NTSE STAGE II
 CODE: 13-15
 MAT
 HINTS \& SOLUTIONS

1. 1

Sol. As per observation
2. 3

Sol. Since Ranveet always tells truth so Mehar and Ranveet both have a goat and Mehar is lying.
3. 1

Sol. Shaded rectangle moves half position toward right, circle moves 1 position in clockwise direction, In $1^{\text {st }}$ row arrow moves half position in anti clockwise direction, in $2^{\text {nd }}$ row it remains same and in $3^{\text {rd }}$ row again half position in anticlockwise direction.
4. 2

Sol.
 point
$A E=A B-E B$
= AB-DC
$=75 \mathrm{~m}-40 \mathrm{~m}$
$=35 \mathrm{~m}$
5. 4

Sol. III and IV conclusion logically following from given statements.
6. 1 or 4

Sol. $\quad\left(2^{2}+2^{2}+4^{2}+3^{2}\right)-(2+2+4+3)=22$
$\left(3^{3}+2^{2}+5^{2}+4^{2}\right)-(3+2+5+4)=40$
$\left(4^{2}+3^{2}+6^{2}+5^{2}\right)-(4+3+6+5)=68$
OR
$\frac{(3+2 \times 4) \times 4}{2}=22$
$\frac{(4+3 \times 4) \times 5}{2}=40$
$\frac{(5+4 \times 4) \times 6}{3}=42$
7. 3

Sol.

Number common to A, B and C but not D which is 10 .
8. 2

Sol. Number common to C, A and D which are 8 and 9 i..e, 17 .
9. 4

Sol. Numbers common to C, A and B, which are 9 and 10 i..e, 19
10. 2

Sol. $\Rightarrow(11+5+x+y)-(15+10+5+y)=10$
$\Rightarrow 16+x+y-30-y=10$
$\Rightarrow 16+x=40$
$\Rightarrow \mathrm{x}=24$
\therefore only B $=\mathrm{x}=24$
11. 3

Sol. $\quad x+y+5=63$
and $(x+y+5+11)=2(15+10+5+y)$
$\Rightarrow 63+11=60+2 y \quad$ (from i and ii)
$\Rightarrow 2 \mathrm{y}=14$
$\Rightarrow y=7$
$\therefore \mathrm{x}=51$
12. 3

Sol. The logical arguments are I and III.
13. 4

Sol. Number of trees and apples remains 4 and 5 respectively in each row and column.
14. 1

Sol. As per observation
15. 3

Sol. Lets assume person A goes uphill and on the same day person B comes dawn hill. There will surely be a point where both of them will meet at a certain time. Similarly, if person A comes dawn hill on the next day, he will be at the same place at the same time on the next day.
16. 2

Sol. Minute hand over takes hour hand 10 times in the given duration.
17. 1

Sol. M
$\downarrow+6$
S M

Similarly,

A	B	I	L	I	T	Y
$\downarrow+6$	$\downarrow+8$	$\downarrow+10$	$\downarrow-14$	$\downarrow+14$	$\downarrow-10$	$\downarrow-8$
G	J	S	X	W	J	Q

18. 1

Sol. J A I

J A I

Similarly

19. 3

Sol

20. 1

Sol

21. 3

Sol

22. 2

Sol

23. 1

Sol. As per observation
24. 3

Sol. $\quad \underset{B}{\text { Clay }} \rightarrow \underset{\text { E }}{\text { Bricks }} \rightarrow \underset{A}{\text { Wall }} \rightarrow \underset{D}{\text { Room }} \Rightarrow \underset{C}{\text { House }}$
25. 3

Sol. As per observation
26. 3

Sol. As per observation.
27. 1

Sol. As per observation.
28. 2

Sol.

