SAMPLE PAPER
 FOR CLASS 12th Pass Students
 STREAM: [ENGINEERING]

TIME : 2 Hours

FULL MARKS : 300

INSTRUCTIONS

[A] General

1. This Question paper contains THREE Parts, A, B and C (Physics, Chemistry, and Mathematics).
2. This Question Paper contains 15 pages including cover page.
3. This question paper contains 75 questions. Each subject have 25 single choice answer type questions).
4. The Question Paper has blank spaces at the bottom of each page for rough work. No additional sheets will be provided for rough work.
5. Blank papers, clip boards, log tables, slide rule, calculators, cellular phones, pagers and electronic gadgets, in any form, are NOT allowed.
6. The OMR (Optical Mark Recognition) sheet shall be provided separately.
[B] Answering on the OMR
7. In all the parts, each question will have 4 choices out of which only one choice is correct.
8. Darken the bubble with Ball Pen (Blue or Black) ONLY.
[C] Filling OMR
9. On the OMR sheet, fill all the details properly and completely, otherwise your OMR will not be checked.
10. Do not write anything or tamper the barcode in the registration no. box.

[D] Marking Scheme:

11. For each question you will be awarded 4 marks if you darken the bubble corresponding to the correct answer ONLY and zero (0) marks if no bubble is darkened. In all other cases, minus one (-1) mark will be awarded.

Name: \qquad

Registration No.: \square
\square

SECTION - A : PHYSICS

1. The figure shows two large, closely placed, parallel, nonconducting sheets with identical (positive) uniform surface charge densities, and a sphere with a uniform (positive) volume charge density. Four points marked as $1,2,3$ and 4 are shown in the space in between. If E_{1}, E_{2}, E_{3} and E_{4} are magnitude of net electric fields at these points respectively then:

(A) $E_{1}>E_{2}>E_{3}>E_{4}$
(B) $E_{1}>E_{2}>E_{3}=E_{4}$
(C) $E_{3}=E_{4}>E_{2}>E_{1}$
(D) $\mathrm{E}_{1}=\mathrm{E}_{2}=\mathrm{E}_{3}=\mathrm{E}_{4}$
2. An infinitely long wire carrying current I is along Y axis such that its one end is at point $A(0, b)$ while the wire extends upto $+\infty$. The magnitude of magnetic field strength at point ($a, 0$)

(A) $\frac{\mu_{0} \mathrm{I}}{4 \pi \mathrm{a}}\left(1+\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}\right)$
(B) $\frac{\mu_{0} I}{4 \pi a}\left(1-\frac{b}{\sqrt{a^{2}+b^{2}}}\right)$
(C) $\frac{\mu_{0} I}{4 \pi a}\left(\frac{b}{\sqrt{a^{2}+b^{2}}}\right)$
(D) None of these
3. An inclined plane is moving with constant velocity $v=4 \mathrm{~m} / \mathrm{s}$ on a horizontal surface as shown in figure. If a block of mass 2 kg is kept at top of the incline and their is no friction between the block and the incline, then the distance travelled by the incline till the block reaches bottom of the inclined, is: (take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

(A) 4 m
(B) 5 m
(C) $1.6 \sqrt{5} \mathrm{~m}$
(D) $2 \sqrt{5} \mathrm{~m}$
4. A block of mass m is kept on a rough horizontal floor having coefficient of friction μ. A constant horizontal force F is applied on the block towards right due to which it is moving with a constant acceleration a. Free body diagram of the object is shown in the figure.

