Previous Year Question Paper of LPUNEST (B.Tech)

Question paper contains five subjects i.e. Physics (30 Questions), Maths (30 Questions), Chemistry (30 Questions), Biology (30 Questions) and English (30 Questions). English, Physics \& Chemistry are mandatory subjects and student has to opt one subject out of Mathematics and Biology.

Section - ENGLISH

This section contains 30 Multiple Choice Questions. Each question has four choices (a), (b), (c) and (d) out of which ONLY ONE is correct.

1. Select the answer choice that identifies the noun in the sentence.

Sue's parents tried living in the north, but they could not adapt to the cold.
a) north
b) but
c) not
d) adapt
2. What is the missing pronoun?

The children are coming out of school in a minute. I need to go and pick \qquad up.
a) it
b) her
c) them
d) they
3. Choose the correct order of adjectives to fill the blank.

She is a \qquad supermodel.
a) Beautiful slim Brazilian
b) Brazilian beautiful slim
c) Slim Brazilian beautiful
d) Brazilian slim beautiful
4. Which kind of adverb is the word in capitals?
"Mothers look GENTLY at their babies."
a) Adverb of Manner
b) Adverb of Time/Frequency
c) Adverb of Place
d) Adverb of Degree
5. Choose the right option to fill the gap.

When Pooja arrives, I \qquad in my apartment.
a) Will be sleeping
b) Won't be sleeping
c) Be sleeping
d) Both Will be sleeping and Won't be sleeping
6. Choose the right option to fill the gap.

Nahal \qquad his PhD on trauma studies by December this year.
a) will completing
b) will have been completing
c) will have completed
d) will have been completed
7. Choose the right option to fill the gap.

Jean Martin Charcot \qquad for us soon.
a) Will work
b) Shall work
c) Would have worked
d) Both Will work and Shall work
8. Choose the correct one.
a) I think he would not come with us to the meeting
b) I think he might not come with us to the meeting
c) I think he shall not come with us to the meeting
d) I think he might not came with us to the meeting
9. Choose the correct use of modal verb.
a) I will make dinner tonight
b) I will be making dinner tonight
c) Both I will make dinner tonight and I will be making dinner tonight
d) None of these
10. The sentence below contains an error. Identify which part has the error and choose from the options. I am finding it difficult to choose among my pair of red trousers and my pair of green ones.
a) I did found it difficult
b) To choose between my pair of red trousers
c) And my pair of green one
d) No error
11. Identify which part of the sentence has the error.

Following intense debate (1)/, the faculty has approved the measure to increase (2)/ class size by 15% over the next four years.(3)/ No error (4)
a) 1
b) 2
c) 3
d) 4
12. Pick the right meaning for the following phrase.

To die in harness
a) Die early
b) Die after doing work
c) To die while in duty
d) Die peacefully
13. Identify the correct meaning of the idiom.

That ship has sailed.
a) Work better or leave
b) It's too late
c) Work quickly
d) Go through something difficult
14. Choose one word for the following.

A mild or indirect expression substituted for an offensive or harsh one
a) Wriggle
b) Sacrilege
c) Euphemism
d) Linguist
15. In the following question, a related pair of words or phrases is followed by five pairs of words or phrases. Choose the pair that best expresses a relationship similar to that in the original pair. earth is to ball as pancake is to?
a) soccer
b) flag
c) disc
d) flat
16. Choose the correct form of the verb to fill the gap so as to make a meaningful sentence.

I think I \qquad a new cellphone. This one does not function properly any more.
a) needs
b) needed
c) need
d) am needing
17. Choose the correct form of the verb to fill the gap so as to make a meaningful sentence.

At a school dance:
Mohul: " \qquad yourself?"
Zoya: "Yes, I'm having a fun time!"
a) You enjoying
b) Enjoy you
c) Do you enjoyd) Are you enjoying
18. Choose the correct form of the verb to fill the gap so as to make a meaningful sentence.

During the two years Rishi \qquad ten different jobs.
a) has has
b) has had
c) have had
d) have has
19. Fill in the blank with correct word.

They went to the shopping center \qquad shops were closed.
a) because b) or
c) but
d) so
20. Choose the most suitable interjection to complete the sentence.
\qquad I spilled my coffee on my dress.
a) Oops!
b) Aww!
c) Phew!
d) Ah!
21. Fill in the blank with correct word.

Nisha is pleased \qquad her result.
a) about
b) at
c) with
d) all of these
22. Fill in the right verb form.

The horse was \qquad by the young boy.
a) ride
b) rode
c) ridden
d) riding
23. Change the voice of following sentence.

They speak French at this shop.
a) French is spoken at this shop
b) French was spoken at this shop
c) French has spoken at this shop
d) French were spoken at this shop
24. Which of these words is most nearly the opposite of the word provided?

Pit
a) group
b) peak c) select
d) marry
25. Which of these words is closest in meaning to the word provided?

Banish
a) exile
b) hate
c) fade
d) clean
26. Choose the right option to fill the gap.

Mrs Adams was \qquad dinner at 6 o'clock yesterday morning.
a) has
b) had
c) have d) having
27. Choose the right option to fill the gaps.

