iOM'13
 International Olympiad of Mathematics

Organized by Mathematics Olympiad Foundation, New Delhi, India

QUESTION PAPER

LEVEL 1

Read the following instructions carefully before you begin to answer the questions in the OMR Answer Sheets provided along with this question paper. Ask the Examination In-charge/Invigilator how to mark the OMR Answer Sheets, in case you have any doubts.

INSTRUCTION TO CANDIDATES TO BE EXPLAINED BY THE INVIGILATORS

1. This Booklet contains 40 questions. Each question carries an equal marks of 2.5.
2. All questions are compulsory.
3. This Booklet contains 6 pages. Please check, if any page is misprintied, missing or repeated.
4. Collect your OMR Answer Sheets from the Invigilator/Examination In-Charge to answer the questions given in this Booklet.
5. You must fill all the necessary information's which are required in the space provided in this booklet and OMR Answer Sheet.
6. Correct Answers must be marked by "Darkening" the corresponding circles on the OMR Answer Sheet, against the relevant question number with Pencil or Blue/Black, Ball point Pen only. Answers which are not darkened in circle will not be awarded with any mark.
7. Space for rough work is provided in this booklet. No rough work is to be done in the OMR Answer Sheet.
8. Mobile Phones and other Wireless equipments are banned in the examination halls/rooms.
9. OMR Answer Sheets must be handed over to the Examination In-charge/Invigilator before you leave the examination room/hall and recheck that you have filled all the required informations.
10. The results will be published in our web-site WWW.SILVERZONE.ORG in the month of Jan 2014. You can check it with your 12 digit Roll Number provided in the Enrollment Ticket.

TEACHERS ARE REQUESTED TO CHECK IF THE REQUIRED INFORMATIONS ARE PROPERLY FILLED BYTHE CANDIDATES IN THE QUESTION PAPER \& OMR ANSWER SHEETS, AND ALSO ENSURE THAT OMR ANSWER SHEETS ARE PROPERLY MARKED. PLEASE SEND US BACK THE OMR ANSWER SHEETS ONLY.

