TRB Polytechnic Lecturer Exam 2017 Mechanical Engineering

1.	Whi	ich one of the following is not a cas	sual f	orecasting method ?					
	(A)	Trend adjusted exponential smoo	othing						
	(B)	Econometric models							
	(C)	Linear regression							
	(D)	Multiple regression							
		1	i i						
2.	Whi	ich one of the following scheduling	meas	ures is not related to due date or delive	ry time ?				
	(A)	Flow time	(B)	Tardiness					
	(C)	Lateness	(D)	Number of tardy jobs					
				b / · · · · ·					
3.	The	correct sequence of operations in p	orodu	ction planning and control is:					
	(A)	Routing - Scheduling - Despatching - Follow up							
	(B)	Scheduling - Follow up - Routing	- De	spatching					
	(C)	Despatching - Scheduling - Routi	ng - F	follow u p					
	(D)	Routing - Follow up - Despatchin	ig - So	cheduling					
			15	BASS					
4.	The	rent for the stores where materials	are k	ept falls under :					
	(A)	Set-up cost	(B)	Shortage cost	,				
	(C)	Holding cost	(D)	Ordering cost					
5.	In a	fixed order quantity-constant lead	time i	inventory system, the safety stock is de	pendent				
	(A)	Service level							
	(B)	Demand variation during lead tir	ne						
	(C)	Service level and demand variation	n du	ring lead time					
	(D)	Order quantity							
6.	Torq	ue acting on a body of moment of	Inerti	a (I) and angular acceleration (\propto) is :					
		O. T. (P) 22 I cc		(C) 2^3 I_{∞} (D) I_{∞}	1				

7.	Virt	all work refers to:
	(A)	Virtual work done by Virtual forces
	(B)	Virtual work done by Actual forces
	(C)	Actual work done by Actual forces
	(D)	Actual work done by Virtual forces
		garage Tracked Javan en eg
0	A 1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

8.	A body moving from rest along a straight line with an acceleration which equation is
	$a = 4 - \frac{t^2}{g}$ where a-m/s ² , t-seconds. Its velocity and distance travelled in 6 seconds :

- (A) 10 m/s, 40 m(C) 16 m/s, 60 m 12 m/s, 50 m(D) 14 m/s, 55 m
- 9. Co-efficient of expansion and modulus of elasticity for steel and aluminum are : 12×10^{-6} °C, 18×10^{-6} °C, 200 Gpa, 80 Gpa
 - 14×10⁻⁶/°C, 20×10⁻⁶/°C, 220 GPa, 90 Gpa
 - (C) 11×10^{-6} °C, 17×10^{-6} °C, 190 GPa, 70 Gpa
 - 13×10^{-6} °C, 19×10^{-6} °C, 210 Gpa, 80 Gpa
- 10. If a body is stressed within its elastic limit, the lateral Strain bears a constant ratio to the linear Strain. This constant known as:
 - (A) Poisson's Ratio

Volume Ratio

(C) Stress Ratio

- (D) Strain Ratio
- If one litre of a fluid has a mass of 7.5 kg then its specific gravity is: 11.
 - (A) 0.75

- (D) 750
- A plate 0.02 mm distant from a fixed plate moves at 20 cm/s requires a shear stress of 12. 4 N/m² to maintain this speed. Viscosity of fluid available inside these plates is :
 - (A) 4×10^{-4} poise (B) 4×10^{-6} poise (C) $4 \times 10^{-5} \frac{\text{Ns}}{\text{m}^2}$ (D) $4 \times 10^{-4} \frac{\text{Ns}}{\text{m}^2}$
- It is required to find pressure difference between two horizontal pipes through which water 13. is flowing using inverted manometer. Two manometric fluids with specific gravities 13.6 and 0.8 and are available.

Which manometric fluid is to be used now?

- (A) Fluid with specific gravity 13.6
- Fluid with specific gravity 0.8 (B)
- (C) Both fluids can be used
- (D) None can be used

	(A)	Streak line	(B)	Path line		(C)	Stream tu	ıbe	(D)	Stream	line
15.	Whi	ch of the followin	g dev	rices is havii	ng wo	rking	principle b	ased o	n Beri	noulli ed	uation :
	(A)	Venturi meter	(B)	Pitot tube	of uto		Orifice m				he above
		SEED OF MARKET HELD								3	
16.	Whi	ch of the followir	ıg is n	ot a point f	unctio	n of th	he system.				
	(A)	Temperature	(B)	Pressure	± 3	(C)	Specific v	olume	(D)	Heat	
•) reps			7 1		in the fact of			
17.	Duri	ing melting the v	olume	e of a pure s	ubsta	nce ot	her than w	ater :			
	(A)	Decreases		7 63	(B)		eases				
	(C)	Remains consta	nt		(D)		increases a	ınd the	n dec	reases	
	. ,					2	CIT				
18.	The	work done durin	g an i	sothermal p	rocess	s is :	319				4
			O .		P	081					
	(A)	$P_1V_1 \log_e\left(\frac{v_2}{v_1}\right)$		2	(B)	P_1V_2	$\log_{e}\left(\frac{v_{1}}{v_{2}}\right)$				
,		(*1)	T. C.	Day.	W.		$(\mathbf{v_2})$			1,000	
,	(C)	$P_2V_2\log_e\left(\frac{P_2}{P_2}\right)$		24	(D)	P_2V_2	$_2-P_1V_1$		٠		
	(-)	(P_1)	* 1		id :		n-1		rang		
19.	For	winter air conditi	oning	, the relativ	e hum	idity	should not	be mo	re tha	n :	
	(A)	60%	(B)	75%		(C)	40%		(D)	90%	<i>7</i> 1 -
											3 . 3
20.	In a is:	vapour compress	ion sy	stem, the co	onditio	on of r	efrigerant l	efore e	enterir	ng the co	mpresson
	(A)	Saturated liquid	i		(B)	Wet	vapour				
	(C)	Superheated va	pour		(D)		saturated	apour			
					•	-					•