It was a very difficult movie, but I \qquad it because I \qquad the book.
a) Had understood, read
b) Read, had understood
c) Had read, understood
d) Understood, had read
28. Choose the right option to fill the gap.

The film wasn't very good. I \qquad it very much.
a) enjoyed
b) wasn't enjoy
c) didn't enjoyed
d) didn't enjoy
29. Select the answer choice that identifies the noun in the sentence.

Susan was exceedingly proud of her beautiful new home.
a) exceedingly
b) home
c) proud
d) beautiful
30. Choose the right option to fill the gap.

By the time the boss comes in the factory, will \qquad the new project?
a) Jane and Luke discuss
b) Jane and Luke be discussed
c) Jane and Luke be discussing
d) Both Jane and Luke discuss \& Jane and Luke be discussing

Section - PHYSICS

This section contains 30 Multiple Choice Questions. Each question has four choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
31. A lift is moving in upward direction. The total mass of the lift and the passengers is 1600 kg . The variation of the velocity of the lift is as shown in the figure. The tension in the rope at $t=8^{\text {th }}$ second will be

a) 11200 N
b) 16000 N
b) 12000 N
c) 4800 N
32. A mass m moves with a velocity v and collides in elastically with another identical mass. After collision, the first mass moves with velocity $\frac{v}{\sqrt{3}}$ in a direction perpendicular to the initial direction of motion. Find the speed of $2^{\text {nd }}$ mass after collision.
a) $\frac{2}{\sqrt{3}} v$
b) $\frac{v}{\sqrt{3}}$
c) v
d) $\sqrt{3} v$
33. In a system of particles 8 kg mass is subjected to a force of 16 N along positive y axis and another 8 kg mass is subjected to a force of 8 N along positive x axis. The angle made by the acceleration of centre of mass with x axis is
a) $\theta=45^{0}$
b) $\theta=\tan ^{-1}\left(\frac{2}{3}\right)$
c) $\theta=\tan ^{-1}(2)$
d) $\theta=\tan ^{-1}(\sqrt{3})$
34. Four spheres of diameter $2 a$ and mass M are placed with their centers on the four corners of a square of side ' b '. Then the moment of inertia of the system about an axis along one of the sides of the square is
a) $\frac{4}{5} M a^{2}+2 M b^{2}$
b) $\frac{8}{5} M a^{2}+2 M b^{2}$
c) $\frac{8}{5} M a^{2}$
d) $\frac{4}{5} M a^{2}+4 M b^{2}$
35. The time dependence of a physical quantity P is given by $P=P_{o} e^{-\alpha t^{2}}$, where α is a constant and t is a time then constant α is
a) dimension less
b) dimension of t^{-2}
c) dimensions of P
d) dimension of t^{2}
36. Acceleration verses velocity graph of a particle moving in a straight line as shown in graph. The corresponding velocity-time graph would be.

a)

b)

d)

c)
37. A man wishes to cross the river flowing with velocity u swims at angle θ with river flow if the man swims with speed v and if the width of the river is d then drift travelled by him.
a) $[u+v \cos \theta] \frac{d}{v \sin \theta}$
b) $[u-v \cos \theta] \frac{d}{v \sin \theta}$
c) $[u-v \cos \theta] \frac{d}{v \cos \theta}$
d) $[u+v \cos \theta] \frac{d}{v \cos \theta}$
38. If the gravitational acceleration at surface of Earth is g, then increase in potential energy in lifting an object of mass m to a height equal to half of radius of earth from surface will be :-
a) $\frac{\mathrm{mgR}}{2}$
b) $\frac{2 m g R}{3}$
c) $\frac{\mathrm{mgR}}{4}$
d) $\frac{\mathrm{mgR}}{3}$
39. In the arrangement, spring constant k has value $2 \mathrm{Nm}^{-1}$, mass $\mathrm{M}=3 \mathrm{~kg}$ and mass $\mathrm{m}=1 \mathrm{~kg}$. Mass M is in contact with a smooth surface. The coefficient of friction between two blocks is 0.1 and amplitude of oscillation is 10 cm . The time period of SHM executed by the system is

a) $\pi \sqrt{6}$
b) $\pi \sqrt{2}$
c) $2 \sqrt{2} \pi$
d) 2π
40. A wire of variable mass per unit length is $\mu=\mu_{0} x$, hanging from the ceiling as shown in figure. The length of wire is l_{0}. A small transverse disturbance is produced at its lower end. Find the time after which the disturbance will reach to the other ends.

