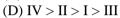
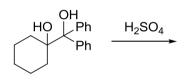
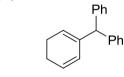

SECTION – A


MULTIPLE CHOICE QUESTIONS (MCQ)

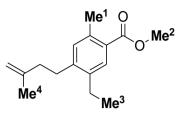
Q. 1 – Q.10 carry one mark each.


Q.1 The correct order of pKa for the following compounds is

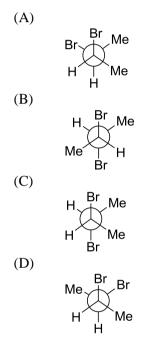


(D)

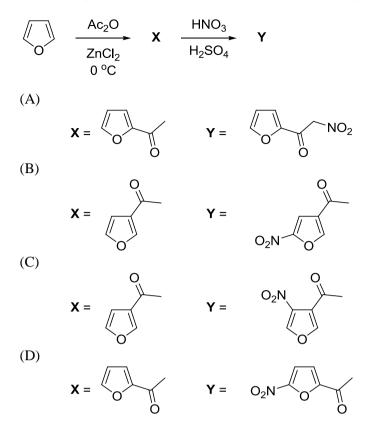
Ph ↓∠Ph


(D)

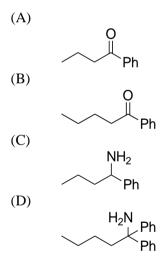
Q.3 The mechanism of the following transformation involves HO OH NaOH H_2O ΗÓ OH (excess) (A) Aldol reaction and Cannizzaro reaction (B) Aldol reaction and Claisen-Schmidt reaction (C) Knoevenagel condensation and Cannizzaro reaction (D) Stobbe condensation and Cannizzaro reaction **O**.4 The most basic amino acid among the following is (A) tyrosine (B) methionine (C) arginine (D) glutamine The crystal field stabilization energy (CFSE) in $[Mn(H_2O)_6]^{2+}$ is Q.5 (A) $0 \Delta_0$ (B) $2.0 \Delta_0 - 2P$ (C) $0.4 \Delta_0 - 2P$ (D) 2.0 Δ₀ Q.6 Indicator used in redox titration is (A) Eriochrome black T (B) Methyl orange (C) Phenolphthalein (D) Methylene blue Q.7 Among the following, the compound that has the lowest degree of ionic character is (A) NaCl (B) MgCl₂ (C) AlCl₃ (D) CaCl₂ Q.8 The correct order of entropy for various states of CO₂ is (A) $CO_2(s) > CO_2(l) > CO_2(g)$ (B) $CO_2(l) > CO_2(s) > CO_2(g)$ (C) $CO_2(g) > CO_2(l) > CO_2(s)$ (D) $CO_2(g) > CO_2(s) > CO_2(l)$ 0.9 The coordination numbers of Cs⁺ and Cl⁻ ions in the CsCl structure, respectively, are (A) 4,4 (B) 4.8 (C) 6,6 (D) 8,8 **O**.10 Determinant of a square matrix is always (B) a column matrix (A) a square matrix (C) a row matrix (D) a number

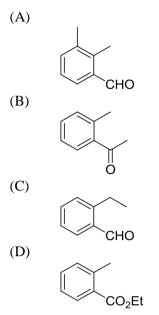

Q. 11 – Q. 30 carry two marks each.

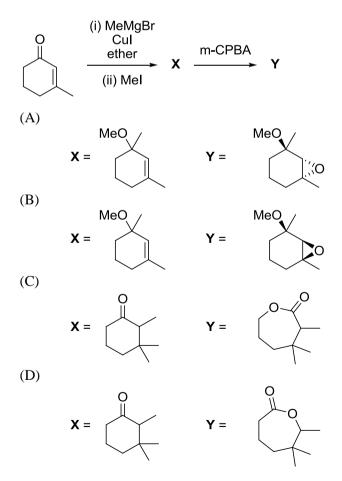
Q.11 The correct order of ¹H NMR chemical shift (δ) values for the labeled methyl groups in the following compound is



