|  | Special Instructions / Useful Data |
| :---: | :---: |
| $\mathbb{R}$ | Set of all real numbers |
| $\mathbb{R}^{n}$ | $\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{R}, i=1, \ldots, n\right\}$ |
| $P(A)$ | Probability of an event $A$ |
| i.i.d. | Independently and identically distributed |
| $\operatorname{Bin}(n, p)$ | Binomial distribution with parameters $n$ and $p$ |
| Poisson( $\theta$ ) | Poisson distribution with mean $\theta$ |
| $N\left(\mu, \sigma^{2}\right)$ | Normal distribution with mean $\mu$ and variance $\sigma^{2}$ |
| $\operatorname{Exp}(\lambda)$ | The exponential distribution with probability density function $f(x \mid \lambda)=\left\{\begin{array}{ll} \lambda e^{-\lambda x}, & x>0, \\ 0, & \text { otherwise } \end{array}, \lambda>0\right.$ |
| $t_{n}$ | Student's $t$ distribution with $n$ degrees of freedom |
| $\chi_{n}^{2}$ | Chi-square distribution with $n$ degrees of freedom |
| $\chi_{n, \alpha}^{2}$ | A constant such that $P\left(W>\chi_{n, \alpha}^{2}\right)=\alpha$, where $W$ has $\chi_{n}^{2}$ distribution |
| $\Phi(x)$ | Cumulative distribution function of $N(0,1)$ |
| $\phi(x)$ | Probability density function of $N(0,1)$ |
| $A^{C}$ | Complement of an event $A$ |
| $E(X)$ | Expectation of a random variable $X$ |
| $\operatorname{Var}(X)$ | Variance of a random variable $X$ |
| $B(m, n)$ | $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x, m>0, n>0$ |
| [ $x$ ] | The greatest integer less than or equal to real number $x$ |
| $f^{\prime}$ | Derivative of function $f$ |
| $\begin{aligned} & \Phi(0.25)=0.5987, \Phi(0.5)=0.6915, \Phi(0.625)=0.7341, \Phi(0.71)=0.7612 \\ & \Phi(1)=0.8413, \Phi(1.125)=0.8697, \Phi(2)=0.9772 \end{aligned}$ |  |

## SECTION - A <br> MULTIPLE CHOICE QUESTIONS (MCQ)

## Q. 1 - Q. 10 carry one mark each.

Q. 1 Let

$$
P=\left[\begin{array}{cccc}
1 & 2 & 0 & 2 \\
-1 & -2 & 1 & 1 \\
1 & 2 & -3 & -7 \\
1 & 2 & -2 & -4
\end{array}\right] .
$$

Then rank of $P$ equals
(A) 4
(B) 3
(C) 2
(D) 1
Q. 2 Let $\alpha, \beta, \gamma$ be real numbers such that $\beta \neq 0$ and $\gamma \neq 0$. Suppose

$$
P=\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & 0
\end{array}\right]
$$

and $P^{-1}=P$. Then
(A) $\alpha=0$ and $\beta \gamma=1$
(B) $\alpha \neq 0$ and $\beta \gamma=1$
(C) $\alpha=0$ and $\beta \gamma=2$
(D) $\alpha=0$ and $\beta \gamma=-1$
Q. 3 Let $m>1$. The volume of the solid generated by revolving the region between the $y$-axis and the curve $x y=4,1 \leq y \leq m$, about the $y$-axis is $15 \pi$. The value of $m$ is
(A) 14
(B) 15
(C) 16
(D) 17
Q. 4 Consider the region $S$ enclosed by the surface $z=y^{2}$ and the planes $z=1, x=0, x=1, y=-1$ and $y=1$. The volume of $S$ is
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) 1
(D) $\frac{4}{3}$
Q. 5 Let $X$ be a discrete random variable with the moment generating function

$$
M_{X}(t)=e^{0.5\left(e^{t}-1\right)}, t \in \mathbb{R}
$$

Then $P(X \leq 1)$ equals
(A) $e^{-1 / 2}$
(B) $\frac{3}{2} e^{-1 / 2}$
(C) $\frac{1}{2} e^{-1 / 2}$
(D) $e^{-(e-1) / 2}$
Q. 6 Let $E$ and $F$ be two independent events with

$$
P(E \mid F)+P(F \mid E)=1, P(E \bigcap F)=\frac{2}{9} \text { and } P(F)<P(E)
$$