a) $\sqrt{\frac{6 l_{0}}{g}}$
b) $\sqrt{\frac{8 l_{0}}{g}}$
c) $\sqrt{\frac{9 l_{0}}{g}}$
d) $\sqrt{\frac{10 l_{0}}{g}}$
41. A cubical ball is taken to a depth of 200 m in a sea. The decrease in volume observed to be 0.1%. The bulk modulus of the ball is
($\mathrm{g}=10 \mathrm{~ms}^{-2}$)
a) $2 \times 10^{7} \mathrm{~Pa}$
b) $2 \times 10^{6} \mathrm{~Pa}$
c) $2 \times 10^{9} \mathrm{~Pa}$
d) $1.2 \times 10^{9} \mathrm{~Pa}$
42. The temperature of a body falls from $62^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 10 minutes. If the temperature of the surroundings is $26^{\circ} \mathrm{C}$, the temperature in next 10 minutes will become
a) $42^{\circ} \mathrm{C}$
b) $40^{\circ} \mathrm{C}$
c) $56^{\circ} \mathrm{C}$
d) $55^{\circ} \mathrm{C}$
43. In the indicator diagram fig. shown of Carnot cycle $T_{a}, T_{b}, T_{c}, T_{d}$ represent temperature of gas at A, $\mathrm{B}, \mathrm{C}, \mathrm{D}$ respectively. Which of the following is correct relation

a) $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{c}}=\mathrm{T}_{\mathrm{d}}$
b) $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{c}}, \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{d}}$
c) $T_{a}=T_{d}, T_{c}=T_{b}$
d) $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{b}}, \mathrm{T}_{\mathrm{c}}=\mathrm{T}_{\mathrm{d}}$
44. Modern vacuum pumps can evacuate a vessel down to a pressure of $4.0 \times 10^{-15} \mathrm{~atm}$. At room temperature $(300 \mathrm{~K})$ taking $\mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$ and $\mathrm{N}_{\text {avagardro }}=6 \times 10^{23} \mathrm{~mole}^{-1}$, the mean distance between molecules of gas in an evacuated vessel will be of the order of :
a) $0.2 \mu \mathrm{~m}$
b) 0.2 mm
c) 0.2 cm
d) 0.2 nm
45. Three concentric conducting spherical shells carry charges $+4 Q$ on the inner shell $-2 Q$ on the middle shell and $+6 Q$ on the outer shell. The charge on the inner surface of the outer shell is
a) 0
b) $4 Q$
c) $-Q$
d) $-2 Q$
46. Find equivalent capacitance between points A and B. [Assume each conducting plate is having same dimensions and neglect the thickness of the plate, $\frac{\varepsilon_{0} A}{d}=7 \mu F$, where A is area of plates]

a) $7 \mu F$
b) $11 \mu F$
c) $12 \mu F$
d) $15 \mu F$
47. When an electric heater is switched on, the current flowing through it (i) is plotted against time (t). Taking into account the variation of resistance with temperature, which of the following best represents the resulting curve

a) 1
c)

b)

d)

48. A wire of mass 100 g is carrying a current of 2 A towards increasing x in the form of $y=x^{2}(-2 m \leq x \leq+2 m)$. This wire is placed in a magnetic field $\vec{B}=-0.02 \hat{k}$ tesla. The acceleration of the wire (in $\mathrm{m} / \mathrm{s}^{2}$) is
a) $-1.6 \hat{j}$
b) $-3.2 \hat{j}$
c) $1.6 \hat{j}$
d) zero
49. The real angle of dip at a place, if a magnet is suspended at an angle of 30° to the magnetic meridian and the dip needle makes an angle of 45° with horizontal is
a) $\operatorname{Tan}^{-1}\left(\frac{\sqrt{3}}{2}\right)$
b) $\operatorname{Tan}^{-1}(\sqrt{3})$
c) $\operatorname{Tan}^{-1}\left(\sqrt{\frac{3}{2}}\right)$
d) $\operatorname{Tan}^{-1}\left(\frac{2}{\sqrt{3}}\right)$
50. In a hypothetical Bohr's hydrogen atom the mass of the electrons is doubled. The energy E_{0} and radius r_{0} of the first orbit will be (a_{0} is the Bohr radius for the first orbit):
a) $E_{0}=-27.2 \mathrm{eV}, r_{0}=a_{0}$
b) $E_{0}=-13.6 \mathrm{eV}, r_{0}=a_{0} / 2$
c) $E_{0}=-27.3 \mathrm{eV}, r_{0}=a_{0} / 2$
d) $E_{0}=-13.6 \mathrm{eV}, r_{0}=a_{0}$
51. A radioactive isotope is being produced at a constant rate X. Half-life of the radioactive substance is Y. After some time the number of radioactive nuclei become constant. The value of this constant is:
a) $\frac{X Y}{\ln (2)}$
b) $X Y$
c) $(X Y) \ln (2)$
d) $\frac{X}{Y}$
52. Two identical particles move at right angles to each other, possessing debroglie wavelength λ_{1} and λ_{2}. The Debroglie wavelength of each of the particles in their centre of mass frame will be
a) $\sqrt{\frac{\lambda_{1}^{2}+\lambda_{2}^{2}}{2}}$
b) $\frac{\lambda_{1}+\lambda_{2}}{2}$
c) $\frac{2 \lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}$
d) $\frac{2 \lambda_{1} \lambda_{2}}{\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}}$
53. A point object is placed at a distance of 20 cm from a thin plano-convex lens of focal length $15 \mathrm{~cm}(\mu=1.5)$. The curved surface is silvered. The image will form at