21. Metre is defined as distance between the centre portion of two lines engraved on polished surface of a bar of :

(A) 90% platinum and 10% irridium at 15°C

(B) 90% platinum and 10% irridium at 0°C

(C) 75% platinum and 25% irridium at 15°C

(D) 75% platinum and 25% irridium at 0°C

22. The type of energy used in electrical discharge wire cutting is:

(A) Mechanical Energy

(B) Chemical Energy

(C) Electrical Energy

(D) Thermal Energy

23. The size by which it is referred to as a matter of convenience:

(A) Actual size

(B) Basic size

(C) True size

(D) Nominal size

24. Four parts with the following dimensions are to be assembled in random. What should be tolerance on the assembled length?

Part
$$1 = 25.32 + 0.02$$
 mm

Part $2 = 18.91 \pm 0.03$ mm

Part
$$3 = 62.17 + 0.05 \text{ mm}$$

Part $4 = 46.25 \pm 0.04$ mm

(A) 152.65 + 0.15 - 0.14

(B) 152.65

(C) 152.65 + 0.14

(D) 145.52 + 0.02 - 0.07

25. Why the Bezier curve is smoother than the cubic spline curve?

(A) Because of higher order derivatives

(B) Because of control points

(C) Because the curve passes through all the data points

(D) All of the above

- 26. If $A = \begin{pmatrix} 2 & 3 & 4 \\ 0 & 4 & 2 \\ 0 & 0 & 3 \end{pmatrix}$, the eigen values of adj A and of $A^2 2A + I$ are:
 - (A) 2, 4, 3 and 49, 121, 25
- (B) 8, 12, 6 and 49, 121, 25
- (C) 4, 16, 9 and 16, 256, 81
- (D) 8, 12, 6 and -49, 100, 12
- 27. The function $f(x) = \frac{\ln x + \tan^{-1} x}{x^2 1}$ is:
 - (A) Continuous in the interval $(-\infty, \infty)$
 - (B) Continuous in the intervals $(-\infty, -1)$, $(-1, 1)(1, \infty)$
 - (C) Continuous in the interval (0, 1) and $(1, \infty)$
 - (D) Continuous in the interval $(-\infty, \infty)$, except at integer points
- **28.** The extreme values of $f(x, y) = y^2 x^2$ are :
 - (A) 3, -2

(B) (

(C) -1, 1

- (D) f has no extreme value
- 29. A student takes an 18 question multiple choice exam, with four choices per question. Suppose one of the choices is obviously incorrect, and the student makes an "educated" guess of the remaining choices, then the expected number of correct answer is
 - (A) 9

- (B) 10
- (C) 8

- (D) 6
- 30. Simpson's $\frac{1}{3}$ rd rule and direct integration give the same result if:
 - (A) The entire curve is a cycloid
 - (B) The entire curve is a hyperbola
 - (C) The entire curve is itself a parabola
 - (D) The entire curve is a straight line

31.	In a	four bar Mechanism, if the shor	test link	is fixed, the Mechanism obtained is known as :
	(A)	Double rocker Mechanism	(B)	Six bar Mechanism

- Six bar Mechanism (B)
- Double Crank Mechanism (C)
- Crank and rocker Mechanism (D)

____ at critical speeds. 32. Rotating shaft's tend to vibrate violently in

- Longitudinal direction (A)
- Transverse direction (B)
- Torsional direction
- None of the above (D)

33. Damping is beneficial only when:

(A)
$$\frac{\omega}{\omega_n} = 1$$

(B)
$$\frac{\omega}{\omega_n} < 1$$

(C)
$$\frac{\omega}{\omega_n} < \sqrt{2}$$

(D)
$$\frac{\omega}{\omega_n} > \sqrt{2}$$

Considering safe design, friction clutch should be designed: 34.

- Assuming uniform pressure (A)
- Assuming uniform wear (B)
- Either uniform pressure (or) uniform wear (C)
- Uniform pressure for high torque and uniform wear for low torque (D)

- Deep groove ball bearing (A)
- Cylindrical roller bearing (B)

(C) Journal bearings (D) Spherical roller bearing

Ratio between inertia force to elastic force is known as: 36.

Reynold number (A)

Mach number (B)

Euler number (C)

Froude number (D)

(A)
$$\frac{K}{S'} = 0.3$$

(B)
$$\frac{K}{S'} > 0.3$$

(A)
$$\frac{K}{S'} = 0.3$$
 (B) $\frac{K}{S'} > 0.3$ (C) $\frac{K}{S'} < 0.25$ (D) $\frac{K}{S'} = 0.5$