Choose the correct alternative.
(A) According to Newton's $3^{\text {rd }}$ law, mg is action and N is reaction
(B) According to Newton's $3^{\text {rd }}$ law, F is action and f is reaction
(C) Friction force f can have any value between 0 to $\mu \mathrm{mg}$
(D) $a=\frac{F-f}{m}$
5. A particle is moving in $x-y$ plane. At certain instant, the components of its velocity and acceleration are as follows $V_{x}=3 \mathrm{~m} / \mathrm{s}, V_{y}=4 \mathrm{~m} / \mathrm{s}, a_{x}=2 \mathrm{~m} / \mathrm{s}^{2}$ and $\mathrm{a}_{\mathrm{y}}=1 \mathrm{~m} / \mathrm{s}^{2}$. The rate of change of speed at this moment is
(A) $4 \mathrm{~m} / \mathrm{s}^{2}$
(B) $2 \mathrm{~m} / \mathrm{s}^{2}$
(C) $\sqrt{3} \mathrm{~m} / \mathrm{s}^{2}$
(D) $\sqrt{5} \mathrm{~m} / \mathrm{s}^{2}$
6. Work required to stretch a spring of spring constant K by x is W. The work required to stretch it by additional x is
(A) W
(B) 2 W
(C) $3 W$
(D) 4 W
7. Magnetic field at ends of a long solenoid having n number of turns/ length and current i is
(A) $\mu_{0} n i$
(B) $\mu_{0} \frac{n i}{2}$
(C) zero
(D) $2 \mu_{0} n i$
8. Momentum of a body is increased by 200%. The percentage increase in its kinetic energy will be
(A) 200%
(B) 400%
(C) 600%
(D) 800%
9. When at rest, a liquid stands at the same level in the tube as shown in figure. When the whole system is given acceleration a in the horizontal direction then the level of liquid on the two sides of the tube has a separation of h. The value of h will be

(A) $\frac{a L}{g}$
(B) $\frac{g L}{2 a}$
(C) $\frac{g L}{a}$
(D) $\frac{a L}{2 g}$
10. Where should we put another charge on the line $A B$ from A, so that it stays in equilibrium

(A) $\frac{\mathrm{d}}{2}$
(B) $\frac{\mathrm{d}}{4}$
(C) $\frac{d}{6}$
(D) $\frac{\mathrm{d}}{3}$
11. A man can jump upto height h on earth. How much he will be able to jump on a planet whose radius is half of earth's radius and mass is half of the mass of earth
(A) h
(B) $\frac{\mathrm{h}}{2}$
(C) $2 h$
(D) $4 h$
12. In the arrangement shown, if current is increasing in the wire, the direction of induced current in the loop will be
(A) clockwise
(B) anticlockwise
(C) zero
(D) none
13. Energy of second excited state of Li^{++}(given the energy of ground state electron in H -atom is 13.6 eV)
(A) -13.6 eV
(B) -3.4 eV
(C) -1.51 eV
(D) -0.54 eV
14. The dimension of coefficient of viscosity is
(A) $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
(B) $\mathrm{ML}^{2} \mathrm{~T}^{-1}$
(C) $M^{-1} L^{-1} T^{-2}$
(D) $\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
15. Two vibrating tuning forks producing progressive waves given as $y_{1}=4 \sin (100 \pi t)$ and $y_{2}=6$ $\sin (106 \pi t)$ are held near the ear of a person. The person will hear
(A) 3 beats per sec with intensity ratio between maxima and minima equal to $5: 1$
(B) 3 beats per sec with intensity ratio between maxima and minima equal to $25: 1$
(C) 6 beats per sec with intensity ratio between maxima and minima equal to $5: 1$
(D) 6 beats per sec with intensity ratio between maxima and minima equal to $25: 1$
16. An object is spread from $2 f$ to ∞ in front of a convex lens of focal length f, as shown in the figure. The length of the image of the object will be

(A) f
(B) $2 f$
(C) $f / 2$
(D) ∞
17. An object of mass 40 kg and having velocity $4 \mathrm{~m} / \mathrm{s}$ collides with another object of mass 60 kg having velocity $2 \mathrm{~m} / \mathrm{s}$ in same direction. The loss of energy when the collision is perfectly inelastic is
(A) 392 J
(B) 440 J
(C) 48 J
(D) 110 J
18. Sound waves of wavelength λ travelling with velocity v in a medium enter into another medium in which their velocity is $4 v$. The wavelength of sound in $2^{\text {nd }}$ medium is
(A) 4λ
(B) $\lambda(\mathrm{C}) \lambda / 4$
(D) 16λ
19. A boy is sitting in a car moving with uniform velocity. The boy throws a ball vertically upwards which falls back into his hands. A man standing on the road watches the motion of the ball. The path of the motion of the ball will be
(A) a straight line for the man
(B) a straight line for the boy
(C) a parabola for the boy
(D) none of these
20. An ideal gas changes from state A to state B whose temperature (T) versus pressure (P) graph is given as shown. The work done by the gas is this process is