 $\begin{array}{l} (A) \ Me^1 < Me^2 < Me^3 < Me^4 \\ (B) \ Me^3 < Me^4 < Me^1 < Me^2 \\ (C) \ Me^3 < Me^1 < Me^4 < Me^2 \\ (D) \ Me^2 < Me^4 < Me^3 < Me^1 \end{array}$


Q.12 Among the following, the most stable conformation of meso-2,3-dibromobutane is


Q.13 The major products **X** and **Y** in the following reaction sequence are


Q.14 The major product formed in the reaction of butanenitrile with phenylmagnesium bromide followed by acidification is

Q.15 An organic compound on reaction with 2,4-dinitrophenylhydrazine (2,4-DNP) gives a yellow precipitate. It also gives silver mirror on reaction with ammoniacal AgNO₃. It gives an alcohol and sodium salt of a carboxylic acid on reaction with concentrated NaOH. It yields benzene-1,2-dicarboxylic acid on heating with alkaline KMnO₄. The structure of the compound among the following is

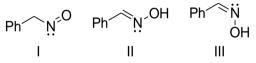
Q.16 The major products **X** and **Y** in the following reaction sequence are

Q.17	The TRUE statement a	about [Cu(H ₂ O) ₆] ²⁺ is		
	(C) Three Cu–O bond	ngths are equal ength is shorter than the lengths are shorter thar engths are shorter than	the remaining three	
Q.18	The complexes [Pt(CN	N) ₄] ^{2–} and [NiCl ₄] ^{2–} , res ₁	pectively, are	
	 (A) paramagnetic, para (B) diamagnetic, diam (C) paramagnetic, diar (D) diamagnetic, para 	agnetic nagnetic		
Q.19	The value of 'x' in [Cu	$u(CO)_x]^+$ such that it ob	eys the 18 electron rule i	S
	(A) 6	(B) 5	(C) 4	(D) 3
Q.20	The correct order of v_1	NO (cm^{-1}) in the following	ng compounds is	
	(B) $[Cr(Cp)_2(NO)_4] >$ (C) NO ⁺ > $[Cr(Cp)_2(NO)_4] = (Cr(Cp)_2(NO)_4) = (Cr(Cp)_4) = (Cr(Cp)$	$p(NO) > [Cr(Cp)_2(NO)] > [NiCp(NO)] > NO^+ > N'$ $p(O)_4 > NO > [NiCp(NO)] > NO > [NiCp(NO)] > NO > [Cr(Cp)_2(NO)_4] > N'$	NO))]	
Q.21	The red color of ruby	is due to		
	 (A) d-d transition of C (B) d-d transition of C (C) ligand to metal cha (D) metal to metal cha 	r^{3+} ion in Al ₂ O ₃ lattice arge transfer transition		
Q.22	The final products in t	he reaction of BF3 with	water are	
	(A) $B(OH)_3$ and OF_2 (B) H_3BO_3 and HBF_4 (C) B_2O_3 and HBF_4 (D) B_2H_6 and HF			
Q.23	3 The correct order of bond angles in BF ₃ , NH ₃ , NF ₃ and PH ₃ is			
	(A) $BF_3 > NH_3 > NF_3$ (B) $PH_3 > BF_3 > NF_3 >$ (C) $BF_3 > PH_3 > NH_3 >$ (D) $NH_3 > NF_3 > BF_3$	> NH ₃ > NF ₃		
Q.24	The maximum of a fur	nction Ae^{-ax^2} (A > 0; a	x > 0) is at $x =$	
	(A) 0		$(B) + \infty$	
	$(C) - \infty$		(D) $1/\sqrt{a}$	
Q.25	At 298 K, 0.1 mol of a The p H of the resultin [Given: pK_a of acetic a	g solution is	0.14 mol of acetic acid a	re dissolved in 1 L of water.