(D)
$$\frac{K}{S'} = 0.5$$

7

	(A)	Loss due to sudden enlargement						
	(B)	Loss due to friction						
	(C)	Loss due to entrance of pipe	,		Erfa;	y 1.0		
	(D)	Loss due to bend in pipe						
		sign of a supply						
39.	Inlet	velocity triangle of Pelton wheel is	s:					
	(A)	Straight line	(B)	Tria	ngle			
	(C)	Inverted triangle	(D)	Non	e of the above			
40.	Hyd angl	raulic efficiency of Francis turbine e) :	e who	osė va	nes are radial a	t inlet	is (α – guide	blad
	(A)	$\frac{2+\tan^2\alpha}{2} \qquad (B) \frac{\tan^2\alpha}{2}$		(C)	$\frac{2}{2+\tan^2\alpha}$	(D)	$\frac{2}{\tan^2\alpha}$	
			2.		Pa			
41.		aphical device used to determine the			n point and prot	fit poter	ntial under va	rying
	(A)	Gantt chart	(B)	Flow	chart		· 1	
	(C)	Break-even chart	(D)	PER	T chart			
			8				•	
42.	Sele	ct the wrong statement.	10.					
	Bin	card will show :						
	(A)	The amount received						
	, (B)	Amounts issued						
	(C)	The amount balance on hand					* *	- 0
	(D)	The quantity allocated for issue of	r abo	ut qua	antities on order			
43.	Wha	at does the symbol ⇒ imply in wor		dy?				
	(A)	Operation (B) Inspection	ι .	(C)	Transport	(D)	Storage	
		The second secon		A A ST. SECTION				
44.	Basi	c tool in work study is:						,
	(A)	Graph paper (B) Stop water	'n	(C)	Process chart	(D)	Planning ch	nart
17 P	Y 02	*	8					E
								711

38. Which of the following is not a minor energy loss?

45.	In for	ecasting by exponentia	smoothing, if α	is a smoothing con	stant, then :	N. 48
	(A)	New Forecast = α (lates	st sales figure) + ($1-\alpha$) (old forecast)		
	(B)	New Forecast = α (lates	st sales figure) – ($1-\alpha$) (old forecast))	A .
	(C)	New Forecast = α (lates	st sales figure)+($1+\alpha$) (old forecast)	
	(D)	New Forecast = α (late	st sales figure) – ($1+\alpha$) (old forecast)	
				er fereistra i follom	o-tetim minulese	egiz II
46.	Hun	garian algorithm is used	l to solve :			
	(A)	Transportation proble	m. mydd gill M	* .	Agazide tetipë me,	(5.4)
	(B)	Assignment problem				
	(C)	Unconstraint non-line	ar programming	problem		
	(D)	Constrained non-linea	ar programming p	problem	เมล็กที่เกลาก	
				4	e sindade de	
47.	The	rule used for numberin	g events involved	in a project schedu	aling network is :	
	(A)	Johnson's rule	(B)	Fulkerson's rule	inganga sapunya	104
	(C)	Hungarian rule	(D)	Simplex rule		
			119	1908	ado come da la	
48.	The	additional cost incurred	d in reducing the	activity time in pro	ject scheduling is	called:
	(A)	Normal cost	(B)	Crashing cost	· · · · · · · · · · · · · · · · · · ·	
	(C)	Break - even cost	(D)	Activity cost		
49.		ueuing system, using K FS/6). How many num			symbolic form as	s (M/M/3);
	(A)	6 (B)	3	(C) 2	(D) 1	
			1 4 8	a regress	in the	
50.		he queuing theory, the r queue) and expected w				the system
	(A)	Kendall's formula	(B)	Little's formula		, si
	(C)	Bellman's formula	(D)	Erlang formula		
17	PY 02		9			er er B
17	1 1 02		,		•. • •	В

51			Linear programmi		e resti	rictions or limitations	under which t	he objective
		(A)	Constraints		(B)	Objective function		n i
		(C)	Decision variables	· · · · · · · · · · · · · · · · · · ·	(D)	.None of the above		
52			variable that is inclural form of LPP to			equality constraint for is called :	r the purpose of	converting
		(A)	Surplus variable		(B)	Slack variable		
		(C)	Artificial variable		(D)	Basic variable		
			¥			March 1999		
5	3.		n there exists a no		e who	se relative profit (ie	Cj)is zero in t	he optimal
		(A)	Unbounded	· eculopare	(B)	Infeasible		
		(C)	Unique optimal	a ma	(D)	Alternate optimal		
					D	019		
5	4.		e i th constraint of able y_i is :	n primal (maxim	isatio	n) is an equation, the	n the dual (mir	nimisation)
		(A)	≥0	SPOR	(B)	≤O	succession and the second	
		(C)	Unrestricted in si	gn	(D)	None of the above	. e.r. 1 15	
						-		
5	5.		ne balanced transpo c variables is :	rtation problem	, with	n'm' sources and n' d	estinations, the	number of
		(A)	m+n	(B) $m+n+1$		(C) $m+n-1$	(D) $m \times n$	
				15.				
5	6.	Engi a pro is,	ine oil flows in a 15 essure drop of 12 k	cm diameter ho Pa. The pumpin	orizon g pov	tal tube with a velocit ver requirement to ov	y of 1.3 m/s, ex ercome this pre	periencing ssure drop
		(A)	190 w	(B) 276 w		(C) 407 w	(D) 655 w	