(A) positive
(B) negative
(C) zero
(D) infinite
21. In the figure shown, the frictional force acting on the body is λ newton, then find the value of λ :

(A) 5
(B) 10
(C) 15
(C) 20
22. A particle is projected at an angle of 60° with the horizontal with speed of $20 \mathrm{~ms}^{-1}$. Find the radius of curvature of the trajectory at the highest point (in meter) $\left(g=10 \mathrm{~ms}^{-2}\right)$
(A) 10
(B) 20
(C) 30
(D) 40
23. A ring of mass m and radius r rolls without slipping on the inclined surface shown. The time it will take to reach the bottom would be $N \sqrt{\frac{h}{g}}$, find the value of N.

(A) 2.5
(B) 3.5
(C) 4
(D) 5.5

Space for Rough Work

24. In the figure shown, the potential of A should be (in Volt)

(A) 8
(B) 10
(C) 12
(D) 14
25. If the error in measuring radius of a cylinder is 2% and its height is 4%, what will be percentage error in measuring its volume?
(A) 4.5
(B) 5.5
(C) 6.5
(D) 8

SECTION - B : CHEMISTRY

26. The equation which is balanced and represents the incorrect product(s) is :
(A) $\mathrm{Li}_{2} \mathrm{O}+2 \mathrm{KCl} \rightarrow 2 \mathrm{LiCl}+\mathrm{K}_{2} \mathrm{O}$
(B) $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{+}+5 \mathrm{H}^{+} \rightarrow \mathrm{Co}^{2+}+5 \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
(C) $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+(\text { EDTA })^{4-} \xrightarrow{\text { excess } \mathrm{NaOH}}[\mathrm{Mg}(\text { EDTA })]^{-2}+6 \mathrm{H}_{2} \mathrm{O}$
(D) $\mathrm{CuSO}_{4}+4 \mathrm{KCN} \rightarrow \mathrm{K}_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]+\mathrm{K}_{2} \mathrm{SO}_{4}$
27. The colour of light absorbed by an aqueous solution of CuSO_{4} is
(A) Orange-red
(B) Blue-green
(C) Yellow
(D) Violet
28. Among the following complexes ($\mathrm{K}-\mathrm{P}$)
$\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{CN}_{6}\right)\right](\mathrm{K}),\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}(\mathrm{~L}), \mathrm{Na}_{3}\left[\mathrm{Co}(\mathrm{ox})_{3}\right](\mathrm{M}),\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}(\mathrm{~N})$
$\mathrm{K}_{2}\left[\mathrm{Pt}\left(\mathrm{CN}_{4}\right)\right](\mathrm{O}),\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{P})$
the diamagnetic complexes are
(A) K, L, M, N
(B) $\mathrm{K}, \mathrm{M}, \mathrm{O}, \mathrm{P}$
(C) L, M, O, P
(D) L, M, N, O
29. Extraction of metal from the ore cassiterite does not involves
(A) carbon reduction of an oxide ore
(B) self-reaction of a sulphide ore
(C) removal of copper impurity
(D) removal of iron impurity
30. Extraction of copper from copper pyrite $\left(\mathrm{CuFeS}_{2}\right)$ does not involves
(A) crushing followed by concentration of the ore by froth-flotation
(B) removal of iron as slag
(C) self-reduction step to produce 'blister copper' following evolution of SO_{2}.
(D) refining of 'blister copper' by carbon reduction
31. Which of the following reactions produces $\mathrm{N}_{2} \mathrm{O}$ is
(i) $\mathrm{Zn}+$ dil. $\cdot \mathrm{HNO}_{3} \longrightarrow$
(iii) $\mathrm{SnCl}_{2}+\mathrm{HNO}_{3} \longrightarrow$
(v) $\mathrm{NO}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow$
(A) only (i) \& (ii)
(C) only (i),(ii),(iv) \& (v)
(ii) $\mathrm{NH}_{4} \mathrm{NO}_{3} \xrightarrow{\Delta}$
(iv) $\mathrm{NO}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow$
(vi) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}+\mathrm{NaNO}_{2} \longrightarrow$
(B) only (i),(ii) \& (iii)
(D) (i), (ii), (iii), (iv), (v) \& (vi)
32. Which of the following examples are responsible for chromyl chloride test?
(i) AgCl
(ii) BeCl_{2}
(iii) PCl_{3}
(iv)