(A) 4.9 (B) 4.6 (C) 4.3 (D) 2.3

Q.26	An electrochemical cell consists of two half-cell reactions $AgCl(s) + e^- \rightarrow Ag(s) + Cl^-(aq)$ $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^-$ The mass of copper (in grams) dissolved on passing 0.5 A current for 1 hour is [Given: atomic mass of Cu is 63.6; F = 96500 C mol ⁻¹]			
	(A) 0.88	(B) 1.18	(C) 0.29	(D) 0.59
Q.27	For a zero order reaction, the half-life depends on the initial concentration $[C_0]$ of the reactant as			tion $[C_0]$ of the reactant as
	(A) $[C_0]$	(B) $[C_0]^0$	(C) $[C_0]^{-1}$	(D) $[C_0]^{1/2}$
Q.28	The effective nuclear charge of helium atom is 1.7. The first ionization energy of helium atom i eV is			energy of helium atom in
	(A) 13.6	(B) 23.1	(C) 39.3	(D) 27.2
Q.29	The relationship between the van der Waals 'b' coefficient of N_2 and O_2 is			
	(A) $b(N_2) = b(O_2) = 0$		(B) $b(N_2) = b(O_2) \neq 0$	
	(C) $b(N_2) > b(O_2)$		(D) $b(N_2) < b(O_2)$	
Q.30	From the kinetic theory of gases, the ratio of most probable speed (C_{mp}) to root mean square speed			

 $(C_{\rm rms})$ is


	(A) $\sqrt{3}$	(B) $\sqrt{2}/\sqrt{3}$	(C) $\sqrt{3}/\sqrt{2}$	(D) $3/\sqrt{2}$
--	----------------	-------------------------	-------------------------	------------------

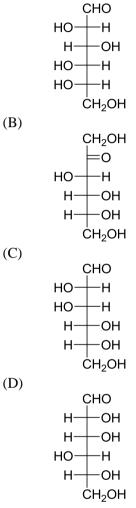
SECTION - B

MULTIPLE SELECT QUESTIONS (MSQ)

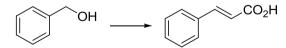
Q. 31 – Q. 40 carry two marks each.

Q.31 The correct statement(s) about the following species is(are)

- (A) I and II are resonance structures
- (B) II and III are resonance structures

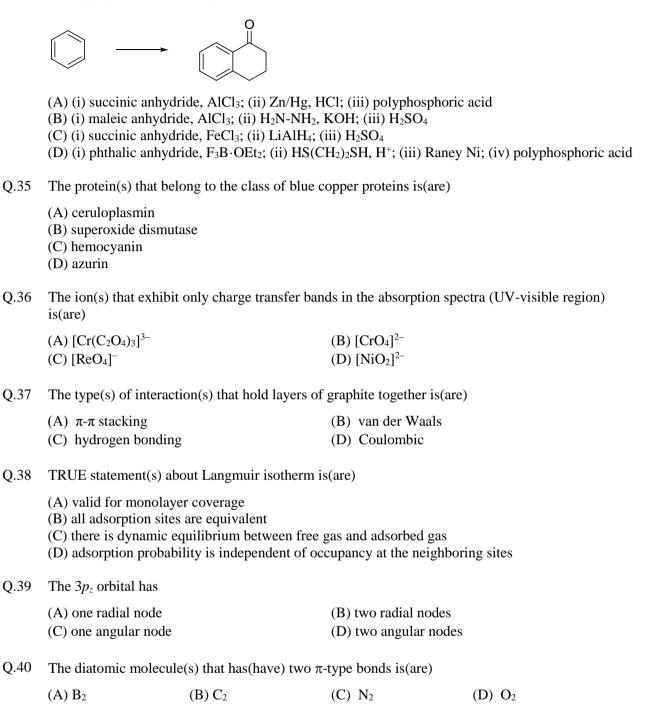

(C) II and III are diastereomers

(D) III is a tautomer of I


Q.32 Consider the following reaction:

Among the following, the compound(s) whose osazone derivative(s) will have the same melting point as that of \mathbf{X} is(are)

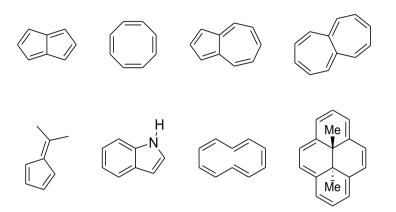
(A)