57.	inner heat	ouble pipe (shell r diameter is 1.5 exchanger /uni nner and outer s	cm (D t lengtl	oi) and oute n as 0.0532°	r diar C/w.	neter Deter	is (1.9 cn mine the	n.) The	therma	al resistar	nce of	the
	(A)	350 and 450 W	//m²°C	an da an an an An faire and	(B)	399	and 315	W/m ² °C	i (leo	no WAS	(-3)	
	(C)	299 and 215 W	_				and 315 '					
	` '		•		()			die s			Livi	
58.		parallel flow h				J is c	alculated	to be 2	2.5. Th	ne lowest	poss	ible
	(A)	92%	(B)	50%		(C)	41%		(D)	27%	(13) (44)	
59.	by h The co-e the	shell passes and not water, which total length of fficient is 25 W/ rate of heat trans he tubes. Place [enters the tub m ² °C fer in tl	the thin wa bes in the ho on the glyce he heat exch	alled 2 eat ex erin a anger	chang chang nd 160 before	liameter t ger is 60 i 0 W/m ² °(e any foul	ubes at m. The C on the ling occu	80°C a convec e wate	and leave ction hea r side. D	s at 40 t trans eterm)°C. sfer ine,
	(A)	2.65 kW	(B)	1.62 kW		(C)	1.83 kW	7	(D)	1.81 kW	(.8.)	
				esitrio 💝			20019	· ·			(1)	
60.		sider a surface a 00 W/m² of radi										5°C.
	(A)	0 W/m ²	(B)	132 W/m	2	(C)	300 W/	m ²	(D)	315 W/	m ²	
61.		ch one of the foversible process?		g statements	s appl	icable	to a per	fect gas	will a	lso be tru	ie for	an
	(A)	dQ = du + pdv			(B)	dQ=	=Tds	9				
	(C)	Tds = du + pdv	-dh		(D)	pdv	-du=ds			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-C-F
62.	W/h;	ch one of the fol	llowing	represents	unava	ailabil	ity ?					
02.				T (ΔS)					(D)	Τ΄(ΔS ₀)		
	(A)	$T_0 (\Delta S_0)$	(D)	8 0			-0 (-0)	. 15.75 14.0	(2)	1 (400)		
63.		arnot cycle ope: ne is :	rates b					and 227	7°C, th	e efficier	ncy of	the
	(A)		(B)	50%		(C)	60%	16	(D)	45%	种产	
17 P	Y 02				11						1.50	В

64.	syst	efrigerating machine working on reverse tem while working between temperatu sumed by the cycle will be	re limits of 300 k	s out 2 k and 200	W of heat from th k. Cop and powe
	(A)		1 kW and 2 kW		
	(C)	2 kW and 1 kW (D)	2 kW and 2 kW		
		Compact of Digmards at			
65,	Wit	h reheat Rankine cycle :			
	(A)	Quality of exhaust steam is improved			
	(B)	Network output of cycle increases			
٠	(C)	Specific steam consumption decreases			
	(D)	All the above			
66.	To i	improve the self lubricating capacity of a ration is used:	powder metallurgy	part the f	following finishing
	(A)	Repressing (B) Sizing	(C) Infilliation	(D)	Impregnation
67.	Shri	inkage allowance is added to pattern din	nensions to take care	e of :	
	(A)	Liquid shrinkage (B)	Liquid and solid sl		
	(C)	Solid shrinkage (D)	None of these	,	,
		gan an area a last to veriding	7.81		n cash vida i por
68.	Fine	grain size during the solidification of a	metal is acheived by	rise i	to Park VA
	(A)	Lower nucleation rate	Cont		alau (A)
	(B)	Higher nucleation rate with lower grow	wth rate		
	(C)	Higher nucleation rate with higher gro	wth rate		La trans desiral. La
	(D)	Larger growth rate			Commendal !
			s. (9)		
69.	Shee	et metal drawing operation is used to ma	ke:		100 HE (20-1
	(A)	Wire (B)	Cup shaped parts		C-7
	(C)	Tubes (D)	Rods		
			rum girt am, fagetar. Lifes		
70.	Sprin	ng back during the sheet metal operation	is caused because	of the:	
	(A)	release of stored energy during elastic a	and plastic deforma		
	(B)	release of stored energy during plastic	deformation	1	
	(C)	release of stored energy during elastic of	deformation	·	1 43 17
	(D)	excess energy that was utilized during	the forming process	r å	

				•
71.	A semi - circle of radius 'ordinates of centroid:	a' is defined in first ar	nd fourth quadra	ants. Write down its co-
	(A) $\left(0, \frac{49}{3\pi}\right)$ (B)	(0,0) (C)	$\left(\frac{49}{3\pi},0\right)$	(D) $\left(\frac{49 \cdot 59}{3\pi \cdot 3\pi}\right)$

- 72. A truss hinged at one end, supported on rollers at the other, is subjected to horizontal load only. Its reaction at the hinged end will be:
 - (A) Horizontal
 - (B) Vertical
 - (C) Resultant of horizontal and vertical
 - (D) Difference between horizontal and vertical
- 73. The relation between modulus of elasticity (E), modulus of rigidity (C) and bulk modulus (K) is given by:

(A)
$$E = \frac{3KC}{C + 9K}$$

(B)
$$E = \frac{9KC}{C+3K}$$

(C)
$$E = \frac{C + 9K}{3KC}$$

(D)
$$E = \frac{C + 3K}{9KC}$$

- 74. A beam of uniform strength has constant:
 - (A) Shear force

- (B) Bending moment
- (C) Cross sectional area
- (D) Deflection
- 75. An inverted T-section is subjected to a shear force F. The maximum shear stress will occur at:
 - (A) Top of the section
- (B) Junction of web and flange
- (C) Neutral axis of the section
- (D) Bottom of the section
- 76. Tool-life criterion normally used is:
 - (A) Flank wear

- (B) Crater wear
- (C) Crater wear and flank wear
- (D) Flank wear and nose radius
- 77. The simplest and low-cost clamp used in Jigs and Fintures is:
 - (A) Strap clamp
- (B) Can clamp
- (C) Toggle clamp
- (D) Equiliser