Note: Return this question paper along with answer sheet

1. Sets A and B have 3 and 6 elements respectively. What can be the minimum number of elements in $A \cup B$.
(A) 6
(B) 3
(C) 18
(D) 9
(E) None of these
2. Let R be a relation on a set A such that R $=R^{-1}$, then R is
(A) Reflexive
(B) Symmetric
(C) Transitive
(D) All of these
(E) None of these
3. In a collage of $\mathbf{3 0 0}$ students, every student reads 5 newspaper and every newspaper is read by 60 students. The number of newspaper is
(A) At least 30
(B) At most 20
(C) Exactly 25
(D) 10
(E) None of these
4. If for two functions g and f, gof of both injective and surjective, then which of the following is true
(A) g and f should be injective and surjective
(B) g should be injective and surjective
(C) f should be injective and surjective
(D) None of them may be surjective and injective
(E) None of these
5. If* is defined on the set R of real numbers by $a * b=\frac{3 a b}{7}$. Find the identity element in R for the binary operations.
(A) $\frac{7}{3}$
(B) $\frac{5}{3}$
(C) $\frac{3}{7}$
(D) $\frac{8}{7}$
(E) None of these
6. The principal value of $\sin ^{-1}\left[\sin \left(\frac{2 \pi}{3}\right)\right]$ is
(A) $\frac{-2 \pi}{3}$
(B) $\frac{2 \pi}{3}$
(C) $\frac{4 \pi}{3}$
(D) $\frac{\pi}{3}$
(E) None of these
7. If the function $f(x)=\left\{\begin{array}{cc}\frac{1-\cos x}{x^{2}} & \text { for } x \neq 0 \\ k & \text { for } x=0\end{array}\right.$ is continuous at $x=0$, then the value of k is
(A) 1
(B) 0
(C) -1
(D) $\frac{1}{2}$
(E) None of these
8. The solution set of the equation $\boldsymbol{\operatorname { s i n }}^{-1} x=\mathbf{2} \boldsymbol{\operatorname { t a n }}^{-1} x$ is
(A) $\{1,2\}$
(B) $\{-1,2\}$
(C) $\{-1,1,0\}$
(D) $\left\{1, \frac{1}{2}, 0\right\}$
(E) None of these
9. If $A=\left[\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right]$, then $A^{n}=$
(A) $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$, if $n \varepsilon N$
(B) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, if n is an odd natural number
(C) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, if n is an even natural number
(D) All of these
(E) None of these
10. Which of the following is incorrect
(A) $A^{2}-B^{2}=(A+B)(A-B)$
(B) $\left(A^{\top}\right)^{\top}=A$
(C) $(A B)^{n}=A^{n} B^{n}$, where A, B commute
(D) $(A-I)(I+A)=0 \Leftrightarrow A^{2}=1$
(E) None of these
11. Which of the following is not correct?
(A) $\left|\begin{array}{ll}a+b & c+d \\ e+f & g+h\end{array}\right|=\left|\begin{array}{ll}a & c \\ e & g\end{array}\right|+\left|\begin{array}{ll}b & d \\ f & h\end{array}\right|$
(B) $|k A|=k^{3}\left|A^{\top}\right|$, where $A=\left[a_{i j}\right]_{3 \times 3}$
(C) If A is a skew-symmetric matrix of odd order, then $|A|=0$
(D) $|A|=\left|A^{\top}\right|$, where $A=\left[a_{i j}\right]_{3 \times 3}$
(E) None of these
12. A pair has two children. If one of them is boy, then the probability that other is also a boy is
(A) $\frac{1}{2}$
(B) $\frac{1}{4}$
(C) $\frac{1}{3}$
(D) $\frac{4}{3}$
(E) None of these
13. If ${ }^{n} p_{r}=840,{ }^{n} c_{r}=35$, then n is equal to
(A) 1
(B) 3
(C) 5
(D) 7
(E) None of these
14. $\frac{d}{d x}(\log \tan x)$
(A) $2 \sec 2 x$
(B) $2 \operatorname{cosec} 2 x$
(C) $\sec 2 x$
(D) $\operatorname{cosec} 2 x$
(E) None of these
15. If $Y=\frac{e^{2 x}+e^{-2 x}}{e^{2 x}-e^{-2 x}}$, then $\frac{d y}{d x}=$
(A) $\frac{-8}{\left(\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}\right)^{2}}$
(B) $\frac{8}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
(C) $\frac{-4}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
(D) $\frac{4}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
(E) None of these
16. If $x=a \sin \theta$ and $y=b \cos \theta$, then $\frac{d^{2} y}{d x^{2}}$ is
(A) $\frac{a}{b^{2}} \sec ^{2} \theta$
(B) $\frac{-\mathrm{b}}{\mathrm{a}} \sec ^{2} \theta$
(C) $\frac{-\mathrm{b}}{\mathrm{a}^{2}} \sec ^{3} \theta$
(D) $\frac{-b^{2}}{a^{2}} \sec ^{2} \theta$
(E) None of these
17. If normal to the curve $y=f(x)$ is parallel to x-axis, then correct statement is
(A) $\frac{d y}{d x}=0$
(B) $\frac{d y}{d x}=1$
(C) $\frac{d x}{d y}=0$
(D) All of these
(E) None of these
18. The tangent to the curve $y=a x^{2}+b x a t(2,-8)$ is parallel to x-axis. Then
(A) $a=4, b=-4$
(B) $a=2, b=-8$
(C) $a=2, b=-4$
(D) $a=2, b=-2$
(E) None of these
19. Local maximum value of the function $\frac{\log x}{x}$ is
(A) e
(B) 1
(C) $\frac{1}{\mathrm{e}}$
(D) 2 e
(E) None of these