(v) NaCl
(vi) CaCl_{2}
(A) only (i),(v) \& (vi)
(B) only (i),(ii),(iii) \& (iv)
(C) only (iv),(v) \& (vi)
(D) only (ii),(iii),(v) \& (vi)
33. The correct order of electron given enthalpy is
(A) $\mathrm{Br}>$ I $>\mathrm{C}>\mathrm{Si}$
(B) $\mathrm{Br}>$ I $>\mathrm{Si}>\mathrm{C}$
(C) $\mathrm{I}>\mathrm{Br}>\mathrm{C}>\mathrm{Si}$
(D) I $>\mathrm{Br}>\mathrm{Si}>\mathrm{C}$
34. Total number of Fe atoms in Prussian's blue is
(A) 4
(B) 7
(C) 10
(D) 6
35. Consider the following graphs plotted for the irreversible reaction: $3 A+2 B \rightarrow 5 C$

The moles of A and B respectively that were taken at $t=0$ are :
(A) 2 mole, 2 mole
(B) 2 mole, 3 mole
(C) 3 mole, 3 mole
(D) 3 mole,
36. A metal with work function ϕ is irradiated with a radiation of energy 5ϕ. The ratio of wavelengths of incident radiation to the electron emitted with maximum kinetic energy will be.
(m is mass of electron)
(A) $\frac{2 C}{5} \sqrt{\frac{2 m}{\phi}}$
(B) $\frac{5 C}{2} \sqrt{\frac{2 m}{\phi}}$
(C) $\frac{2 \mathrm{C}}{5} \sqrt{\frac{m}{2 \phi}}$
(D) $\frac{5 C}{2} \sqrt{\frac{m}{2 \phi}}$
37. Which of the following is/are incorrect?
(i) Entropy decreases in a irreversible processes.
(ii) Entropy increases in a reversible processes.
(iii) Entropy can never be conserved in any process
(iv) Entropy is conserved in all processes like energy.
(A) (iii)
(B) (iv)
(C) (iv) and (iii)
(D) All
38. In packing of solid $\mathrm{Cr}_{2} \mathrm{O}_{3}$, oxide ions form hcp and Cr^{+3} ions are present in some of the voids. The fraction of total number of voids that are left vacant is :
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) $\frac{2}{9}$
(D) $\frac{7}{9}$
39. Which of the following is incorrect for a crystal of CaF_{2} ?
(A) Ca^{+2} forms ccp and F^{-}occupies all tetrahedral voids.
(B) Co-ordination no. of F^{-}is 4
(C) Co-ordination no. of Ca^{2+} is 4
(D) There are 4 formula units of CaF_{2} per unit cell.
40. 1 mole of a salt $\mathrm{MCl}_{3}(\mathrm{~S})$ is added to 1 litre pure water at $27^{\circ} \mathrm{C}$. What will be the osmotic pressure of the solution if $\mathrm{K}_{\mathrm{sp}}\left(\mathrm{MCl}_{3}\right)=\frac{10^{-12}}{3}$
(A) 24.63 atm
(B) 98.52 atm
(C) 0.00821 atm
(D) 0.03284 atm
41. 0.1 mole $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.05 mole $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca}$ is added in water to form 1 litre solution. pH of solution is found to be equal to 5 at a temperature T (constant). Now which of the following is incorrect?
(A) pka of $\mathrm{CH}_{3} \mathrm{COOH}=5$
(B) pka of $\mathrm{CH}_{3} \mathrm{COOH}=5.3$
(C) If 0.05 mole NaOH is added in the solution then new pH will be equal to 5.477 .
(D) If 0.05 mole HCl is added in the solution then new pH will be equal to 4.523 .
42. The fuel cell used for providing electrical power in the Apollo space programme used $\mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ as fuels. In the cell, hydrogen and oxygen are bubbled through porous carbon electrodes into concentrated aqueous sodium hydroxide solution. How much charge in terms of Faraday must be obtained from the cell so as to obtain 3.6 kg of pure water?
(A) 800
(B) 400
(C) 500
(D) 600
43. Radial wave function for an orbital of H atom is, $R(r)=k e^{\frac{-r}{a_{0}}}$ If ratio of probability of finding electron in a very thin shell (of thickness $d r$) at a distance a_{o} to that at distance $\frac{a_{0}}{2}$ is $\frac{x}{e}$ than x is?
(A) 4
(B) 3
(C) 2
(D) 1
44. Which would be the major product of the following reaction?