70.	COL	sider the following components:
	(a)	A dedicated computer
	(b)	Bulk memory
	(c)	Telecommunication lines
	Whi	ch of these components are required for a DNC system?
	(A)	(a), (b), and (c) (B) (b) and (c) (C) (a) and (b) (D) (a) and (c)
79.		heat generated in metal cutting is dissipated in different proportions into environment, chip, workpiece. The correct order of this proportion in decreasing magnitude is:
	(A)	tool, work, chip, environment (B) work, tool, environment, chip
	(C)	work, tool, chip, environment (D) chip, tool, work, environment
		Mariello (1915) and the control of t
80.	The	mechanism of material removal in EDM process is:
	(A)	melting and evaporation (B) melting and corrosion
	(C)	erosion and cavitation (D) cavitation and evaporation
	, ,	(A) (318)
81.	If Ra	ank (A) = 2 and Rank (B) = 3 then rank (AB) is: (AB)
	(A)	6 (B) 5
	(C)	Data Inadequate (D) 3
82.	Ву L	agrange's mean value theorem which of the following statement is true:
	(a)	If a curve \overline{AB} has a tangent at each of its points then there exists at least one point C on this curve, the tangent at which is parallel to chord AB
	(b)	If $f'(x) = 0$ in the interval then $f(x)$ has same value for every value of x in (a, b)
	(A)	(a) alone is true (B) (b) alone is true
	(C)	Both (a) and (b) are true (D) Neither (a) nor (b) is true
•		
83.	Wha	t is the chance that a leap year selected at random will have 53 wednesdays?
	(A)	$\frac{3}{7}$ (B) $\frac{53}{365}$ (C) Data Inadequate (D) $\frac{2}{7}$

84.	In regula falsi method the point of intersection of curve AB and x axis is	replaced by:
-----	--	--------------

- (A) Point of intersection of y axis and curve AB
- Point of intersection of y axis and chord AB (B)
- (C) Point of intersection of x axis and chord AB
- Point of intersection of x axis and y axis (D)

- Modified Euler's method (A)
- Fourth order Runge-kutta method (B)
- Picard's method (C)
- Milne's method (D)

(A) Hart mechanism

- Pantograph (B)
- (C) Scott Russel mechanism
- Watt mechanism (D)

(A)
$$\delta = \frac{2\pi\xi}{\sqrt{1-\xi^2}}$$
 (B) $\delta = \frac{2\pi\xi^2}{\sqrt{1-\xi}}$ (C) $\delta = \frac{2\pi\xi}{\sqrt{1+\xi^2}}$

(B)
$$\delta = \frac{2\pi\xi^2}{\sqrt{1-\xi}}$$

$$(C) \quad \delta = \frac{2\pi\xi}{\sqrt{1+\xi^2}}$$

(D)
$$\delta = \frac{2\pi\xi^2}{\sqrt{1+\xi}}$$

Damping factor (A)

Magnification factor

Frequency ratio

Damping co-efficient

(A)
$$\Delta = \frac{5 \text{mgl}^2}{384 \text{EI}}$$

$$\Delta = \frac{5 \text{mgl}^2}{384 \text{EI}}$$
 (B) $\Delta = \frac{5 \text{mgl}^4}{384 \text{EI}}$ (C) $\Delta = \frac{\text{mgl}^4}{384 \text{EI}}$

(C)
$$\Delta = \frac{\text{mgl}^4}{384\text{EI}}$$

(D)
$$\Delta = \frac{3\text{mgl}^2}{384\text{EI}}$$

- Electromagnetic clutch (A)
- Positive contact clutch (B)

Friction clutch

(D) Fluid clutch

9:	1.	Heat is lost steadily through a 0.5 cm thick 2m × 3m window glass whose thermal conductivity is 0.7 w/m°c. The inner and outer surface temperatures of the glass are measured to be 12°C to 9°C. The rate of heat loss by conduction through the glass is :
		(A) 420 w (B) 5040 w (C) 1256 w (D) 2520 w
9	2.	Heat is generated uniformly in a 4 cm diameter, 16 cm long solid bar $[k=24w/m^{\circ}c]$
		The temperatures at the center and the surface of the bar are measured to be 210°C and 45°C respectively. The rate of heat generation within the bar is,
		(A) 240 w (B) 1013 w (C) $79,620$ w (D) 3.96×10^6 w
9	3.	A 3 cm long, 2 mm \times 2mm rectangular cross-section aluminum fin [k=237 w/m°c] is attached to a surface. If the fin efficiency is 65%, the effectiveness of this single fin is:
		(A) 30% (B) 24% (C) 8% (D) 39%
` <u>c</u>	94.	In turbulant flow, one can estimate the Nusselt number using the analogy between heat and momentum transfer. (colburn analogy). This analogy relates the Nusselt number to the co-efficient of friction, $C_{\rm f}$ as.
		(A) $(Nu)=0.5C_f(Re)(Pr)^{\frac{1}{3}}$ (B) $(Nu)=0.5C_f(Re)(Pr)^{\frac{2}{3}}$

(A) 1,05,000

(C) $(Nu)=C_f.Re.(Pr)^{\frac{1}{3}}$

- (B) 1,78,000
- (C) 2,36,000
- (D) 59,000
- 96. The molten metal is not introduced directly into the mould Cavity as it will cause:
 - (A) Erosion of the mould cavity
 - (B) Corrosion of the mould cavity
 - (C) Crack in the bottom surface
 - (D) Breakage of the mould