Then $P(E)$ equals
(A) $\frac{1}{3}$
(B) $\frac{1}{2}$
(C) $\frac{2}{3}$
(D) $\frac{3}{4}$
Q. 7 Let $X$ be a continuous random variable with the probability density function

$$
f(x)=\frac{1}{\left(2+x^{2}\right)^{3 / 2}}, \quad x \in \mathbb{R}
$$

Then $E\left(X^{2}\right)$
(A) equals 0
(B) equals 1
(C) equals 2
(D) does not exist
Q. 8 The probability density function of a random variable $X$ is given by

$$
f(x)=\left\{\begin{array}{ll}
\alpha x^{\alpha-1}, & 0<x<1 \\
0, & \text { otherwise }
\end{array}, \alpha>0\right.
$$

Then the distribution of the random variable $Y=\log _{e} X^{-2 \alpha}$ is
(A) $\chi_{2}^{2}$
(B) $\frac{1}{2} \chi_{2}^{2}$
(C) $2 \chi_{2}^{2}$
(D) $\chi_{1}^{2}$
Q. 9 Let $X_{1}, \mathrm{X}_{2}, \ldots$ be a sequence of i.i.d. $N(0,1)$ random variables. Then, as $n \rightarrow \infty, \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$ converges in probability to
(A) 0
(B) 0.5
(C) 1
(D) 2
Q. 10 Consider the simple linear regression model with $n$ random observations $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$, $i=1, \ldots, n,(n>2) . \quad \beta_{0}$ and $\beta_{1}$ are unknown parameters, $x_{1}, \ldots, x_{n}$ are observed values of the regressor variable and $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are error random variables with $E\left(\varepsilon_{i}\right)=0, i=1, \ldots, n$, and for $i, j=1, \ldots, n, \operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=\left\{\begin{array}{cc}0, & \text { if } i \neq j, \\ \sigma^{2}, & \text { if } i=j\end{array}\right.$. For real constants $a_{1}, \ldots, a_{n}$, if $\sum_{i=1}^{n} a_{i} Y_{i}$ is an unbiased estimator of $\beta_{1}$, then
(A) $\sum_{i=1}^{n} a_{i}=0$ and $\sum_{i=1}^{n} a_{i} x_{i}=0$
(B) $\sum_{i=1}^{n} a_{i}=0$ and $\sum_{i=1}^{n} a_{i} x_{i}=1$
(C) $\sum_{i=1}^{n} a_{i}=1$ and $\sum_{i=1}^{n} a_{i} x_{i}=0$
(D) $\sum_{i=1}^{n} a_{i}=1$ and $\sum_{i=1}^{n} a_{i} x_{i}=1$

## Q. 11 - Q. 30 carry two marks each.

Q. 11 Let $(X, Y)$ have the joint probability density function

$$
f(x, y)= \begin{cases}\frac{1}{2} y^{2} e^{-x}, & \text { if } 0<y<x<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Then $P(Y<1 \mid X=3)$ equals
(A) $\frac{1}{81}$
(B) $\frac{1}{27}$
(C) $\frac{1}{9}$
(D) $\frac{1}{3}$
Q. 12 Let $X_{1}, \mathrm{X}_{2}, \ldots$ be a sequence of i.i.d. random variables having the probability density function

$$
f(x)= \begin{cases}\frac{1}{B(6,4)} x^{5}(1-x)^{3}, & 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

Let $Y_{i}=\frac{X_{i}}{1-X_{i}}$ and $U_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$. If the distribution of $\frac{\sqrt{n}\left(U_{n}-2\right)}{\alpha}$ converges to $N(0,1)$ as $n \rightarrow \infty$, then a possible value of $\alpha$ is
(A) $\sqrt{7}$
(B) $\sqrt{5}$
(C) $\sqrt{3}$
(D) 1
Q. 13 Let $X_{1}, \ldots, X_{n}$ be a random sample from a population with the probability density function

$$
f(x \mid \theta)=\left\{\begin{array}{ll}
4 e^{-4(x-\theta)}, & x>\theta, \\
0, & \text { otherwise }
\end{array}, \theta \in \mathbb{R}\right.
$$