Q.33 The appropriate reagents required for carrying out the following transformation are

(A) (i) PCC, CH₂Cl₂; (ii) Ph₃P=CHCO₂Et; (iii) aq. NaOH, heat, then acidify
(B) (i) CrO₃, H₂SO₄, aq. acetone (ii) Ac₂O, NaOAc
(C) (i) MnO₂; (ii) CH₂(CO₂H)₂, piperidine, pyridine
(D) (i) PCC, CH₂Cl₂; (ii) BrCH₂CO₂C(CH₃)₃, Zn (iii) H₃O⁺, heat

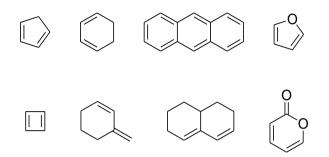
Q.34 The appropriate reagents required for carrying out the following transformation are

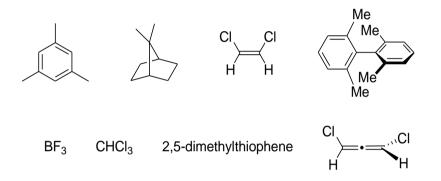


SECTION – C

NUMERICAL ANSWER TYPE (NAT)

Q. 41 – Q. 50 carry one mark each.


Q.41 Among the following, the number of molecules that are aromatic is ___.


- Q.42 The number of all possible isomers for the molecular formula C_6H_{14} is ____.
- Q.43 Hydrolysis of 15.45 g of benzonitrile produced 10.98 g of benzoic acid. The percentage yield of acid formed is ___.
- Q.44 Acetic acid content in commercial vinegar was analyzed by titrating against 1.5 M NaOH solution. A 20 mL vinegar sample required 18 mL of titrant to give endpoint. The concentration of acetic acid in the vinegar (in mol L^{-1}) is ___.
- Q.45 The bond order of Be₂ molecule is ___.
- Q.46 The number of P–H bonds in hypophosphorus acid is ___.
- Q.47 The isotope ${}^{214}_{84}$ Po undergoes one alpha and one beta particle emission sequentially to form an isotope "X". The number of neutrons in "X" is ___.
- Q.48 In a diffraction experiment with X-rays of wavelength 1.54 Å, a diffraction line corresponding to $2\theta = 20.8^{\circ}$ is observed. The inter-planar separation in Å is ___.
- Q.49 The potential energy of interaction between two ions in an ionic compound is given by $U = 1389.4 \left[\frac{Z_1 Z_2}{r/\text{Å}} \right] \text{kJ mol}^{-1}$. Assuming that CaCl₂ is linear molecule of length 5.6 Å, the potential energy for CaCl₂ molecule in kJ mol⁻¹ is ___.
- Q.50 The enthalpy of formation for $CH_4(g)$, C(g) and H(g) are -75, 717 and 218 kJ mol⁻¹, respectively. The enthalpy of the C–H bond in kJ mol⁻¹ is ___.

Q. 51 – Q. 60 carry two marks each.

- Q.51 Specific rotation of the (*R*)-enantiomer of a chiral compound is 48. The specific rotation of a sample of this compound which contains 25% of (*S*)-enantiomer is ____.
- Q.52 Among the following, the number of compounds, which can participate as '**diene**' component in a Diels-Alder reaction is ___.

Q.53 Among the following, the number of molecules that possess C_2 axis of symmetry is ____.