20. $\int \frac{\mathrm{x}}{4+\mathrm{x}^{4}} \mathrm{dx}$ is equal to:
(A) $\frac{1}{2} \tan ^{-1}\left(\frac{x^{2}}{2}\right)$
(B) $\frac{1}{4} \tan ^{-1}\left(\frac{\mathrm{x}^{2}}{2}\right)$
(C) $\frac{1}{4} \tan ^{-1} x^{2}+x$
(D) $\frac{1}{4} \tan ^{1}\left(\frac{x}{2}\right)$
(E) None of these
21. $\int \frac{d x}{\sqrt{x}+\sqrt{x-2}}=$
(A) $\frac{1}{3}\left[x^{\frac{3}{2}}-(x-2)^{\frac{3}{2}}\right]+C$
(B) $\frac{2}{3}\left[x^{\frac{3}{2}}-(x-2)^{\frac{3}{2}}\right]+C$
(C) $\frac{2}{3}\left[(x-2)^{\frac{3}{2}}-x^{\frac{3}{2}}\right]+C$
(D) $\frac{1}{3}\left[(x-2)^{\frac{3}{2}}-x^{\frac{3}{2}}\right]+C$
(E) None of these
22. $\int \frac{1+\cos ^{2} x}{\sin ^{2} x} d x=$
(A) $-\cot x-2 x+c$
(B) $-2 \cot x-2 x+c$
(C) $-2 \cot x-x+c$
(D) $-2 \cot x+x+c$
(E) None of these
23. $\int\left(e^{a \log x}+e^{x \log a}\right) d x=$
(A) $x^{a+1}+\frac{a^{x}}{\log a}+c$
(B) $\frac{x^{a+1}}{a+1}+a^{x} \log a+c$
(C) $\frac{x^{a+1}}{a+1}+\frac{a^{x}}{\log a}+c$
(D) All of these
(E) None of these
24. $\int_{0}^{\pi} \frac{d x}{1+\sin x}=$
(A) 0
(B) $\frac{1}{2}$
(C) 2
(D) $\frac{3}{2}$
(E) None of these
25. $\int_{0}^{\pi / 2} \frac{d x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}=$
(A) $\pi a b$
(B) $\pi^{2} a b$
(C) $\frac{\pi}{a b}$
(D) $\frac{\pi}{2 a b}$
(E) None of these
26. The order and the degree of differential equation $\frac{d^{4} y}{d x^{4}}-4 \frac{d^{3} y}{d x^{3}}+8 \frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+4 y=0$ are respectively
(A) $(1,4)$
(B) $(3,4)$
(C) $(4,1)$
(D) $(1,1)$
(E) None of these
27. $y=4 \sin 3 x$ is a solution of the differential equation
(A) $\frac{d y}{d x}+8 y=0$
(B) $\frac{d y}{d x}-8 y=0$
(C) $\frac{d^{2} y}{d x^{2}}+9 y=0$
(D) $\frac{d^{2} y}{d x^{2}}-9 y=0$
(E) None of these
28. The solution of the differential equation $\frac{d y}{d x}+y=\cos x$ is
(A) $y=\frac{1}{2}(\cos x+\sin x)+c e^{-x}$
(B) $y=\frac{1}{2}(\cos x-\sin x)+c e^{-x}$
(C) $y=\cos x+\sin x+c e^{-x}$
(D) All of these
(E) None of these
29. The maximum and minimum values of the function $|\sin 4 x+3|$ are:
(A) $(1,2)$
(B) $(-1,1)$
(C) $(2,4)$
(D) $(4,2)$
(E) None of these
30. The perimetre of a triangle with sides $3 i+4 j$ $+5 k, 4 i-3 j-5 k$ and $7 i+j$ is
(A) $\sqrt{200}$
(B) $\sqrt{50}$
(C) $\sqrt{450}$
(D) $\sqrt{250}$
(E) None of these
31. If three vectors a, b, c satisfy $a+b+c=0$ and $|a|=3,|b|=5,|c|=7$, then the angle between a and b is
(A) 90°
(B) 60°
(C) 45°
(D) 30°
(E) None of these
32. An orthogonal matrix is
(A) $\left[\begin{array}{ll}\cos x & 2 \sin x \\ -2 \sin x & \cos x\end{array}\right]$
(B) $\left[\begin{array}{ll}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]$
(C) $\left[\begin{array}{ll}\cos x & \sin x \\ \sin x & \cos x\end{array}\right]$
(D) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
(E) None of these
33. The shortest distance between lines
$\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$ is.
(A) $\sqrt{30}$
(B) $2 \sqrt{30}$
(C) $5 \sqrt{30}$
(D) $3 \sqrt{30}$
(E) None of these
34. Two lines $\frac{x-x_{1}}{I_{i}}=\frac{y-y_{1}}{m_{i}}=\frac{z-z_{1}}{n_{i}} \quad(i=1,2)$ are perpendicular to each other if their direction ratios satisfy
(A) $l_{i}=m_{i}=n_{i}$
(B) $I_{1} I_{2}+m_{1} m_{2}+n_{1} n_{2}=0$
(C) $\frac{l_{1}}{l_{2}}=\frac{m_{1}}{m_{2}}=\frac{n_{1}}{n_{2}}$
(D) All of these
(E) None of these
35. The equation of the plane through $(1,2,3)$ and parallel to the plane $2 x+3 y-4 z=0$ is
(A) $2 x+3 y+4 z+4=4$
(B) $2 x+3 y+4 z+4=0$
(C) $2 x-3 y+4 z+4=0$
(D) $2 x+3 y-4 z+4=0$
(E) None of these
36. If $p=7 i-2 j+3 k$ and $q=3 i+j+5 k$, then the magnitude of $p-2 q$ is
(A) $\sqrt{29}$
(B) 4
(C) $\sqrt{62}-2 \sqrt{35}$
(D) $\sqrt{66}$
(E) None of these
37. If $6 P(A)=8 P(B)=14 P(A \cap B)=1$, then $P\left(\frac{B}{A}\right)=$
(A) $\frac{4}{7}$
(B) $\frac{3}{5}$
(C) $\frac{3}{7}$
(D) $\frac{3}{4}$
(E) None of these
38. Which of the following Venn diagram corresponds to the statement
"All mothers are women"
(M is the set of all mothers, W is the set of all women)
(A)

(B)

(C)

(D)

(E) None of these

Direction: (Qu. 39 to 40) Refer to the following bar chart and answer the questions that follow.

39. What is the percentage increase in import between 2005-06 and 2009-10?
(A) 200%
(B) 100%
(C) 150%
(D) 50%
(E) None of these
40. If oil imports constituted 25% of the total imports in 2007-08, then what percentage of the trade gap was due to oil (assuming that no oil is exported)?
(A) 43% (approx)
(B) 34% (approx)
(C) 54% (approx)
(D) 50%
(E) None of these

Space for Rough Work