97.	Whic	ch one does not	form a	part of the ga	ating syst	tem for a c	asting:	Apate 3	A fui
	(A)	Pouring Basin	(B)	Sprue	(C)	Choke	(D)	Pattern	
98.	Whic	ch of the followin	ng doe	s not form a	part of m	etal worki	ng process :	1 2	
		Shearing	(B)	Extrusion	(C)		orming (D)	Welding	
99.	In h	ammer forging, t	he har	nmer does no	t consist	of:	i i v i i Lawes como a tre best borr	Diff to nA	e-EDI
	(A)	Falling Weight		(B) Anv	il	*		
	(C)	DIE		(D) Lifti	ng mechar	ism for the 1	ram (A)	
100.	In p	owder metallurg	y, the	metal powder	particle	size is red ı	aced during	automization	n by:
	(A)	Decreasing gas	veloci	ity (B) Incre	easing gas	velocity		
	(C)	Decreasing gas	press	ure (D) Deci	reasing me	tal volume	ar of (A)	
101.		rbine develops 9 he turbine is redi						s 30 m. If th	e head
1011 500	(A)	77 rpm	(B)	18 rpm	(C)	180 rpm	(D)	30 rpm	
102.	of D temp	kW resistance hed a looerature of the rewire.	ength	of $L = 0.5 \text{ m}$, and is	used to bo	oil water. If	the outer s	urface
	(A)	126°C	(B)	110°C	(C)	118°C	(D)	130°C	
103.	The	efficiency of a pi	n fin v	vith insulated	tip is :		talori paga Albari ang Palabari	al or stripe A. Translation	35/1
	(A)	$\frac{\tanh h \text{mL}}{\sqrt{h \text{A/KP}}}$	(B)	tan h mL	(C)	mL tanhmL	(D)	$\frac{\sqrt{hA/KP}}{\tan h mL}$	

104.	Two long parallel plates of same emissivity 0.5 are maintained at different temperatures and
	have radiation heat exchange between them. The radiation shield of emissivity 0.25 placed
	in the middle will reduce radiation heat exchange to:

(A) $\frac{1}{2}$

(B) $\frac{1}{4}$

(C) $\frac{3}{10}$

(D) $\frac{3}{5}$

105. Air at 20°C blows over a hot plate of 50×60 cm² made of carbon steel maintained at 220°C. The convective heat transfer co-efficient is 25 W/m²k. What will be the heat loss from the plate?

(A) 1500 W

(B) 2500 W

(C) 3000 W

(D) 4000 W

106. From the consideration of the erosion of blades in the later stages of a steam turbine, the maximum moisture content at the turbine exhaust is limited to:

(A) 20 %

(B) 12%

(C) 88%

(D) 5%

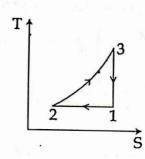
107. Sensible Heat Factor (SHF) is defined as:

(A)
$$SHF = \frac{LH}{SH + LH}$$
 (B) $SHF = \frac{LH}{SH - LH}$ (C) $SHF = \frac{SH}{SH + LH}$ (D) $SHF = \frac{SH}{LH - SH}$

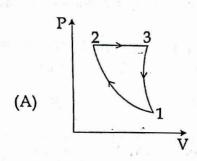
Where $SH \rightarrow Sensible Heat$

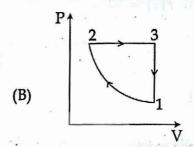
LH → Latent Heat

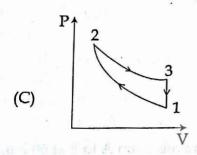
108. A system is composed of a gas contained in a cylinder fitted with a piston. The gas expands from the state 1 for which $E_1 = 75 \, \text{kJ}$ to a state 2 for which $E_2 = -25 \, \text{kJ}$. During the expansion, the gas does 60 kJ of work on surroundings. The heat transferred to or from the systems during process is :

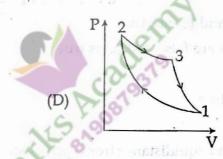

(A) -30 kJ

(B) -40 kJ


(C) 30 kJ


(D) 40 kJ


109. An ideal air standard cycle is shown in figure.



The same cycle, when represented on the pressure-volume co-ordinate, takes the form,

110. For copper, the yield stress σ_y and the brittle fracture stress σ_f are related as :

- (A) $\sigma_f > \sigma_y$
- (B) $\sigma_y > \sigma_y$
- (C) $\sigma_y = \sigma_f$
- (D) $\sigma_f \ll \sigma_y$

111. The fatique strength of mild steel is:

- (A) Lower than the yield strength
- (B) More than the yield strength
- (C) More than its tensile strength
- (D) Lower than its tensile strength

112. A casting $200 \times 200 \times 70 \text{ mm}^3$ Size solidifies in 10 mins. Solidification time for $200 \times 100 \times 10 \text{ mm}^3$ under similar conditions is given below find it:

- (A) 0.748 min
- (B) 0.648 min
- (C) 0.848 min
- (D) 0.948 min

113. One of the advantages given below of the forged parts is not correct, find it:

(A) High production rate

(B) Higher forging head

(C) Less die wear

(D) Lower forging temperature

- 114. Neat oils can be preferred while machining of:
 - (A) Grey Cast Iron

(B) Copper alloys

- (C) Aluminium alloys
- (D) Alloy Steels
- '115. A bore of 14.46 mm diameter on a job can be measured by :
 - (A) Steel rule

(B) Vernier caliper

(C) Plug gauge

- (D) Micrometer
- **116.** Consider the function $f(x) = \frac{|x|}{x}$:
 - (a) $\lim_{x\to 0^+} f(x) = 1$
 - (b) $\lim_{x\to 0^{-1}} f(x) = -1$
 - (c) $\lim_{x\to 0} f(x)$ does not exists
 - (A) All (a) and (b) and (c) are true
 - (B) Both (a) and (b) are false and (c) is true
 - (C) (c) alone true
 - (D) (a) and (c) are true
 - 117. Three cities A, B, C and equidistance from each other. A car travels from A to B at 60 km/hr, from B to C at 40 km/hr from C to A 50 km/hr determine the Average speed:

(A)
$$\frac{1}{\frac{1}{3}\left(\frac{1}{60} + \frac{1}{40} + \frac{1}{50}\right)}$$
 (B) $\frac{1}{\frac{1}{3}(60 + 40 + 50)}$ (C) $\frac{1}{3}\left(\frac{1}{60} + \frac{1}{40} + \frac{1}{50}\right)$ (D) $\frac{3}{60 + 40 + 50}$