a) 60 cm left of AB
b) 30 cm left of AB
c) $20 / 7 \mathrm{~cm}$ left on AB
d) 60 cm right of AB
54. In Young's double slit experiment, the two slits acts as coherent sources of equal amplitude A and wavelength λ. In another experiment with the same set up the two slits are sources of equal amplitude A and wavelength λ but are incoherent. The ratio of the intensity of light at the mid-point of the screen in the first case to that in the second case is
a) $4: 1$
b) $1: 1$
c) $2: 1$
d) $1: 4$
55. The voltage time graph of a triangular wave having peak value V_{0} is as shown in figure. The rms value of V in time interval from $\mathrm{t}=0$ to $\frac{T}{4}$ is

a) $\frac{V_{0}}{3}$
b) $\frac{V_{0}}{2}$
c) $\frac{V_{0}}{\sqrt{2}}$
d) $\frac{V_{0}}{\sqrt{3}}$
56. A potential difference of $2 V$ is applied between the opposite faces of a $G e$ crystal plate of area $1 \mathrm{~cm}^{2}$ and thickness 0.5 mm . If the concentration of electrons in $G e$ is $2 \times 10^{19} / \mathrm{m}^{3}$ and mobilities of electrons and holes are $0.36 \frac{\mathrm{~m}^{2}}{\text { volt }-\mathrm{sec}}$ and $0.14 \frac{\mathrm{~m}^{2}}{\text { volt }-\mathrm{sec}}$ respectively, then the current flowing through the plate will be
a) 0.25 A
b) 0.45 A
c) 0.56 A
d) 0.64 A
57. The diagram of a logic circuit is given below. The output F of the circuit is represented by

a) $W \cdot(X+Y)$
b) $W \cdot(X \cdot Y)$
c) $W+(X \cdot Y)$
d) $W+(X+Y)$
58. A block A of mass 100 kg rests on another block B of mass 200 kg and is tied to a wall as shown in the figure. The coefficient of friction between A and B is 0.2 and that between B and the ground is 0.3 . The minimum force F required to move the block B is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

a) 900 N
b) 200 N
c) 1100 N
d) 700 N
59. A fully charged capacitor C with initial charge q_{0} is connected to a coil of self-inductance L at $\mathrm{t}=$ 0 .The time at which the energy is stored equally in the form of electric filed in capacitor and the magnetic field in the inductor
a) $\pi \sqrt{L C}$
b) $\frac{\pi}{4} \sqrt{L C}$
c) $2 \pi \sqrt{L C}$
d) $\sqrt{L C}$
60. A signal of frequency 20 kHz and peak voltage of 5 Volt as used to modulate a carrier wave of frequency 1.2 MHz and peak voltage 25 Volts. Choose the correct statement.
a) Modulation index $=5$, side frequency bands are at 1400 kHz and 1000 kHz
b) Modulation index $=5$, side frequency bands are at 21.2 kHz and 18.8 kHz
c) Modulation index $=0.8$, side frequency bands are at 1180 kHz and 1200 kHz
d) Modulation index $=0.2$, side frequency bands are at 1220 kHz and 1180 kHz

Section- MATEHMATICS

This section contains 30 Multiple Choice Questions. Each question has four choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
61. A survey of 500 television viewers produced the following information, 285 watch foot ball, 195 watch hockey, 115 watch basket ball, 45 watch foot ball and basket ball, 70 watch foot ball and hockey, 50 watch hockey and basket ball, 50 do not watch any of the three games. The number of viewers, who watch exactly one of the three games is
a) 325
b) 310
c) 315
d) 372
62. The minimum number of elements that must be added to the relation $R=\{(1,2),(2,3)\}$ on the set $\{1,2,3\}$ so that it is an equivalence relation
a) 3
b) 5
c) 6
d) 7
63. $f: R-\{0\} \rightarrow R$ given by $f(x)=\frac{1}{x}-\frac{2}{e^{2 x}-1}$ can be made continuous at $x=0$ by defining $f(0)$ as
a) 1
b) 2
c) -1
d) 0
64. If z represent a point on the circle $|z|=2$ then the locus of the point $z+\frac{1}{z}$ is
a) parabola
b) circle
c) ellipse
d) hyperbola
65. The quadratic equation $8 \sec ^{2} x-6 \sec x+1=0$ has
a) No real root
b) Two real roots
c) Many roots
d) Only one real root
66. If 8 G.M.'s are inserted between 2 and 3 then the product of the 8 G.M.'s is
a) 6
b) 36
c) 216
d) 1296
67. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in A.P with common difference ' d ' and the rank of the matrix $\left[\begin{array}{lll}4 & 5 & x \\ 5 & 6 & y \\ 6 & k & z\end{array}\right]$ is 2 then the values of k, d are
а) $6, \frac{x}{2}$
b) 5 , x
c) any arbitrary, x
d) 7, any arbitrary
68. If $\Delta=\left|\begin{array}{cc}f(x) & f\left(\frac{1}{x}\right)+f(x) \\ 1 & f\left(\frac{1}{x}\right)\end{array}\right|=0$ where $f(x)$ is a polynomial and $f(2)=17$ then $f(5)=---$
a) 624
b) 626
c) 82
d) 79
69. The distance between the line $\bar{r}=2 \bar{i}-2 \bar{j}+3 \bar{k}+\lambda(i-\bar{j}+4 \bar{k})$ and the plane $\bar{r} \cdot(\bar{i}+5 \bar{j}+\bar{k})=5$ is
a) $\frac{10}{\sqrt{3}}$
b) $\frac{10}{2 \sqrt{3}}$
c) $\frac{10}{3 \sqrt{3}}$
d) $\frac{10}{3}$
70. The symbolic form of logic of the circuit given below is

