentre	(C) c <mark>entroi</mark> d	(D) all of the above					
57.	Let $\theta = \tan^{-1}\left(\tan\frac{5\pi}{4}\right)a$	and $\phi = \tan^{-1}\left(-\tan\frac{2\pi}{3}\right)$ th	en						
	(A) $\theta > \phi$	$(B) \frac{4\theta - 3\phi = 0}{2}$	(C) $\theta + \phi = \frac{\pi}{12}$	(D) None of these					
58.	Let $R\{(x,y): x^2 + y^2 = x^2$	1, x, y ∈ R} b <mark>e a relation in F</mark>	R. The relation R is :						
	(A) reflexive	(B) symmetric	(C) transitive	(D) anti-symmetric					
59.	For what value of x, the	e matrix $\begin{bmatrix} 3-x & 2\\ 2 & 4-x\\ -2 & -4 & -1 \end{bmatrix}$	is singular.						
	(A) x = 1, 2	(B) x = 0, 2	(C) x = 0, 1	(D) x = 0, 3					

60.	The number of common $+ 2x + 2y + 1 = 0$ is	n tange	ents that can be dra	wn to tł	he circle $x^2 + y^2 - 4x$	– 6y -	$-3 = 0$ and $x^2 + y^2$
	(A) 1	(B)	2	(C)	3	(D)	4
61.	A bag contains 4 ticker 6, 7, 8, 9. One bag is number 4, is equal to	ts nun chos	nbered 1, 2, 3, 4 ar en and a ticket is	nd anot drawn.	her bag contains 6 . The probability th	ticke hat th	ets numbered 2, 4, e ticket bears the
	(A) $\frac{5}{12}$	(B)	$\frac{5}{24}$	(C)	$\frac{7}{12}$	(D)	<u>19</u> 24
62.	In a triangle ABC if cos (A) H.P.	A + (B)	2cos B + cos C = 2 G.P.	. The s (C)	ides of the triangle A.P.	are ii (D)	n : None of these
63.	The value of sin 12°. si	in48°.	sin54° =				
	(A) 1/8	(B)	1/6	(C)	1/4	(D)	1/2
64.	Rolle's theorem holds	for the	e function x ³ + bx ² -	+ cx, 1	$\leq x \leq 2$ at the poin	$t \frac{4}{3}$,	the value of b and
	(A) b = 8 c = 5	(B)	b = -5 c = 8	(C)	b = 5 c = -8	(D)	b = -5 $c = -8$
65	(A) $D = 0, C = -0$	t to th	b = -0, c = 0		b = 0, c = -0		b = -5, c = -0.
05.	(A) is $\rho_V + \chi = 2$		e cuive y = e all	(B)			X— 1
	(A) $13 \text{ Cy} + x = 2$ (C) is $0x + y = 1$			(D)	does not exist		
	(C) $13 \text{ ex } + y = 1$			(D)	dues not exist		
66.	Let f (x) = $(4 - x^2)^{2/3}$,	then f	has a				
	(A) a local maxima at	x = 0	(B)	a loc	al m <mark>axima a</mark> t x = 2		
	(C) a local maxima at	x = -2	2	(D)	none of these		
67.	If $x \frac{dy}{dx} = y (logy - logx)$	+ 1) tl	nen the solution of	the equ	uation is :		
	(A) $\log \frac{x}{y} = cy$	(B)	$\log \frac{y}{x} = cy$	(C)	$\log \frac{x}{y} = cx$	(D)	$\log \frac{y}{x} = cx$
68.	$I = \int \frac{(10x^9 + 10^x \log_e 10^x)}{(x^{10} + 10^x)}$	⁾⁾ dx i	s equal to :				
	(A) $10^{x} + x^{10} + c$	(B)	$10^{x} - x^{10} + c$	(C)	$10^{x} + x^{10} + c$	(D)	$\log_{e}(10^{x} + x^{10}) + c$
69.	The value of $\int_{-10}^{10} \frac{3^x}{3^{[x]}} dx$	is eq	ual to (where [.] de	notes g	greatest integer fur	iction)):
	(A) 20	(B)	40 In 3	(C)	20 ln 3	(D)	none of these

70.	Let a, b, c be three u	nit vectors such that $\vec{a}.\vec{b}$ =	$\vec{a}.\vec{c} = 0$ If the angle bet	ween \vec{b} and \vec{c} is $\frac{\pi}{4}$, then
	$\vec{a} = \lambda (\vec{b} \times \vec{c})$, where '	λ' is equal to:		Т.
	(A) ±1	(B) ±√2	(C) ±2	(D) None of these
71.	The term independe	nt of x in the expansi <mark>on of</mark>	(1+x) ⁿ (1+1/x) ⁿ is	
	(A) $C_0^2 + 2C_1^2 + 3C_2^2$	$r_{2}^{2} + \dots + (n+1)C_{n}^{2}$	(B) $(C_0 + C_1 + \dots)$	$+C_n)^2$
	(C) $C_0^2 + C_1^2 + \dots$	$+C_n^2$	(D) None of these	
72.	Number of ways in w	hich four letter of the wor	d 'DEGREE' can be sele	ected is
	(A) 7	(B) 6	(C) $\frac{6!}{3!}$	(D) None of these
73.	If a <mark>, b and c a</mark> re posi	tive real numbers then $\frac{a}{b}$	$+\frac{b}{c}+\frac{c}{a}$ is greater than	or equal to
	(A) 3	(B) 6	(C) 27	(D) None of those
74.	The value of the exp	ression 2 $\left(1+\frac{1}{\omega}\right)\left(1+\frac{1}{\omega^2}\right)$	$+3\left(2+\frac{1}{\omega}\right)\left(2+\frac{1}{\omega^2}\right)+4$	$\left(3+\frac{1}{\omega}\right)\left(3+\frac{1}{\omega^2}\right)$ + +
	$(n+1)\left(n+\frac{1}{\omega}\right)\left(n+\frac{1}{\omega^2}\right)$	$\left(\frac{1}{2}\right)$, where ω is an imaginal	ary cube root of unity, i	is
	(A) $\frac{n(n^2+2)}{3}$	(B) $\frac{n(n^2-2)}{3}$	(C) $\frac{n^2(n+1)^2 + 4r}{4}$	(D) none of these
75.	The equation of the	plane containing the line	$\frac{x-\alpha}{m} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$ is a	$h(x - \alpha) + b(y - \beta) + c(z - \beta)$
	γ) = 0, where al + br	1 + cn is equal to		
	(A) 1	(B) –1	(C) 2	(D) 0