If $T_{n}=\min \left\{X_{1}, \ldots, X_{n}\right\}$, then
(A) $T_{n}$ is unbiased and consistent estimator of $\theta$
(B) $T_{n}$ is biased and consistent estimator of $\theta$
(C) $T_{n}$ is unbiased but NOT consistent estimator of $\theta$
(D) $T_{n}$ is NEITHER unbiased NOR consistent estimator of $\theta$
Q. 14 Let $X_{1}, \ldots, X_{n}$ be i.i.d. random variables with the probability density function

$$
f(x)= \begin{cases}e^{-x}, & x>0 \\ 0, & \text { otherwise }\end{cases}
$$

If $X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\}$, then $\lim _{n \rightarrow \infty} P\left(X_{(n)}-\log _{e} n \leq 2\right)$ equals
(A) $1-e^{-2}$
(B) $e^{-e^{-0.5}}$
(C) $e^{-e^{-2}}$
(D) $e^{-e^{2}}$
Q. 15 Let $X$ and $Y$ be two independent $N(0,1)$ random variables. Then $P\left(0<X^{2}+Y^{2}<4\right)$ equals
(A) $1-e^{-2}$
(B) $1-e^{-4}$
(C) $1-e^{-1}$
(D) $e^{-2}$
Q. 16 Let $X$ be a random variable with the cumulative distribution function

$$
F(x)= \begin{cases}0, & x<0 \\ \frac{x}{8}, & 0 \leq x<2, \\ \frac{x^{2}}{16}, & 2 \leq x<4, \\ 1, & x \geq 4 .\end{cases}
$$

Then $E(X)$ equals
(A) $\frac{12}{31}$
(B) $\frac{13}{12}$
(C) $\frac{31}{21}$
(D) $\frac{31}{12}$
Q. 17 Let $X_{1}, \ldots, X_{n}$ be a random sample from a population with the probability density function

$$
f(x)=\frac{1}{2 \theta} \mathrm{e}^{-|x| / \theta}, x \in \mathbb{R}, \theta>0
$$

For a suitable constant $K$, the critical region of the most powerful test for testing $H_{0}: \theta=1$ against $H_{1}: \theta=2$ is of the form
(A) $\sum_{i=1}^{n}\left|X_{i}\right|>K$
(B) $\sum_{i=1}^{n}\left|X_{i}\right|<K$
(C) $\sum_{i=1}^{n} \frac{1}{\left|X_{i}\right|}<K$
(D) $\sum_{i=1}^{n} \frac{1}{\left|X_{i}\right|}>K$
Q. 18 Let $X_{1}, \ldots, X_{n}, X_{n+1}, X_{n+2}, \ldots, X_{n+m}(n>4, m>4)$ be a random sample from $N\left(\mu, \sigma^{2}\right)$; $\mu \in \mathbb{R}, \sigma>0$. If $\bar{X}_{1}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $\bar{X}_{2}=\frac{1}{m-2} \sum_{i=n+1}^{n+m-2} X_{i}$, then the distribution of the random variable

$$
T=\frac{X_{n+m}-X_{n+m-1}}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{1}\right)^{2}+\sum_{i=n+1}^{n+m-2}\left(X_{i}-\bar{X}_{2}\right)^{2}}}
$$

is
(A) $t_{n+m-2}$
(B) $\sqrt{\frac{2}{n+m-1}} t_{n+m-1}$
(C) $\sqrt{\frac{2}{n+m-4}} t_{n+m-4}$
(D) $t_{n+m-4}$
Q. 19 Let $X_{1}, \ldots, X_{n}(n>1)$ be a random sample from a $\operatorname{Poisson}(\theta)$ population, $\theta>0$, and $T=\sum_{i=1}^{n} X_{i}$. Then the uniformly minimum variance unbiased estimator of $\theta^{2}$ is
(A) $\frac{T(T-1)}{n^{2}}$
(B) $\frac{T(T-1)}{n(n-1)}$
(C) $\frac{T(T-1)}{n(n+1)}$
(D) $\frac{T^{2}}{n^{2}}$
Q. 20 Let $X$ be a random variable whose probability mass functions $f\left(x \mid H_{0}\right)$ (under the null hypothesis $H_{0}$ ) and $f\left(x \mid H_{1}\right)$ (under the alternative hypothesis $H_{1}$ ) are given by

| $X=x$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $f\left(x \mid H_{0}\right)$ | 0.4 | 0.3 | 0.2 | 0.1 |
| $f\left(x \mid H_{1}\right)$ | 0.1 | 0.2 | 0.3 | 0.4 |