So, second statement is a
29. 4

Sol. Neither of the assumption are implicit as the statement is only concerned with population below poverty line of urban area last year \rightarrow so, on assumption of rural area poverty line.
30. 2

Sol. Since one premise is particular, the conclusion must be particular and should not contain the middle term. Thus only II follows.
31. 3

Sol. In 24 hours the watch is gaining 10 minutes.
So, in one hour the watch will gain $\frac{10}{24} \mathrm{~min}$
\therefore in 5 hours it will gain $\frac{10 \times 5}{24} \mathrm{~min}$
By solving the equation the correct time by this watch is 2:02:05 am.
32. 3

Sol. It shows students can take history and geography together or only geography so II and III statement fallows.
33. 4

Sol. It is going $\frac{4}{8} \mathrm{~km}$ northwards and $\frac{3}{8} \mathrm{~km}$ westwards
So, distance between starting point and ending point is $\frac{5}{8} \mathrm{~km}$.
34. 3

Sol.

35. 1

Sol. The shaded region including rectangle, traperuma nd pentagon which is region at married male who are teacher.
36. 3

Sol.

37. 1

Sol.

38. 3

Sol.

39. 1

Sol.

40. 4

Sol.

41. 1

Sol. Let A has Rs $5 x, B$ has Rs $3 x$ and C has Rs x
So, using statement $I, 5 x-x=60$
$\mathrm{x}=15$
So, B has Rs 45 .
42. 4

Sol. Let the cost of each pen is x
The cost of each pencil is y
So, using first statement the equation $6 x+5 y=30$
Using IInd statement
The new price of each pen $=\frac{3}{5} \mathrm{x}$
The price of each pencil $=\frac{3 y}{5}$

So, using IInd equation $=\frac{12 \times 3 x}{5}+\frac{10 \times 34}{5}=36 \ldots$ (i) $6 x+5 y=30 \ldots$ (ii)
So, even by using both statement answer cannot be found.

$43 \quad 4$

Sol. Ratio of saving cannot be found as no link between expenditure and income has been given.
44. 3

Sol. From statement II we find that
$C P$ of $A=S P$ of A-Profit after selling A
CP of $\mathrm{A}=\frac{4}{5}$ of SP of A
From statement I
$C P$ of $A=S P$ of B
$\frac{4}{5}$ SP of $A=S P$ of B
So, ratio of selling price of A and $S P$ of B can be found using both the statement.
45. 4

Sol. \quad STAR $=50$, CIRCUS $=65$
Adding position of alphabets from back side we will get the required value.
So, PLANET $\rightarrow 11+15+26+13+22+7=94$
46. 4

Sol. At 6 pm the hour hand points towards north but in the given question it is pointing towards south.
At 9:15 the minute hand point towards east but here it will be pointing towards west.
47. 3

Sol. In the evening the shadow is towards east. So person (Sanjiv) facing north will have shadow in their right. So, Rajni will be facing in South direction.
48. 2

Sol.

	C_{1}	C_{2}	
C_{2}	C_{3}	C_{4}	C_{1}
	C_{1}	C_{2}	

C_{1}	C_{2}	C_{3}
C_{3}	C_{4}	C_{1}
C_{1}	C_{2}	C_{3}

$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3} \& \mathrm{C}_{4}$ represents minimum different colours. That are required to fulfill the given condition.
49. 1

Sol.

By adding the two prime number we get the position of the alphabet which is in between the number.
50. 3

Sol.

51. 3.
$\begin{array}{lllllll}\text { Sol. } & 6 & 15 & 35 & 77 & 143 & 221 \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & 2 \times 3 & 3 \times 5 & 5 \times 7 & 7 \times 11 & 11 \times 13 & 13 \times 17\end{array}$
52. 2

Sol. Pairs $\rightarrow(5,9),(4,6),(7,8)$

$$
\begin{aligned}
& (5,9) \Rightarrow(5)^{2}+(9)^{2} \\
& 25+81=106 \\
& (4,6) \Rightarrow(4)^{2}+(6)^{2} \\
& 16+36=52 \\
& (7,8) \Rightarrow(7)^{2}+(8)^{2} \\
& 49+64=113
\end{aligned}
$$

53. 2

Sol. angttang anttan/anttan
54. 3

Sol.