- 118. The normalized modal matrix for diagonalizing $M = \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix}$ is:
 - (A) $\begin{pmatrix} 1 & -1 \\ 1 & -\frac{1}{2} \end{pmatrix}$

(B) $\begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}$

(C) $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$

(D) $\begin{pmatrix} 1/\sqrt{3} & 2/\sqrt{3} \\ 1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix}$

119. A single step method for the differential equation y' = f(t, y), where $y(t) = a + be^{-t}$, which produces exact result is:

(A)
$$y_{j+1} = y_j + (1 + e^{-h})y_j'$$

(B)
$$y_{j+1} = y_j + (1 - e^{-h})y_j'$$

(C)
$$y_{j+1} = y_j + (1 - e^{-h})(y_j + y'_{j+1})$$
 (D) $y_{j+1} = y_j + (\frac{1 - \cos h}{\sin h})(y'_j)$

(D)
$$y_{j+1} = y_j + \left(\frac{1 - \cos h}{\sin h}\right) (y_j')$$

120. The Lami's theorem is applicable only for :

Coplanar forces

- Concurrent forces (B)
- Coplanar and Concurrent forces (C)
- Any type of the forces (D)

121. Match List - I and List - II and select the correct answer:

List - I

List - II

- (a) **Flatness**
- (i)
- Profile of a surface (b)
- (ii)
- Position (c)
- (iii)
- (d) Parallelism
- (iv)

Codes:

- (a) (b) (c) (d)
- (A) (iv) (iii) (i) (ii)-
- (B) (iii) (iv) (ii) (i)
- (C)(ii) (i) (iv) (iii)
- (D) (ii) (iv) (i) (iii)

122. Match the following:

- Coincidence method (a) of measurement
- (b) Deflection method of measurement
- Direct method of (c) measurement
- Differential method (d) of measurement
- Measurement of a mass on equal arm (i) balance
- Measurement of length by vernier caliper (ii)
- (iii) Measurement of mass by spring balance
- Measurement of length by a comparator

Codes:

- (b) (c) (d) (a)
- (iii) (i) (iv) (A) (ii)
- (ii) (iii) (B) (iv) (i)
- (i) (iii) (C)(ii) (iv)
- (i) (ii) (iii) (iv) (D)

123.	A product 'A' comprises of 2 units of B and 3 units of C	Each unit of	3 requires 2 unit of D
	and one unit of E. Each unit of C needs 2 units of E and	d one unit of F.	How many number
	of end units of 'E' are required for producing two units	of A?	

(A) 8

(B) 16

(C) 6

(D) 2

124. The time required for two operations cutting and binding for 5 jobs are as follows:

Job No.	1	2	3	4	5
Cutting (min)	8	6	2	5	7
Binding (min)	8	7	7	6	4

What is the optimal makespan sequence?

(A) 2-4-1-3-5

(B) 3-4-2-1-5

(C) 1-2-3-4-5

(D) 3-5-2-4-1

125. Monthly consumption of an item is 500 units. The price per unit is ₹ 25. Inventory carrying costs is 16 percent and ordering cost is ₹ 50 per order. For an economic order quantity model, determine the Re-order quantity:

(A) 380 units

(B) 370 units

(C) 378 units

(D) 388 units

126. We can find the deflection of beam carrying:

(A) Uniformly distributed load

(B) Central point load

(C) Gradually variable load

(D) All of these loads

127. A ball is dropped from a height of 15 m above a metal platform. The ball strikes the platform and rebounds successively. The height of rebound after the first rebound is:

(A) 8.44 m

(B) 4.75 m

(C) 2.67 m

(D) 9.44 m

128. The principal stresses σ_1 , σ_2 and σ_3 at a point respectively are 80 MPa, 30 MPa and -40 Mpa. The maximum shear stress is :

(A) 60 MPa

(B) 55 MPa

(C) 35 MPa

(D) 25 Mpa

129.	In a slider crank mechanism if the crank rotates at uniform speed of 200 rpm and has a length of 0.2 m, its linear velocity is:
	render of o.2 in, its intear velocity is:

(A) 4.19 m/s

(B) 20.9 m/s

(C) 5.2 m/s

(D) 41.9 m/s

130. The distance between two parallel shafts is 18 mm and they are connected by an oldhams coupling, the driving shaft revolves at 160 rpm. The maximum speed of sliding of the tongue is:

(A) 0.302 m/s

(B) 0.6 m/s

(C) 3.2 m/s

(D) 6 m/s

131. What is the pay-back period, if a machine is to cost ₹ 1,00,000 and extra revenue is expected to amount to ₹ 20,000 the first year, ₹ 40,000 the second year and ₹ 40,000 in the third year?

(A) One Year

(B) Two Year

(C) Three Year

(D) Four Year

132. Consider the following Linear Programming Problem (LPP).

Maximise $Z = x_1 + 2x_2$

Subject to:

 $x_1 \le 2$

 $x_2 \le 2$

 $x_1 + x_2 \le 2$

 $x_1, x_2 \ge 0$ (i.e. +ve decision variables)

What is the optimal solution $(x_1^{\text{opt}}, x_2^{\text{opt}})$ to the above LPP?

(A) 2, 2

(B) 0, 2

(C) 2, 0

(D) 0, 0

133. Consider a project consisting of nine jobs (A to I). The standard deviation for the jobs are as given below:

Job	A	В	C	D	E	F	G	H	I
Standard deviation	1	4	0	1	0	1	2	1	1

The critical jobs are: A, D, H and I. What is the standard deviation of the project duration?