For testing the null hypothesis $H_{0}: X \sim f\left(x \mid H_{0}\right)$ against the alternative hypothesis $H_{1}: X \sim f\left(x \mid H_{1}\right)$, consider the test given by: Reject $H_{0}$ if $X>\frac{3}{2}$.
If $\alpha=$ size of the test and $\beta=$ power of the test, then
(A) $\alpha=0.3$ and $\beta=0.3$
(B) $\alpha=0.3$ and $\beta=0.7$
(C) $\alpha=0.7$ and $\beta=0.3$
(D) $\alpha=0.7$ and $\beta=0.7$
Q. 21 Let $X_{1}, \ldots, X_{n}$ be a random sample from a $N\left(2 \theta, \theta^{2}\right)$ population, $\theta>0$. A consistent estimator for $\theta$ is
(A) $\frac{1}{n} \sum_{i=1}^{n} X_{i}$
(B) $\left(\frac{5}{n} \sum_{i=1}^{n} X_{i}^{2}\right)^{1 / 2}$
(C) $\frac{1}{5 n} \sum_{i=1}^{n} X_{i}{ }^{2}$
(D) $\left(\frac{1}{5 n} \sum_{i=1}^{n} X_{i}^{2}\right)^{1 / 2}$
Q. 22 An institute purchases laptops from either vendor $V_{1}$ or vendor $V_{2}$ with equal probability. The lifetimes (in years) of laptops from vendor $V_{1}$ have a $U(0,4)$ distribution, and the lifetimes (in years) of laptops from vendor $V_{2}$ have an $\operatorname{Exp}(1 / 2)$ distribution. If a randomly selected laptop in the institute has lifetime more than two years, then the probability that it was supplied by vendor $V_{2}$ is
(A) $\frac{2}{2+e}$
(B) $\frac{1}{1+e}$
(C) $\frac{1}{1+e^{-1}}$
(D) $\frac{2}{2+e^{-1}}$
Q. 23 Let $y(x)$ be the solution to the differential equation

$$
x^{4} \frac{d y}{d x}+4 x^{3} y+\sin x=0 ; \quad y(\pi)=1, \quad x>0
$$

Then $y\left(\frac{\pi}{2}\right)$ is
(A) $\frac{10\left(1+\pi^{4}\right)}{\pi^{4}}$
(B) $\frac{12\left(1+\pi^{4}\right)}{\pi^{4}}$
(C) $\frac{14\left(1+\pi^{4}\right)}{\pi^{4}}$
(D) $\frac{16\left(1+\pi^{4}\right)}{\pi^{4}}$
Q. 24 Let $a_{n}=e^{-2 n} \sin n$ and $b_{n}=e^{-n} n^{2}(\sin n)^{2}$ for $n \geq 1$. Then
(A) $\sum_{n=1}^{\infty} a_{n}$ converges but $\sum_{n=1}^{\infty} b_{n}$ does NOT converge
(B) $\sum_{n=1}^{\infty} b_{n}$ converges but $\sum_{n=1}^{\infty} a_{n}$ does NOT converge
(C) both $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge
(D) NEITHER $\sum_{n=1}^{\infty} a_{n}$ NOR $\sum_{n=1}^{\infty} b_{n}$ converges
Q. 25 Let

$$
f(x)=\left\{\begin{array}{ll}
x \sin ^{2}(1 / x), & x \neq 0, \\
0, & x=0,
\end{array} \quad \text { and } \quad g(x)= \begin{cases}x(\sin x) \sin (1 / x), & x \neq 0 \\
0, & x=0\end{cases}\right.
$$

Then
(A) $f$ is differentiable at 0 but $g$ is NOT differentiable at 0
(B) $g$ is differentiable at 0 but $f$ is NOT differentiable at 0
(C) $f$ and $g$ are both differentiable at 0
(D) NEITHER $f$ NOR $g$ is differentiable at 0
Q. 26 Let $f:[0,4] \rightarrow \mathbb{R}$ be a twice differentiable function. Further, let $f(0)=1, f(2)=2$ and $f(4)=3$. Then
(A) there does NOT exist any $x_{1} \in(0,2)$ such that $f^{\prime}\left(x_{1}\right)=\frac{1}{2}$
(B) there exist $x_{2} \in(0,2)$ and $x_{3} \in(2,4)$ such that $f^{\prime}\left(x_{2}\right)=f^{\prime}\left(x_{3}\right)$
(C) $f^{\prime \prime}(x)>0$ for all $x \in(0,4)$
(D) $f^{\prime \prime}(x)<0$ for all $x \in(0,4)$
Q. 27 Let $f(x, y)=x^{2}-400 x y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$. Then $f$ attains its
(A) local minimum at $(0,0)$ but NOT at $(1,1)$
(B) local minimum at $(1,1)$ but NOT at $(0,0)$
(C) local minimum both at $(0,0)$ and $(1,1)$
(D) local minimum NEITHER at $(0,0)$ NOR at $(1,1)$
Q. 28 Let $y(x)$ be the solution to the differential equation

$$
4 \frac{d^{2} y}{d x^{2}}+12 \frac{d y}{d x}+9 y=0, \quad y(0)=1, \quad y^{\prime}(0)=-4 .
$$