55. 4

Sol.

56. 1

Sol.

57. 4

Sol.

58. 3

Sol. By observation
59. 1

Sol. $5 \times 4=20$
$3 \times 8=24$
$9 \times 4=36$
60. 4

Sol. 5

61. 4

Sol.

62. 2

Sol. $\quad(10 \times 5)+(10 \times 3)+(3 \times 5)=95$

$$
\begin{aligned}
& (3 \times 6)+(3 \times 2)+(2 \times 6)=36 \\
& (3 \times 4)+(4 \times 8)+(8 \times 3)=68
\end{aligned}
$$

63. 1

Sol. $13+11+8+18=50$
$18+13+8+11=50$
$11+21+9+9=50$
$9+8+10+23=50$
$\Rightarrow 13+\mathrm{m}+10+23=50$
$\mathrm{m}=50-46$
$\mathrm{m}=4$
64. 3 or 4

Sol. According to Manushi $\rightarrow 11,12,13,14,15,16$
According to Vishakha \rightarrow 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,27
Common date $\rightarrow 15^{\text {th }} \& 16^{\text {th }}$ July
If $10^{\text {th }}$ July \rightarrow Thursday
So, $15^{\text {th }}$ July \rightarrow Tuesday
and $16^{\text {th }}$ July \rightarrow Wednesday
65. 2

Sol.

Clearly, Q, X and Z are children of P
66. 1

Sol. On $1^{\text {st }}$ March dusk watch gains $=30 \mathrm{sec}$
On $2^{\text {nd }}$ march dawn watch loses $=20 \mathrm{sec}$
So on $2^{\text {nd }}$ morning watch gains $=10 \mathrm{sec}$
Similarly, on $28^{\text {th }}$ morning watch gains $=270 \mathrm{sec}$
So, on $28^{\text {th }}$ March dusk watch gains $=270+30=300 \mathrm{sec}$
$=5 \mathrm{~min}$
67. 2

Sol.

It's a midpoint of right angle triangle.
So, $C D=5$
68. 1

Sol. $m+n=o+p \ldots$.
$m+q=p+n \ldots . . I$
$2 p<m+q \ldots$ III
$2 m>0+n \ldots$ IV
From eq. II and III
$2 p<p+n$
$\Rightarrow p<n \ldots V$
From eq. I if $n>p$ so $o>m \ldots$ IV
From eq. IV and VI if $o>m$ so $m>n$
So from eq V, Vi and VII o $>\mathrm{m}>\mathrm{n}>\mathrm{p}>\mathrm{q}$
69. 2

Sol. By observation
70. 4

Sol. 6 opposite 3
1 opposite 2
4 opposite 5
71. 1

Sol. $20 \div 4 \times 12-6+11$
After change $\rightarrow 20+4-12 \div 6 \times 11$
$=20+4-2 \times 11$
$=24-22$
$=2$
72. 2

Sol. By observation
73. 4

Sol. Sum of the number are in descending order
$5+6+4=15$
$6+5+3=14$
$3+6+4=13$
$4+2+6=12$
$5+4+2=11$
By option 4
$1+4+5=10$
74. 1

Sol. There are two common number 6 and 2
So 3 is opposite to 1 .
75. 1

Sol. $\quad(96 \div 128)+64=2$
Option (1)
$(64+128) \div 96=2$
$192 \div 96=2$
$2=2$
76. 2

Sol. $\quad 6 x=5 y \Rightarrow x=\frac{5}{6} y \quad 2 y>3 z \Rightarrow y>\frac{3}{2} z$
$\frac{5}{6} y>\frac{3}{2} \times \frac{5}{6} z \Rightarrow x>\frac{5}{4} z$
$4 x>5 z$
$4 x$? $5 z$
77. 2