a) $\left[\left(p \wedge q^{\prime}\right) \vee p^{\prime}\right] \wedge q$
b) c) $\left[\left(p \wedge p^{\prime}\right) \vee q^{\prime}\right] \wedge q$
b) $\left[p \vee\left(q^{\prime} \wedge p^{\prime}\right)\right] \vee q$
$\mathrm{d}\left[p \wedge\left(q^{\prime} \vee p^{\prime}\right)\right] \vee q$
71. The number of 4 digited even numbers whose sum is 34
a) 5
b) 12
c) 3
d) 7
72. The number of ordered triplets of +ve integers which satisfied the inequalities $20 \leq x+y+z \leq 50$ is
a) ${ }^{50} C_{3}$
b) ${ }^{19} C_{3}$
c) ${ }^{50} C_{3}-{ }^{19} C_{3}$
d) ${ }^{69} C_{3}$
73. If $\sum_{r=1}^{n} a_{r}=\frac{n(n+1)(n+2)}{6} \forall n \geq 1$, then $\underset{n \rightarrow \infty}{L t} \sum_{r=1}^{n} \frac{1}{a_{r}}=$
a) 1
b) $\frac{3}{2}$
c) 2
d) 3
74. Value of $\sum_{k=1}^{\infty} \sum_{r=0}^{k} \frac{1}{3^{k}}\left(k C_{r}\right)$
a) 1
b) 0
c) $\frac{2}{3}$
d) 2
75. If $y=(1-x)\left(1+x^{2}\right)\left(1+x^{4}\right) \ldots\left(1+x^{2 n}\right)$, then $\frac{d y}{d x}$ at $\mathrm{x}=0$ is equal to
a) -1
b) $\frac{1}{(1+x)^{2}}$
c) $\frac{x}{\left(1+x^{2}\right)}$
d) $\frac{x}{(1-x)^{2}}$
76. Consider $p(x)$ to be a polynomial of degree 5 having extremum at $x=-1,1$ and $\lim _{x \rightarrow 0}\left(\frac{P(x)}{x^{3}}-2\right)=4$. Then the value of $[\mathrm{P}(1)]$ is (where [.] represents greatest integer function)
a) 1
b) 2
c) 3
d) 4
77. $\int \frac{\sin ^{2} x \cdot \cos ^{2} x}{\left(\sin ^{5} x+\cos ^{3} x \cdot \sin ^{2} x+\sin ^{3} x \cdot \cos ^{2} x+\cos ^{5} x\right)^{2}} d x=$
a) $\frac{1}{3\left(1+\tan ^{3} x\right)}+c$
b) $\frac{1}{3\left(1+\tan ^{3} x\right)}+c$
c) $\frac{1}{1+\cot ^{3} x}+c$
d) $\frac{-1}{1+\cot ^{3} x}+c$
78. $\int(\sin 101 x) \sin ^{99} x d x=\frac{\sin (100 x) \sin ^{100} x}{k+5}+c$ then $\frac{k}{19}=$
a) -2
b) -4
c) 4
d) 5
79. If $g(x)=\cos x^{2}, f(x)=\sqrt{x}$ and $\alpha, \beta(\alpha<\beta)$ are the roots of $18 x^{2}-9 \pi x+\pi^{2}=0$ then the area bounded by the curve $y=(\operatorname{gof})(x)$ and the lines $x=\alpha, x=\beta$ and $y=0$ is
a) $\frac{\sqrt{3}}{2}$
b) $\frac{\sqrt{3}+1}{2}$
c) $\frac{\sqrt{3}-1}{2}$
d) $\frac{1}{2}$
80. If $y=f(x)$ passing through $(1,2)$ satisfies the differential equation $y(1+x y) d x-x d y=0$ then
a) $f(x)=\frac{2 x}{2-x^{2}}$
b) $f(x)=\frac{x+1}{x^{2}+1}$
c) $f(x)=\frac{x-1}{4-x^{2}}$
d) $f(x)=\frac{4 x}{1-2 x^{2}}$
81. A line cuts x-axis at $A(7,0)$ and y-axis at $B(0,-5)$. A variable line $P Q$ is drawn perpendicular to $A B$ cutting $x, y-$ axis at P and Q. If $A Q, B P$ intersect in R, then locus of R is
a) $x^{2}+y^{2}+7 x-5 y=0$
b) $x^{2}+y^{2}-7 x+5 y=0$
c) $x^{2}+y^{2}-3 x+4 y=0$
d) $x^{2}+y^{2}+6 x+7 y=0$
82. A straight line through the origin O meets the parallel lines $4 x+2 y=9$ and $2 x+y+6=0$ at points P and Q respectively. The point O divides the segment PQ in the ratio
a) $1: 2$
b) $3: 4$
c) $2: 1$
d) $4: 3$
83. The number of integral values of λ for which $x^{2}+y^{2}+\lambda x+(1-\lambda) y+5=0$ is the equation of a circle whose radius cannot exceed 5 , is
a) 14
b) 15
c) 16
d) 18
84. The number of values of c such that the straight line $y=4 x+c$ touches the curve $x^{2} / 4+y^{2}=1$ is
a) 0
b) 1
c) 2
d) infinite
85. The plane $x-2 y+3 z=17$ divides the line joining the points $(-2,4,7)$ and $(3,-5,8)$ in the ratio
a) $3: 5$
b) $3: 10$
c) $3: 7$
d) none of these
86. The ratio of the distances from the points $(1,-1,3)$ and $(3,3,3)$ to the plane $5 x+2 y-7 z+9=0$
a) $2: 1$
b) $1: 3$
c) $1: 1$
d) $3: 2$
87. If the mean deviation of number $1,1+\mathrm{d}, 1+2 \mathrm{~d}, \ldots . .1+100 \mathrm{~d}$ from their mean is 255 , then the d is equal to
a) 20.0
b) 10.1
c) 20.2
d) 10.0
88. If n integers taken at random are multiplied together, then the probability that the last digit of the product is $1,3,7$ or 9 is
a) $\frac{2^{n}}{5^{n}}$
b) $\frac{8^{n}-2^{n}}{5^{n}}$
c) $\frac{4^{n}-2^{n}}{5^{n}}$
d) None of these
89. If $\tan \beta=2 \sin \alpha \cdot \sin \gamma \cdot \operatorname{cosec}(\alpha+\gamma)$, then $\cot \alpha, \cot \beta, \cot \gamma$ are in
a) A.P.
b) G.P.
c) H.P.
d) none of these
90. If $\cos ^{-1} \alpha+\cos ^{-1} \beta+\cos ^{-1} \gamma=3 \pi$ then the value of $\alpha \beta+\beta \gamma+\gamma \alpha=$
a) 1
b) 2
c) 0
d) 3