Then $y(1)$ equals
(A) $-\frac{1}{2} e^{-3 / 2}$
(B) $-\frac{3}{2} e^{-3 / 2}$
(C) $-\frac{5}{2} e^{-3 / 2}$
(D) $-\frac{7}{2} e^{-3 / 2}$
Q. 29 Let $g:[0,2] \rightarrow \mathbb{R}$ be defined by

$$
g(x)=\int_{0}^{x}(x-t) e^{t} d t
$$

The area between the curve $y=g^{\prime \prime}(x)$ and the $x$-axis over the interval $[0,2]$ is
(A) $e^{2}-1$
(B) $2\left(e^{2}-1\right)$
(C) $4\left(e^{2}-1\right)$
(D) $8\left(e^{2}-1\right)$
Q. 30 Let $P$ be a $3 \times 3$ singular matrix such that $P \vec{v}=\vec{v}$ for a nonzero vector $\vec{v}$ and

$$
P\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{c}
2 / 5 \\
0 \\
-2 / 5
\end{array}\right] .
$$

Then
(A) $P^{3}=\frac{1}{5}\left(7 P^{2}-2 P\right)$
(B) $P^{3}=\frac{1}{4}\left(7 P^{2}-2 P\right)$
(C) $P^{3}=\frac{1}{3}\left(7 P^{2}-2 P\right)$
(D) $P^{3}=\frac{1}{2}\left(7 P^{2}-2 P\right)$

## SECTION - B <br> MULTIPLE SELECT QUESTIONS (MSQ)

## Q. 31 - Q. 40 carry two marks each.

Q. 31 For two nonzero real numbers $a$ and $b$, consider the system of linear equations

$$
\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
b / 2 \\
a / 2
\end{array}\right] .
$$

Which of the following statements is (are) TRUE?
(A) If $a=b$, the solutions of the system lie on the line $x+y=1 / 2$
(B) If $a=-b$, the solutions of the system lie on the line $y-x=1 / 2$
(C) If $a \neq \pm b$, the system has no solution
(D) If $a \neq \pm b$, the system has a unique solution
Q. 32 For $n \geq 1$, let

$$
a_{n}=\left\{\begin{array}{cc}
n 2^{-n}, & \text { if } n \text { is odd, } \\
-3^{-n}, & \text { if } n \text { is even }
\end{array}\right.
$$

Which of the following statements is (are) TRUE?
(A) The sequence $\left\{a_{n}\right\}$ converges
(B) The sequence $\left\{\left|a_{n}\right|^{1 / n}\right\}$ converges
(C) The series $\sum_{n=1}^{\infty} a_{n}$ converges
(D) The series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges
Q. 33 Let $f:(0, \infty) \rightarrow \mathbb{R}$ be defined by