(A) 2

(B) 1

(C) 4

(D) $\sqrt{11}$

		,									
134.	If x i	s a decision v x = x' - x'' so a	ariable of is to solve	LPP and ur the LPP by	restric simpl	ted in	sign then t	his varia e :	able (can be conve	erted
	(A)	$x^{1} \leq 0$ and x^{11}	≥ 0	· / · · · · · · · · · · · · · · · · · ·	(B)	$x' \ge 0$	and $x'' \leq 0$				
	(C)	x' and $x'' \leq 0$		da kaja lida	(D)	x' and	$ x'' \ge 0$				
				1000,000							
135.	basi equ	lle solving an I ic solutions a ations to obta que. This mea	re deterr in solution	nined by se n for remair	etting ning m	n – m varial	variables e oles, provid	equal to ed the r	zerc	and solvii	ig m
5-15											4.7
		11		•••1			11			ml	
	(A)	$\frac{n!}{m!(n-m)!}$	(B)	$\frac{m!}{n!(n-m)!}$		(C)	$\frac{n!}{m!(n+m)!}$	(I) ;	$\frac{m!(n+m)!}{n!(n+m)!}$	
136	. A l	ink EF in a sl pect to F is 4.9	ider cran m/s. The	k mechanisı e angular ve	m has	a leng	th of 0.4m. link is :	The ve	elocit	y of end E	with
	(A)	0.01225 rac	i/s (B)	1.225 rad	/s	(C)	12.25 rad/	s (I) 1	.22.5 rad/s	
					5	308					
137	7. Th	e bottom clear	ance of a	pair of spur	gears	with r	nodule 4 m	m is:			
	(A)) 4 mm	(B)	0.5 mm	. Ç	(C)	1 mm	(I	D) ().4 mm	
				k fall auryan i						e, as a f	
138	1.1	e spillway for 5 model is cor surface tension	Buucicu	io study tile	HOW C	naracı	Prictice thro	mach the	:11	- CON	ge. A
	(A) 0.162 m ³ /s	(B)	0.151 m ³	/s	(C)	0.148 m ³ /	s (D) ($0.143 \text{ m}^3/\text{s}$	1
					٠, ٠						
13	9. Ar Co	n odd shaped ontainer's volu	container me is	weighs 2N	when	empt	y. If it is fu	ull of wa	ater i	t weighs 490	07 N.
	acc	ntainer's volu celeration as 9	$.81 \text{ m/s}^2$	1:1.1	. ,	-Lity	or water as	1000 kg	/m ³	and gravitat	ional
	(A) 250 litres	(B)	500 litres		(C)	750 litres	(D)	1000 litres	
17	PY 02	2			24						

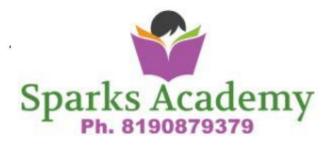
140.	A pi	ece of ore weighi	ng 1.5	N in air an	d 1.1	N in v	water. I	ts volum	e is :		
	(A)	40.8 m ³	(B)	40.8 cm^3	i Silate i	(C)	40.8 m	im ³ The Yea Inc	(D)	4.08 mr	n^3
141.	Wha	t temperature are	Fahr	enheit and	Celsiu	ıs equ	al?			Hallery Jewana	
	(A)	-40°	(B)	574.59		(C)	40	(D)	- 57	4.59	(a) (a)
142.	In a by or	class of 45 studen ne. What is his n	ts, a b ew ra	oy is ranke nk from the	d 20 th e end '	. Whe	en two b	oys joine		rank was	THE RESERVE
	(A)	25 th	(B)	26 th		(C)	27 th	skysiei		28 th	(A)
	717									Darred	3)
143.	Who	wrote the novel	- 'Kav	alKottam'	?				ryd fi	ichas#1	
	(A)	Vannadasan	(B)	S. Venkate	esan	(C)	Joe D	Cruz	(D)	Puviara	san
144.	Artic	le 21-A and the l	RTE A	ct came int	o effe	ct:	CIT	4		all fahir	30.30
	(A)	On 1st April 201	10	100	(B)	On 1	l st April	2009		Numer N	
	(C)	On 1 st April 201			•	60	st April				(b)
145.	Quit	India Movement	was 1	aunched in	respo	nśe to):			(ii) (u)	(A)
	(A)	Cabinet Mission	plan	5×	(B)	Crip	ps prop	osals		[2], Best	()
	(C)	Simon Commiss	ion Re	eport	(D)	Wav	ell plan				
146.	First	state to fix minim	num e	ducation qu	alifica	ation	for coop	erative b	ody p	oll :	
	(A)	Rajasthan	(B)	West Beng				'amil Na			arnataka
				×							
147.		won the gold b	oth ir	the 5,000	and	10,000	0 metre	s event	in 201	7 Asian	Athletics
	(A)	Lakshmanan			(B)	Gopi	Thonk	anal			
	(C)	Jinson Johnson		*	(D)	Neer	aj Chop	ra			
j.					0.5						· · · · · · · · ·

- 148. The parliament can make any law for whole or any part of India for implementing international treaties:
 - (A) with the consent of all the states
 - (B) with the consent of the majority of states
 - (C) with the consent of the states concerned
 - (D) without the consent of any state
- 149. In which of the following temple, the front Mandapam is in the form of a huge chariot drawn by horses?
 - (A) Patteswaram temple
 - (B) Darasuram temple
 - (C) Thanjavur Brihadeeswarar temple
 - (D) Thiruvarur Thyagaraja temple
- 150. Consider the following rivers:
 - (a) Narmada

(b) Brahmaputra

(c) Godavari

(d) Tapti


Which of the above is/are flowing into the Bay of Bengal?

- (A) (a), (b) and (c) only
- B) (b) and (c) only

(C) (a) and (b) only

(D) (a) and (c) only

- o O o -