Section- CHEMISTRY

This section contains 30 Multiple Choice Questions. Each question has four choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
91. A mixture of CO and CO_{2} has vapour density 20 at $\mathrm{STP}, 100 \mathrm{~g}$ of this mixture contains \qquad mole of CO
a) 0.4
b) 0.2
c) 0.625
d) 0.375
92. If ideal gas expands at constant temperature
a) kinetic energy of molecules increases
b) number of gas molecules increases
c) kinetic energy of the molecules remains same
d) pressure of the gas increases
93. Number of photons emitted by 10 watt bulb in 10 seconds, if wavelength of the light is $1000 \AA$, is
a) 1.01×10^{11}
b) 2.02×10^{13}
c) 3.03×10^{15}
d) 4.04×10^{19}
94. The hybridization of atomic orbitals of N in $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$and NH_{4}^{+}are respectively
a) $\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
b) $\mathrm{sp}, \mathrm{sp}^{3}, \mathrm{sp}^{2}$
c) $\mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}^{3}$
d) $\mathrm{sp}^{2}, \mathrm{sp}^{3}, \mathrm{sp}$
95. Bond dissociation energy of $X Y, X_{2}$ and Y_{2} (all diatomic molecules) are in the ratio 1:1: 0.5 and ΔH_{f} of $X Y$ is $-200 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond dissociation energy of X_{2} will be:
a) $800 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b) $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c) $300 \mathrm{~kJ} \mathrm{~mol}^{-1}$ d) $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
96. Van't Hoff factors of aqueous solutions of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are $1.8,0.8$ and 2.5 , Hence, their
a) boiling point: $\mathrm{Z}<\mathrm{X}<\mathrm{Y}$
b) freezing point: $\mathrm{Z}<\mathrm{X}<\mathrm{Y}$
c) osmotic pressure: $\mathrm{X}=\mathrm{Y}=\mathrm{Z}$
d) vapour pressure $\mathrm{Y}<\mathrm{x}<\mathrm{Z}$
97. $K_{s p}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $1 \times 10^{-12} .0 .01 \mathrm{M} \mathrm{MgCl}_{2}$ will be precipitating at the limiting P^{H}
a) 8
b) 9
c) 10
d) 12
98. On the basis of information available for the reaction: $\frac{4}{3} \mathrm{Al}+\mathrm{O}_{2} \rightarrow \frac{2}{3} A l_{2} \mathrm{O}_{3} ; \Delta G=-827 \mathrm{~kJ} / \mathrm{mol}$ of O_{2}, the minimum emf required to carry out an electrolysis of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is: (Given $\left.1 \mathrm{~F}=96500 \mathrm{C}\right)$
a) 2.14 V
b) 4.28 V
c) 6.42 V
d) 8.56 V
99. Consider a successive reaction (al first order)
$A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C \xrightarrow{k_{3}} D$
The incorrect statements is
a) Concentration of A decreases exponentially with time
b) Concentration of both B and C first increases, reaches maxima, then decreases
c) If $k_{1}<k_{2}$ and $k_{2}<k_{3}[B]_{\text {max }}$ will be greater than $[C]_{\text {max }}$.
d) If $k_{1}>k_{2}$ and $k_{2}<k_{3}[B]_{\max }$ will be greater than $[C]_{\text {max }}$.
100. Assertion (A): Colloidal solution is electrically neutral.