$$
f(x)=x\left(e^{1 / x^{3}}-1+\frac{1}{x^{3}}\right)
$$

Which of the following statements is (are) TRUE?
(A) $\lim _{x \rightarrow \infty} f(x)$ exists
(B) $\lim _{x \rightarrow \infty} x f(x)$ exists
(C) $\lim _{x \rightarrow \infty} x^{2} f(x)$ exists
(D) There exists $m>0$ such that $\lim _{x \rightarrow \infty} x^{m} f(x)$ does NOT exist.
Q. 34 For $x \in \mathbb{R}$, define $f(x)=\cos (\pi x)+\left[x^{2}\right]$ and $g(x)=\sin (\pi x)$. Which of the following statements is (are) TRUE?
(A) $f(x)$ is continuous at $x=2$
(B) $g(x)$ is continuous at $x=2$
(C) $f(x)+g(x)$ is continuous at $x=2$
(D) $f(x) g(x)$ is continuous at $x=2$
Q. 35 Let $E$ and $F$ be two events with $0<P(E)<1,0<P(F)<1$ and $P(E \mid F)>P(E)$. Which of the following statements is (are) TRUE?
(A) $P(F \mid E)>P(F)$
(B) $P\left(E \mid F^{C}\right)>P(E)$
(C) $P\left(F \mid E^{C}\right)<P(F)$
(D) $E$ and $F$ are independent
Q. 36 Let $X_{1}, \ldots, X_{n}(n>1)$ be a random sample from a $U(2 \theta-1,2 \theta+1)$ population, $\theta \in \mathbb{R}$, and $Y_{1}=\min \left\{X_{1}, \ldots, X_{n}\right\}, \quad Y_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Which of the following statistics is (are) maximum likelihood estimator (s) of $\theta$ ?
(A) $\frac{1}{4}\left(Y_{1}+Y_{n}\right)$
(B) $\frac{1}{6}\left(2 Y_{1}+Y_{n}+1\right)$
(C) $\frac{1}{8}\left(Y_{1}+3 Y_{n}-2\right)$
(D) Every statistic $T\left(X_{1}, \ldots, X_{n}\right)$ satisfying $\frac{\left(Y_{n}-1\right)}{2}<T\left(X_{1}, \ldots, X_{n}\right)<\frac{\left(Y_{1}+1\right)}{2}$
Q. 37 Let $X_{1}, \ldots, X_{n}$ be a random sample from a $N\left(0, \sigma^{2}\right)$ population, $\sigma>0$. Which of the following testing problems has (have) the region $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n} x_{i}^{2} \geq \chi_{n, \alpha}^{2}\right\}$ as the most powerful critical region of level $\alpha$ ?
(A) $H_{0}: \sigma^{2}=1$ against $H_{1}: \sigma^{2}=2$
(B) $H_{0}: \sigma^{2}=1$ against $H_{1}: \sigma^{2}=4$
(C) $H_{0}: \sigma^{2}=2$ against $H_{1}: \sigma^{2}=1$
(D) $H_{0}: \sigma^{2}=1$ against $H_{1}: \sigma^{2}=0.5$
Q. 38 Let $X_{1}, \ldots, X_{n}$ be a random sample from a $N\left(0,2 \theta^{2}\right)$ population, $\theta>0$. Which of the following statements is (are) TRUE?
(A) $\left(X_{1}, \ldots, X_{n}\right)$ is sufficient and complete
(B) $\left(X_{1}, \ldots, X_{n}\right)$ is sufficient but NOT complete
(C) $\sum_{i=1}^{n} X_{i}^{2}$ is sufficient and complete
(D) $\frac{1}{2 n} \sum_{i=1}^{n} X_{i}^{2}$ is the uniformly minimum variance unbiased estimator for $\theta^{2}$
Q. 39 Let $X_{1}, \ldots, X_{n}$ be a random sample from a population with the probability density function

$$
f(x \mid \theta)=\left\{\begin{array}{ll}
\theta e^{-\theta x}, & x>0 \\
0, & \text { otherwise }
\end{array}, \theta>0\right.
$$

Which of the following is (are) $100(1-\alpha) \%$ confidence interval(s) for $\theta$ ?
(A) $\left(\frac{\chi_{2 n, 1-\alpha / 2}^{2}}{2 \sum_{i=1}^{n} X_{i}}, \frac{\chi_{2 n, \alpha / 2}^{2}}{2 \sum_{i=1}^{n} X_{i}}\right)$
(B) $\left(0, \frac{\chi_{2 n, \alpha}^{2}}{2 \sum_{i=1}^{n} X_{i}}\right)$
(C) $\left(\frac{\chi_{2 n, 1-\alpha / 2}^{2}}{\sum_{i=1}^{n} X_{i}}, \frac{\chi_{2 n, \alpha / 2}^{2}}{\sum_{i=1}^{n} X_{i}}\right)$
(D) $\left(\frac{2 \sum_{i=1}^{n} X_{i}}{\chi_{2 n, \alpha / 2}^{2}}, \frac{2 \sum_{i=1}^{n} X_{i}}{\chi_{2 n, 1-\alpha / 2}^{2}}\right)$
Q. 40 The cumulative distribution function of a random variable $X$ is given by

$$
F(x)= \begin{cases}0, & x<2 \\ \frac{1}{10}\left(x^{2}-\frac{7}{3}\right), & 2 \leq x<3 \\ 1, & x \geq 3\end{cases}
$$

Which of the following statements is (are) TRUE?
(A) $F(x)$ is continuous everywhere
(B) $F(x)$ increases only by jumps
(C) $P(X=2)=\frac{1}{6}$
(D) $P\left(\left.X=\frac{5}{2} \right\rvert\, 2 \leq X \leq 3\right)=0$