- Q.54 Effective nuclear charge for 3d electron in vanadium (atomic number = 23) according to Slater's rule is ___.
- Q.55 The total number of isomers possible for the molecule $[Co(NH_3)_4Cl(NO_2)]^+$ is ____.
- Q.56 The bond angle in PBr₃ is 101°. The percent 's' character of the central atom is ____.
- Q.57 $\operatorname{Cu}(s) + 4 \operatorname{H}^+(aq) + 2\operatorname{NO}_3^-(aq) \rightarrow 2\operatorname{NO}_2(g) + \operatorname{Cu}^{2+}(aq) + 2\operatorname{H}_2\operatorname{O}(l)$ In the above reaction at 1 atm and 298 K, if 6.36 g of copper is used. Assuming ideal gas behavior, the volume of NO₂ produced in liters is ____. [Given: atomic mass of Cu is 63.6; R = 0.0821 L atm K⁻¹ mol⁻¹]

Q.58 The ΔH^o for the reaction $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$ at 400 K in kJ mol⁻¹ is ____. Given at 298 K:

	ΔH_f^o	C_p^o
	kJ mol ⁻¹	$J \text{ mol}^{P} \text{ K}^{-1}$
O_2	0	29.4
CO	-110	29.1
CO_2	-394	37.1

- Q.59 The rate constants for a reaction at 300 and 350 K are 8 and 160 L mol⁻¹ s⁻¹, respectively. The activation energy of the reaction in kJ mol⁻¹ is ___. [Given $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$]
- Q.60 A 10 L flask containing 10.8 g of N₂O₅ is heated to 373 K, which leads to its decomposition according to the equation $2 N_2O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$. If the final pressure in the flask is 0.5 atm, then the partial pressure of O₂(g) in atm is ____. [Given R = 0.0821 L atm K⁻¹ mol⁻¹]

END OF THE QUESTION PAPER

JAM 2016: Chemistry				
Qn. No.	Qn. Type	Key(s)	Mark(s)	
1	MCQ	В	1	
2	MCQ	В	1	
3	MCQ	Α	1	
4	MCQ	С	1	
5	MCQ	А	1	
6	MCQ	D	1	
7	MCQ	С	1	
8	MCQ	С	1	
9	MCQ	D	1	
10	MCQ	D	1	
11	MCQ	В	2	
12	MCQ	В	2	
13	MCQ	D	2	
14	MCQ	А	2	
15	MCQ	С	2	
16	MCQ	D	2	
17	MCQ	D	2	
18	MCQ	D	2	
19	MCQ	С	2	
20	MCQ	MTA	2	
21	MCQ	В	2	
22	MCQ	В	2	
23	MCQ	А	2	
24	MCQ	Α	2	
25	MCQ	В	2	
26	MCQ	D	2	
27	MCQ	А	2	
28	MCQ	С	2	
29	MCQ	С	2	
30	MCQ	В	2	

JAM 2016: Chemistry				
Qn. Type	Key(s)	Mark(s)		
MSQ	C;D	2		
MSQ	A;B;C	2		
MSQ	A;C;D	2		
MSQ	А	2		
MSQ	A;D	2		
MSQ	B;C	2		
MSQ	A;B	2		
MSQ	A;B;C;D	2		
MSQ	A;C	2		
MSQ	B;C	2		
	Qn. Type MSQ MSQ MSQ MSQ MSQ MSQ MSQ MSQ MSQ	Qn. TypeKey(s)MSQC;DMSQA;B;CMSQA;C;DMSQAMSQA;DMSQB;CMSQA;BMSQA;B;C;DMSQA;C;D		

JAM 2016: Chemistry				
Qn. No.	Qn. Type	Key(s)	Mark(s)	
41	NAT	3.0 to 3.0	1	
42	NAT	5.0 to 5.0	1	
43	NAT	60.0 to 60.0	1	
44	NAT	1.3 to 1.4	1	
45	NAT	0.0 to 0.0	1	
46	NAT	2.0 to 2.0	1	
47	NAT	127.0 to 127.0	1	
48	NAT	4.2 to 4.3	1	
49	NAT	-1738 to -1734	1	
50	NAT	-417.0 to -415.0	1	
51	NAT	24.0 to 24.0	2	
52	NAT	6.0 to 6.0	2	
53	NAT	7.0 to 7.0	2	
54	NAT	4.2 to 4.4	2	
55	NAT	4.0 to 4.0	2	
56	NAT	MTA	2	
57	NAT	4.8 to 5.0	2	
58	NAT	-284.70 to -284.65	2	
59	NAT	52.0 to 53.0	2	
60	NAT	0.06 to 0.07	2	