Reason (R): Due to similar nature of the charge carried by the particles, they repel each other and do not combine to form bigger particles
a) Both (A) and (R) are true and (R) is the correct explanation of (A)
b) Both (A) and (R) are true and (R) is not the correct explanation of (A)
c) (A) is true but (R) is false
d) Both (A) and (R) are false
101. Which is the most basic oxide?
a) SnO_{2}
b) $\mathrm{K}_{2} \mathrm{O}$
c) CuO
d) FeO
102. Which of the following acts as 'activator' in the froth floatation process?
a) KCN
b) NaCN
c) Sodium ethyl Xanthate
d) Copper sulphate
103. $\mathrm{CO}+2 \mathrm{H}_{2} \xrightarrow[\text { catalyst }]{300^{\circ} / 300 \mathrm{~atm}} \mathrm{CH}_{3} \mathrm{OH}$, the catalyst is
a) Fe
b) $\mathrm{Cr}_{2} \mathrm{O}_{3} / \mathrm{ZnO}$
c) $\mathrm{V}_{2} \mathrm{O}_{5}$
d) $\mathrm{Al}_{2} \mathrm{O}_{3}$
104. Which of the following statement(s) is (are) incorrect for alkali metals?
a) Li^{+}ion is exceptionally small and thus show covalent character in some compounds
b) Sodium oxide is amphoteric in nature
c) Lithium is the strongest reducing agent
d) All alkali metals and alkaline earth metals give blue coloration in liquid ammonia
105. The structures of quartz, mica, asbestos have the common basic unit of
a) $\left(\mathrm{SiO}_{4}\right)^{4-}$
b) $\left(\mathrm{SiO}_{3}\right)^{2-}$
c) $\left(\mathrm{SiO}_{3}\right)^{2}$
d) SiO_{2}
106. For advertisement the coloured discharged tubes contain
a) He
b) Ne
c) Ar
d) Kr
107. Given below, catalyst and corresponding process/reaction are matched. The mismatch is
a) $\left[\mathrm{RhCl}\left(\mathrm{pph}_{3}\right)_{2}\right]$: Hydrogenation
b) $\mathrm{TiCl}_{4}+\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$: Polymerization
c) $\mathrm{V}_{2} \mathrm{O}_{5}$: Haber-Bosch process
d) Nickel : Hydrogenation
108. The EAN of $\mathrm{Co}(\mathrm{CO})_{4}$ is 35 . It attains stability by
a) Oxidation of $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$
b) Reduction of $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$
c) Dimerization of $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$
d) Both b and c
109. Carcinogenic pollutant in the following is
a) Polychlorinated biphenyls
b) Sodium chlorate
c) Tetrachloroethene
d) Both a and c
110. 29.5 mg of an organic compound containing nitrogen was digested according to Kjeldahl's method and the evolved ammonia was absorbed in 20 mL of 0.1 M HCl solution. The excess of acid required 15 mL of 0.1 $M \mathrm{NaOH}$ solution for complete neutralization. The percentage of nitrogen in the compound is
a) 29.5
b) 59.0
c) 23.7
d) 47.4
111. Hyper conjugation involves overlap of the following orbitals:
a) $\sigma-\sigma$
b) $\sigma-p$
c) $p-p$
d) $\pi-\pi$
112. What volume of methane at NTP is formed from 8.2 gm of sodium acetate by fusion with soda lime
a) 10 litre
b) 11.2 litre
c) 5.6 litre`
d) 2.24 litre
113.

a)

b)

c)

d)

114. How many monochloro derivatives are possible when 3-methylpentane is subjected to free radical chlorination? (including stereo isomers)
a) 7
b) 5
c) 6
d) 4
115. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH} \xrightarrow{\mathrm{KMnO}_{4}} A,\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{5}} B$. Here A and B are
a) Tetramethylhydrazine and dimethyl hydroxyl amine
b) Dimethylphenol amine and Tetramethyl hydrazine
c) Tetramethylhydrazine and Tetramethyl hydrazine
d) Dimethyl hydroxyl amine and Dimethyl hydroxyl amine
116. Gutta-percha, a naturally occurring highly crystalline non-elastic rubber, consists of
a) 1,4-polyisoprenes in which all the double bonds have E-configurations
b) 1, 4-polyisoprenes in which all the double bonds have Z-configurations
c) A mixture of Z-1, 4-polyisoprenes and E-1, 4-polyisoprenes
d) 1, 4-polyisoprenes in which some double bonds have Z-configurations and some other have E-configurations
117. Statement-I: Glucose is in pyranose form and has free anomeric hydroxyl group