I

II

III

IV
(A) 1
(B) II
(C) III
(D) IV
45. An alkene with the molecular formula $\mathrm{C}_{10} \mathrm{H}_{18}$ is treated with ozone and then with zinc and acetic acid. The product isolated from these reactions is:

What is the structure of the alkene?

II

III

IV
(A) 1
(B) II
(C) III
(D) IV

HEAD OFFICE: Raj Complex, Near Lalita Hotel, East Boring Canal Road, Patna-800001 | 8434267988 | 8541806988
46. The reaction of $\mathrm{Br}_{2} / \mathrm{CCl}_{4}$ to cyclohexene would produce the compound(s) represented by structure(s):

I
(A) I alone
(B) Il alone
(C) II and III
(D) III alone

II
47. What would be the major product of the following reaction?

I

II

III

IV
(A) Equal amounts of I and II
(B) Equal amounts of II and III
(C) Equal amounts of III and IV
(D) I and II as major products, III and IV as minor products
48. What would be the major product of the following reaction?

I

II

III

IV

V
(A) 1
(B) II
(C) III
(D) IV

(A) $\xrightarrow[\text { FeBr }_{3}]{\mathrm{Br}_{2}} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HNO}_{3}} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HNO}_{3}} \xrightarrow[\mathrm{CH}_{3} \mathrm{OH}]{\mathrm{NaOCH}_{3}}$
(C) $\xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HNO}_{3}} \xrightarrow[\text { FeB }]{\mathrm{FeBr}_{3}} \xrightarrow{\mathrm{Br}_{3}} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HNO}_{3}} \xrightarrow[\mathrm{CH}_{3} \mathrm{H}_{3} \mathrm{H}]{\mathrm{NaOCH}_{3}}$
(B) $\xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HNO}_{3}} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HNO}_{3}} \xrightarrow[\mathrm{FeBr}_{3}]{\mathrm{Br}_{2}} \xrightarrow[\mathrm{CH}_{3} \mathrm{OH}]{\mathrm{NaOCH}_{3}}$
(D) $\xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HNO}_{3}} \xrightarrow[\mathrm{FeBr}_{3}]{\mathrm{Br}_{2}} \xrightarrow[\mathrm{CH}_{3} \mathrm{OH}]{\mathrm{NaOCH}_{3}} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HNO}_{3}}$
50. The unknown compound " T " is

(i) NaOCH_{3}
(ii) Slight H^{+}
[T]
(A)

(B)

(C)

(D)

HEAD OFFICE : Raj Complex, Near Lalita Hotel, East Boring Canal Road, Patna-800001| 8434267988|8541806988