## SECTION - C

## NUMERICAL ANSWER TYPE (NAT)

## Q. 41 - Q. 50 carry one mark each.

Q. 41 Let $X_{1}, \ldots, X_{10}$ be a random sample from a $N(3,12)$ population. Suppose $Y_{1}=\frac{1}{6} \sum_{i=1}^{6} X_{i}$ and $Y_{2}=\frac{1}{4} \sum_{i=7}^{10} X_{i}$. If $\frac{\left(Y_{1}-Y_{2}\right)^{2}}{\alpha}$ has a $\chi_{1}^{2}$ distribution, then the value of $\alpha$ is $\qquad$
Q. 42 Let $X$ be a continuous random variable with the probability density function

$$
f(x)= \begin{cases}\frac{2 x}{9}, & 0<x<3 \\ 0, & \text { otherwise }\end{cases}
$$

Then the upper bound of $P(|X-2|>1)$ using Chebyshev's inequality is $\qquad$
Q. 43 Let $X$ and $Y$ be continuous random variables with the joint probability density function

$$
f(x, y)= \begin{cases}e^{(x+y)}, & -\infty<x, y<0 \\ 0, & \text { otherwise }\end{cases}
$$

Then $P(X<Y)=$ $\qquad$
Q. 44 Let $X$ and $Y$ be continuous random variables with the joint probability density function

$$
f(x, y)=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2}, \quad(x, y) \in \mathbb{R}^{2} .
$$

Then $P(X>0, Y<0)=$ $\qquad$
Q. 45

Let $Y$ be a $\operatorname{Bin}\left(72, \frac{1}{3}\right)$ random variable. Using normal approximation to binomial distribution, an approximate value of $P(22 \leq Y \leq 28)$ is $\qquad$
Q. 46 Let $X$ be a $\operatorname{Bin}(2, p)$ random variable and $Y$ be a $\operatorname{Bin}(4, p)$ random variable, $0<p<1$. If $P(X \geq 1)=\frac{5}{9}$, then $P(Y \geq 1)=$ $\qquad$
Q. 47 Consider the linear transformation

$$
T(x, y, z)=(2 x+y+z, x+z, 3 x+2 y+z)
$$

The rank of $T$ is $\qquad$
Q. 48

The value of $\lim _{n \rightarrow \infty} n\left[e^{-n} \cos (4 n)+\sin \left(\frac{1}{4 n}\right)\right]$ is $\qquad$
Q. 49 Let $f:[0,13] \rightarrow \mathbb{R}$ be defined by $f(x)=x^{13}-e^{-x}+5 x+6$. The minimum value of the function $f$ on $[0,13]$ is $\qquad$
Q. 50 Consider a differentiable function $f$ on $[0,1]$ with the derivative $f^{\prime}(x)=2 \sqrt{2 x}$. The arc length of the curve $y=f(x), 0 \leq x \leq 1$, is $\qquad$

## Q. 51 - Q. 60 carry two marks each.

Q. 51 Let $m$ be a real number such that $m>1$. If

$$
\int_{1}^{m} \int_{0}^{1} \int_{\sqrt{x}}^{1} e^{y^{3}} d y d x d z=e-1
$$

then $m=$ $\qquad$
Q. 52 Let

$$
P=\left[\begin{array}{lll}
1 & -3 & 3 \\
0 & -5 & 6 \\
0 & -3 & 4
\end{array}\right]
$$

The product of the eigen values of $P^{-1}$ is $\qquad$
Q. 53 The value of the real number $m$ in the following equation

$$
\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}}\left(x^{2}+y^{2}\right) d y d x=\int_{m \pi}^{\pi / 2} \int_{0}^{\sqrt{2}} r^{3} d r d \theta
$$

is $\qquad$
Q. 54

Let $a_{1}=1$ and $a_{n}=2-\frac{1}{n}$ for $n \geq 2$. Then

$$
\sum_{n=1}^{\infty}\left(\frac{1}{a_{n}^{2}}-\frac{1}{a_{n+1}^{2}}\right)
$$

converges to $\qquad$
Q. 55 Let $X_{1}, X_{2}, \ldots$ be a sequence of i.i.d. random variables with the probability density function

$$
f(x)= \begin{cases}4 x^{2} e^{-2 x}, & x>0 \\ 0, & \text { otherwise }\end{cases}
$$

and let $S_{n}=\sum_{i=1}^{n} X_{i}$. Then $\lim _{n \rightarrow \infty} P\left(S_{n} \leq \frac{3 n}{2}+\sqrt{3 n}\right)$ is $\qquad$
Q. 56 Let $X$ and $Y$ be continuous random variables with the joint probability density function

$$
f(x, y)= \begin{cases}\frac{c x^{2}}{y^{3}}, & 0<x<1, y>1 \\ 0, & \text { otherwise }\end{cases}
$$

where $c$ is a suitable constant. Then $E(X)=$ $\qquad$
Q. 57 Two points are chosen at random on a line segment of length 9 cm . The probability that the distance between these two points is less than 3 cm is $\qquad$
Q. 58 Let $X$ be a continuous random variable with the probability density function

$$
f(x)= \begin{cases}\frac{x+1}{2}, & -1<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