Sol. $30 \div 2+3 \times 6-5$

$$
\begin{aligned}
& =15+18-5 \\
& =28
\end{aligned}
$$

78. 4

Sol. Step I - Fliped right + 1 circle
Step II - Fliped left
Step III - Fliped right + 1 circle
Step IV - Fliped left
Step V - Fliped right + 1 circle
79. 1

Sol. Total number of Δ - total number of O and vice versa in $1^{\text {st }}$

80. 1

Sol. $3 \times 8 \div 4+2-5=(7+12-1 ? 6$

$$
\begin{array}{ll}
6+2-5 & (19-1) \div 6 \\
\Rightarrow 3 & 18 \div 6=3 \\
) \div \Rightarrow] \downarrow &
\end{array}
$$

81. 4

Sol. By observation.
82. 1

Sol.

ABMN, BCDM, MDEL, LERK, RIJK, RFHI, ABOS, SOMN, RFGP, PGHI, BCEL, MDRK, LEIJ, BCRK, MDIJ, ACDN, KFHJ, BCIJ.
83. 2
$\begin{array}{llllll}\text { Sol. } & \text { From option } 2 \rightarrow & 1 \# & 3 @ & 6 @ & 4 \$ \\ & \mathrm{P} & \mathrm{E} & \mathrm{A} & \mathrm{C} & \mathrm{E}\end{array}$
84. 3

Sol. By observation.
85. 4

Sol.

	5	3	
2	8	1	7
	6	4	

86. 4

Sol. Let number of supervisor be x
Total number of legs $\rightarrow 50 \times 2+45 \times 4+8 \times 4+2 \mathrm{x}$
$=312+2 x$
Total number of heads $\rightarrow 50+45+8+x$
$=103+x$
$\Rightarrow 312+2 x-(103+x)=224$
$x=15$
87. 2

Sol. For first letter in upper case \rightarrow coded with first letter in upper case.
Busy \rightarrow Cpu
Crows \rightarrow hup
Only option 2 matches.
88. 2

Sol. From I and II
Flower Red \rightarrow Sa Ma
From I and IV
Red White \rightarrow Ma Ra
For Blue $\rightarrow \mathrm{Ga}$ is remained
89. 2

Sol. one digit number $\rightarrow 1$ to $9 \rightarrow 9$
Two digit number $\rightarrow 10$ to $99 \rightarrow 90 \times 2=180$
three digit number $\rightarrow 100$ to $199 \rightarrow 100 \times 3=300$
total digit $=9+180+300=489$
90. 4

Sol.

91. 2

T	O	M	E		A	R
$@$	$\$$	$*$	$?$		I	
\Rightarrow	R	E	M	O	T	E
	$\&$	$?$	$*$	$\$$	$@$	$?$

Direct coding
92. 2

Sol. $23+26-7=42$
$11+15-7=19$
$32+16-7=41$
93. 3

Sol.

94. 2

Sol. D * B + C / A

\square
D is the nephew of A.
95. 4

Sol.

Clearly, Anwar is father of her husband i.e., father in law.
96. 4

Sol. Average speed $=\frac{\text { total dis tance }}{\text { total time }}$
$=\frac{60 \times 1+80 \times 2+100 \times 1+40 \times 1}{5}=\frac{360}{5}=72 \mathrm{~km} / \mathrm{h}$
97. 4

Sol. 23% of sports $\rightarrow 1150$ students
Total students $=\frac{1150}{23} \times 100=5000$
Reading $\rightarrow 9 \%$ of $5000=450$
98. 2

Sol. Total students $=\frac{1150}{23} \times 100=5000$
99. 4

Sol. From F
Boys $\rightarrow 14 \%$ of $27300=3822$
Girls $\rightarrow 21 \%$ of $24700=5187$

Ratio $\rightarrow 5187$: 3822 i..e, 19:14
100. 2

Sol. Hina wants to go either Goa or Odisha.
Harbhajan cannot go Goa.
So, only Odisha suits all.

