North Maharashtra University, Jalgaon Question Bank

(New syllabus w.e.f. June 2007)

Class: F. Y. B. Sc.

Subject: Mathematics

<u>Paper I</u> (ALGEBRA AND TRIGNOMETRY)

Prepared By:-

Dr. J. N. Chaudhari	M. J. College, Jalgaon
Prof. P. N. Tayade	Dr. A. G. D. Bendale Mahila Mahavidyalaya, Jalgaon
Prof. Miss. R. N. Mahajan	Dr. A. G. D. Bendale Mahila Mahavidyalaya, Jalgaon
Prof. P. N. Bhirud	Dr. A. G. D. Bendale Mahila Mahavidyalaya, Jalgaon
Prof. J. D. Patil	Nutan Maratha College, Jalgaon

Unit – 01

Adjoint and Inverse of Matrix, Rank of a Matrix and

Eigen Values and Eigen Vectors

Marks – 02

1) If
$$A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 2 & 1 \\ 3 & 1 & 0 \end{bmatrix}$$
, find minor and cofactor of a_{11} , a_{23} and a_{32}
2) If $A = \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$, find adj A
3) If $A = \begin{bmatrix} -1 & 3 \\ 7 & 2 \end{bmatrix}$, find A^{-1}
4) If $A = \begin{bmatrix} -1 & 2 \\ 3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix}$, find $\rho(AB)$
5) If $A = \begin{bmatrix} 1 & 0 & 1 \\ -2 & 5 & 7 \\ 1 & 2 & 3 \end{bmatrix}$, find $\rho(A)$
6) Find rank of $A = \begin{bmatrix} 2 & 6 \\ 1 & 3 \\ 3 & 9 \end{bmatrix}$

7) Find the characteristic equation and eigen values of A = $\begin{bmatrix} 9 & -7 \\ 3 & -1 \end{bmatrix}$

8) Define characteristic equation of a matrix A and state Cayley-Hamilton Theorem.

9) Define adjoint of a matrix A and give the formula for A^{-1} if it exist.

- 10) Define inverse of a matrix and state the necessary and sufficient condition for existence of a matrix.
- 11) Compute $E_{12}(3)$, $E_{2}(3)$ of order 3

12) If
$$A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 & 6 \\ -3 & 2 \end{bmatrix}$, find $(AB)^{-1}$
13) If $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$ then $\rho(A)$ is ---
a) 0 b) 1 c) 2 d) 4
14) If $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ then which of the following is true ?
a) adjA is nonsingular b) adjA has a zero row
c) adjA is symmetric d) adjA is not symmetric
15) If $A = \begin{bmatrix} -1 & -2 \\ -3 & 4 \end{bmatrix}$ then which of the following is true ?
a) $A^2 = A$ b) A^2 is identity matrix
c) A^2 is non-singular d) A^2 is singular
16) If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$
Statement I: AB singular
Statement I: adj(AB) = adjB adjA
then which of the following is true
a) Statement I is true b) Statement II is true
c) Both Statements are true d) both statements are false
17) If A is a square matrix, then A^{-1} exists iff
a) $|A| > 0$ b) $|A| < 0$
c) $|A| = 0$ d) $|A| \neq 0$
18) If $A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$ then $A(adj A)$ is
a) $\begin{bmatrix} 0 & 10 \\ 10 & 0 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 3 \\ -2 & 4 \end{bmatrix}$

c) $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$ d) $\begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$