Statement-II: In sucrose, glucose is in pyranose form and fructose is in furanose form
a) Both I and II are true b) I is true, but II is false
c) I is false, But II is true
d) both I and II are false
118. The drug used for the treatment of throat infection is
a) quinine
b) piperazine
c) sulpha drug like sulphanilamide
d) isonicotin hydrazide
119. Which of the following statement is not correct?
a) Only α-amino acids are obtained on hydrolysis of proteins
b) The amino acids which are synthesized in the body are known as non-essential amino acids
c) There are 20 essential amino acids
d) L-amino acids are represented by writing the $-\mathrm{NH}_{2}$ group on the left side
120. In a reaction involving ring substitution of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Y}$, the major product is meta-isomer. The group Y can be
a) $-\mathrm{NH}_{2}$
b) -COOH
c) $-\mathrm{CH}_{3}$
d) -Cl

Section-BIOLOGY

This section contains 30 Multiple Choice Questions. Each question has four choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
121. When two or more authors publish a new species or propose a new name, their names are linked using the epithet?
a) In
b) Ex
c) emend
d) et
122. Members of which kingdom have cell walls and are all heterotrophic?
a) Plantae
b) Fungi
c) Animalia
d) Protista
123. Squamous epithelium occurs in inner lining of
a) Kidney
b) Pancreatic duct
c) Lung Alveoli
d) Heart
124. Which of the following statements is true?
a) Eukaryotic cells have membrane-bound organelles
b) Prokaryotic cells have a nucleus
c) Eukaryotic cells have genetic information
d) Prokaryotic cells are surrounded by a cell membrane
125. DNA structure was discovered by Watson and Crick in
a) 1953
b) 1962
c) 1952
d) 1951
126. Name the phenomena that begins when sugar solution is separated from water by a semipermeable membrane?
a) Osmosis
b) Diffusion
c) Imbibition
d) Translocation
127. This is a rich source for Vitamin C
a) Rice
b) Milk
c) Egg
d) Lemon
128. Synthesis of ADP $+\mathrm{Pi} \rightarrow \mathrm{ATP}$ in grana is
a) Phosphorylation
b) Photophosphorylation
c) Oxidative Phosphorylation
d) Photolysis
129. Citric acid cycle takes place in
a) Cytosol
b) Peroxisomes
c) mitochondria
d) None of these
130. Coiling of garden pea tendrils around any support is an example of
a) Thermotaxis
b) Thigmotaxis
c) Thigmotropism
d) Thigmonasty
131. The instrument used for measuring blood pressure is known as
a) ECG
b) Stethoscopec) Sphygmomanometer
d) EEG
132. Amount of blood passes through kidney per minute is
a) $110-200 \mathrm{ml}$
b) $150-200 \mathrm{ml}$
c) $100-120 \mathrm{ml}$
d) $50-100 \mathrm{ml}$
133. Hinge joints
a) Are synovial joints
b) Permit movements in one direction
c) Are found in knee
d) All of these
134. When a neuron is in resting state i.e. not conducting any impulse, the axonal membrane is
a) Comparatively more permeable to K^{+}ions and nearly impermeable to Na^{+}ions
b) Comparatively more permeable to Na^{+}ions and nearly impermeable to K^{+}ions
c) Equally permeable to both Na^{+}and K^{+}ions
d) Impermeable to both Na^{+}and K^{+}ions
135. Parthenocarpy leads to
a) Seed fruit
b) Seedless fruit
c) No fruit
d) Seed formation
136. Tyson's glands occur in male on
a) urethra
b) scrotum
c) prepuce
d) epididymis
137. Chromatin is composed of \qquad
a) Nucleic acid and protein
b) Only Nucleic acid
c) Only protein
d) None of these
138. B-lymphocytes are
a) Formed in bone marrow
b) Preprocessed in bone marrow
c) Preprocessed in liver
d) Both Formed in bone marrow and Preprocessed in bone marrow
139. Choose the complex fertilizer
a) Potassium sulphate
b) Calcium ammonium nitrate
c) Triple super phosphate
d) Urea ammonium phosphate
140. Hop flowers are used for
a) Gluconic acid production
b) Citric acid production
c) Vinegar production
d) Beer production
141. The two DNA strands are held together by bonds of
a) Nitrogen
b) Oxygen
c) Hydrogen
d) Carbon
142. Green Fluorescent Protein was first observed in
a) Jellyfish
b) Primate
c) Cuttlefish
d) Shark
143. The carrying capacity of a population is determined by its
a) Natality
b) Population growth rate
c) Limiting resources
d) Mortality
144. The richness of species in an ecosystem is termed as
a) Genetic diversity
b) Species diversity
c) Community diversity
d) All of these
145. Red data book provides data on
a) red flowered plants
b) red coloured fishes
c) endangered plants and animals
d) red eyed birds
146. The Taj Mahal is being affected by
a) Noise pollution
b) Air pollution
c) Water pollution
d) None of these
147. Blood flow in lungs is circulated by
a) Cardiac circulation
b) Gastric circulation
c) Pulmonary circulation
d) trachea
148. Which of these is true for gastric juices?
a) Kill bacteria
b) Digest food
c) Include hydrochloric acid
d) All of these
149. Which of the following country have richest biodiversity?
a) India
b) South Africa
c) Brazil
d) Russia
150. Disease caused by eating fish inhabiting mercury contaminated water is
a) Hiroshima episode
b) Mina-mata disease
c) Bright's disease
d) Osteosclerosis

To view more Previous Year Question Papers login to https://admission.lpu.in/