SECTION - C : MATHEMATICS

51. The domain of $y=\sqrt{\sqrt{\sin x}+\sqrt{\cos x}-1}$
(A) $[2 n \pi,(2 n+1) \pi]$
(B) $[2 n \pi,(3 n+1) \pi]$
(C) $\left[2 n \pi,(4 n+1) \frac{\pi}{2}\right]$
(D) None of these
52. The period of $y=\tan \frac{5 \pi}{17}[x]$ is :
(A) $\frac{17}{5}$
(B) $\frac{34}{5}$
(C) 17
(D) None of these
53. If $A(3,3), B(4,3)$ and $C(3,4)$ be the vertices of a triangle, then the distance between it's orthocentre and circumcentre is
(A) $\sqrt{2}$
(B) $\frac{1}{\sqrt{2}}$
(C) $2 \sqrt{2}$
(D) none of these
54. If the sum of the distances of a point from two perpendicular lines in a plane is 1 , then its locus is
(A) square
(B) a circle
(C) straight line
(D) two intersecting lines
55. $\lim _{x \rightarrow \infty} \frac{x^{p}+x^{p-1}+1}{x^{q}+x^{q-2}+2}$, where $p>0, q>0$ is
(A) 0 if $p<q$
(B) 1 if $p=q$
(C) infinite, if $p>q$
(D) All of the above
56. If the coordinates of a triangle are rational points, then the rational points is / are
(A) orthocenter
(B) circumcentre
(C) centroid
(D) all of the above
57. Let $\theta=\tan ^{-1}\left(\tan \frac{5 \pi}{4}\right)$ and $\phi=\tan ^{-1}\left(-\tan \frac{2 \pi}{3}\right)$ then
(A) $\theta>\phi$
(B) $4 \theta-3 \phi=0$
(C) $\quad \theta+\phi=\frac{\pi}{12}$
(D) None of these
58. Let $R\left\{(x, y): x^{2}+y^{2}=1, x, y \in R\right\}$ be a relation in R. The relation R is :
(A) reflexive
(B) symmetric
(C) transitive
(D) anti-symmetric
59. For what value of x, the matrix $\left[\begin{array}{ccc}3-x & 2 & 2 \\ 2 & 4-x & 1 \\ -2 & -4 & -1-x\end{array}\right]$ is singular.
(A) $x=1,2$
(B) $x=0,2$
(C) $x=0,1$
(D) $x=0,3$
60. The number of common tangents that can be drawn to the circle $x^{2}+y^{2}-4 x-6 y-3=0$ and $x^{2}+y^{2}$ $+2 x+2 y+1=0$ is
(A) 1
(B) 2
(C) 3
(D) 4
61. A bag contains 4 tickets numbered 1, 2, 3, 4 and another bag contains 6 tickets numbered 2, 4, $6,7,8,9$. One bag is chosen and a ticket is drawn. The probability that the ticket bears the number 4, is equal to
(A) $\frac{5}{12}$
(B) $\frac{5}{24}$
(C) $\frac{7}{12}$
(D) $\frac{19}{24}$
62. In a triangle $A B C$ if $\cos A+2 \cos B+\cos C=2$. The sides of the triangle are in :
(A) H.P.
(B) G.P.
(C) A.P.
(D) None of these
63. The value of $\sin 12^{\circ} \cdot \sin 48^{\circ} \cdot \sin 54^{\circ}=$
(A) $1 / 8$
(B) $1 / 6$
(C) $1 / 4$
(D) $1 / 2$
64. Rolle's theorem holds for the function $x^{3}+b x^{2}+c x, 1 \leq x \leq 2$ at the point $\frac{4}{3}$, the value of b and c are;
(A) $\mathrm{b}=8, \mathrm{c}=-5$
(B) $b=-5, c=8$
(C) $b=5, c=-8$
(D) $\mathrm{b}=-5, \mathrm{c}=-8$.
65. Equation of the tangent to the curve $y=e^{-|x|}$ at the point where it cuts the line $x=1$
(A) is ey $+x=2$