Then $P\left(\frac{1}{4}<X^{2}<\frac{1}{2}\right)=$
Q. 59

If $X$ is a $U(0,1)$ random variable, then $P\left(\min (X, 1-X) \leq \frac{1}{4}\right)=$ $\qquad$
Q. 60 In a colony all families have at least one child. The probability that a randomly chosen family from this colony has exactly $k$ children is $(0.5)^{k} ; k=1,2, \ldots$. A child is either a male or a female with equal probability. The probability that such a family consists of at least one male child and at least one female child is $\qquad$

## END OF THE QUESTION PAPER

| JAM 2016: Mathematical Statistics |  |  |  |
| :---: | :---: | :---: | :---: |
| Qn. No. | Qn. Type | Key(s) | Mark(s) |
| 1 | MCQ | C | 1 |
| 2 | MCQ | A | 1 |
| 3 | MCQ | C | 1 |
| 4 | MCQ | D | 1 |
| 5 | MCQ | B | 1 |
| 6 | MCQ | C | 1 |
| 7 | MCQ | D | 1 |
| 8 | MCQ | A | 1 |
| 9 | MCQ | C | 1 |
| 10 | MCQ | B | 1 |
| 11 | MCQ | B | 2 |
| 12 | MCQ | C | 2 |
| 13 | MCQ | B | 2 |
| 14 | MCQ | C | 2 |
| 15 | MCQ | A | 2 |
| 16 | MCQ | D | 2 |
| 17 | MCQ | A | 2 |
| 18 | MCQ | C | 2 |
| 19 | MCQ | A | 2 |
| 20 | MCQ | B | 2 |
| 21 | MCQ | D | 2 |
| 22 | MCQ | A | 2 |
| 23 | MCQ | D | 2 |
| 24 | MCQ | C | 2 |
| 25 | MCQ | B | 2 |
| 26 | MCQ | B | 2 |
| 27 | MCQ | D | 2 |
| 28 | MCQ | B | 2 |
| 29 | MCQ | A | 2 |
| 30 | MCQ | A | 2 |


| JAM 2016: Mathematical Statistics |  |  |  |
| :---: | :--- | :---: | ---: |
| Qn. No. | Qn. Type | Key(s) | Mark(s) |
| 31 | MSQ | A;B;D | 2 |
| 32 | MSQ | A;C;D | 2 |
| 33 | MSQ | A;B;C;D | 2 |
| 34 | MSQ | B;D | 2 |
| 35 | MSQ | A;C | 2 |
| 36 | MSQ | $A ; B ; C ; D$ | 2 |
| 37 | MSQ | A;B | 2 |
| 38 | MSQ | $\mathrm{B} ; C ; D$ | 2 |
| 39 | MSQ | A;B | 2 |
| 40 | MSQ | C;D | 2 |


| JAM 2016: Mathematical Statistics |  |  |  |
| :---: | :--- | :--- | ---: |
| Qn. No. | Qn. Type | Key(s) | Mark(s) |
| 41 | NAT | 4.9 to 5.1 | 1 |
| 42 | NAT | 0.49 to 0.51 | 1 |
| 43 | NAT | 0.49 to 0.51 | 1 |
| 44 | NAT | 0.24 to 0.26 | 1 |
| 45 | NAT | 0.52 to 0.62 | 1 |
| 46 | NAT | 0.80 to 0.81 | 1 |
| 47 | NAT | 1.9 to 2.1 | 1 |
| 48 | NAT | 0.24 to 0.26 | 1 |
| 49 | NAT | 4.9 to 5.1 | 1 |
| 50 | NAT | 2.1 to 2.2 | 1 |
| 51 | NAT | 3.9 to 4.1 | 2 |
| 52 | NAT | -0.51 to -0.49 | 2 |
| 53 | NAT | 0.24 to 0.26 | 2 |
| 54 | NAT | 0.74 to 0.76 | 2 |
| 55 | NAT | 0.97 to 0.98 | 2 |
| 56 | NAT | 0.74 to 0.76 | 2 |
| 57 | NAT | 0.5 to 0.6 | 2 |
| 58 | NAT | 0.20 to 0.21 | 2 |
| 59 | NAT | 0.49 to 0.51 | 2 |
| 60 | NAT | 0.3 to 0.4 | 2 |