(B) is $x+y=e$
(C) is $e x+y=1$
(D) does not exist
66. Let $f(x)=\left(4-x^{2}\right)^{2 / 3}$, then f has a
(A) a local maxima at $x=0$ (B)
a local maxima at $x=2$
(C) a local maxima at $x=-2$
(D) none of these
67. If $x \frac{d y}{d x}=y(\log y-\log x+1)$ then the solution of the equation is :
(A) $\log \frac{x}{y}=c y$
(B) $\log \frac{y}{x}=c y$
(C) $\log \frac{x}{y}=c x$
(D) $\log \frac{y}{x}=c x$
68. $I=\int \frac{\left(10 x^{9}+10^{x} \log _{e} 10\right)}{\left(x^{10}+10^{x}\right)} d x$ is equal to :
(A) $10^{x}+x^{10}+c$
(B) $10^{x}-x^{10}+c$
(C) $10^{x}+x^{10}+c$
(D) $\log _{e}\left(10^{x}+x^{10}\right)+c$
69. The value of $\int_{-10}^{10} \frac{3^{x}}{3^{[x]}} d x$ is equal to (where [.] denotes greatest integer function) :
(A) 20
(B) $\frac{40}{\ln 3}$
(C) $\frac{20}{\ln 3}$
(D) none of these
70. Let $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $\vec{a} \cdot \vec{b}=\vec{a} . \vec{c}=0$ If the angle between \vec{b} and \vec{c} is $\frac{\pi}{4}$, then $\vec{a}=\lambda(\vec{b} \times \vec{c})$, where ' λ ' is equal to:
(A) ± 1
(B) $\pm \sqrt{2}$
(C) ± 2
(D) None of these
71. The term independent of x in the expansion of $(1+x)^{n}(1+1 / x)^{n}$ is
(A) $\mathrm{C}_{0}^{2}+2 \mathrm{C}_{1}^{2}+3 \mathrm{C}_{2}^{2}+\ldots \ldots .+(\mathrm{n}+1) \mathrm{C}_{\mathrm{n}}{ }^{2}$
(B) $\left(\mathrm{C}_{0}+\mathrm{C}_{1}+\ldots \ldots+\mathrm{C}_{\mathrm{n}}\right)^{2}$
(C) $\mathrm{C}_{0}^{2}+\mathrm{C}_{1}^{2}+\ldots \ldots+\mathrm{C}_{\mathrm{n}}{ }^{2}$
(D) None of these
72. Number of ways in which four letter of the word 'DEGREE' can be selected is
(A) 7
(B) 6
(C) $\frac{6!}{3!}$
(D) None of these
73. If a, b and c are positive real numbers then $\frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{b}}{\mathrm{c}}+\frac{\mathrm{c}}{\mathrm{a}}$ is greater than or equal to
(A) 3
(B) 6
(C) 27
(D) None of those
74. The value of the expression $2\left(1+\frac{1}{\omega}\right)\left(1+\frac{1}{\omega^{2}}\right)+3\left(2+\frac{1}{\omega}\right)\left(2+\frac{1}{\omega^{2}}\right)+4\left(3+\frac{1}{\omega}\right)\left(3+\frac{1}{\omega^{2}}\right)+\ldots+$ $(n+1)\left(n+\frac{1}{\omega}\right)\left(n+\frac{1}{\omega^{2}}\right)$, where ω is an imaginary cube root of unity, is
(A) $\frac{\mathrm{n}\left(\mathrm{n}^{2}+2\right)}{3}$
(B) $\frac{\mathrm{n}\left(\mathrm{n}^{2}-2\right)}{3}$
(C) $\frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}+4 \mathrm{n}}{4}$
(D) none of these
75. The equation of the plane containing the line $\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$ is $a(x-\alpha)+b(y-\beta)+c(z-$ $\gamma)=0$, where $\mathrm{al}+\mathrm{bm}+\mathrm{cn}$ is equal to
(A) 1
(B) -1
(C) 2
(D) 0