19)	If A is a square matrix of or	der n then KA is
	a) K A	b) $\left(\frac{1}{K}\right)^n \mathbf{A} $
	c) $K^n A $	d) None of these
20)	Let I be identity matrix of o	rder n then
	a) adj A = I	b) $adj A = 0$
	c) $adj A = n I$	d) None of these
21)	Let A be a matrix of order n	$\mathbf{n} \mathbf{x} \mathbf{n}$ then $ \mathbf{A} $ exists iff
	a) m > n	b) m < n
	c) $m = n$	d) $m \neq n$
22)	If $AB = \begin{bmatrix} 4 & 11 \\ 4 & 5 \end{bmatrix}$ and A	$= \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$ then det. B is equal to
	a) 4 b) -6	c) - ¹ / ₄ d) -28
23)	If $A = \begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix}$ and A^{-1}	$= \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} $ then x =
	a) -1/2 b) -1	/2 c) 1 d) 2
24)	If $A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ and $n \in \mathbb{N}$	I then A^n is
	a) $\begin{bmatrix} 2^n & 2^n \\ 2^n & 2^n \end{bmatrix}$	b) $\begin{bmatrix} 2n & 2n \\ 2n & 2n \end{bmatrix}$
	c) $\begin{bmatrix} 2^{2n-1} & 2^{2n-1} \\ 2^{2n-1} & 2^{2n-1} \end{bmatrix}$	d) $\begin{bmatrix} 2^{2n+1} & 2^{2n+1} \\ 2^{2n+1} & 2^{2n+1} \end{bmatrix}$
25)	If $A = \begin{bmatrix} -1 & -3 \\ 4 & 2 \end{bmatrix}$ then $ adj_A $	A is
	a) 10 b) 10	00 c) 100 d) 110
26)	If a square matrix A of orde	r n has inverses B and C then

a) $B \neq C$ b) $B = C^n$ c) B = C d) None of these

27) If A is symmetric matrix then

- a) adjA is non-singular matrix b) adjA is symmetric matrix
- c) adjA does not exist d) None of these

28) If
$$AB = \begin{bmatrix} 1 & 3 \\ -2 & 1 \end{bmatrix}$$
 and $A = \begin{bmatrix} 3 & -7 \\ 4 & -2 \end{bmatrix}$ then
a) $(AB)^{-1} = AB$ b) $(AB)^{-1} = A^{-1}B^{-1}$

c) $(AB)^{-1} = B^{-1} A^{-1}$ d) None of these

29) If $|A| \neq 0$ and B, C are matrices such that AB = AC then

- a) $B \neq C$ b) $B \neq A$ c) B = Cd) $C \neq A$ 30) If $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ then a) $A^2 = I$ b) $A^2 = 0$ c) $A^2 = A$ d) None of these
- 31) If matrix A is equivalent to matrix B then
 - a) $\rho(A) \neq \rho(B)$ b) $\rho(A) > \rho(B)$
 - c) $\rho(A) = \rho(B)$ d) None of these

32) If
$$A = \begin{bmatrix} 1 - 4 & 0 \end{bmatrix}$$
 then $\rho(A)$ is
a) 0 b) 1 c) 3 d) None of these
33) If $A = \begin{bmatrix} 1 & 9 & 2 & 0 \\ 0 - 3 & 4 & 1 \\ 1 & 9 & 2 & 0 \end{bmatrix}$ then $\rho(A)$ is
a) 0 b) 1 c) 2 d) 3

34) If A is a matrix of order m x n then

- a) $\rho(A) \leq \min\{m,n\}$ b) $\rho(A) \leq \min\{m,n\}$
- c) $\rho(A) \ge max\{m,n\}$ d) None of these

35) The eigen values of
$$A = \begin{bmatrix} -2 & 7 \\ 2 & 3 \end{bmatrix}$$
 are
a) -5, -4 b) 5, 4 c) 5, -4 d) None of these

36) If
$$A = \begin{bmatrix} 1 & -5 \\ 3 & 2 \end{bmatrix}$$
 then A satisfies
a) $A^2 + 3A + 17I = 0$ b) $A^2 - 3A - 17I = 0$
c) $A^2 - 3A + 17I = 0$ d) $A^2 + 3A - 17I = 0$
37) If A is a matrix and λ is some scalar such that $A - \lambda I$ is singular then
a) λ is eigen value of A b) λ is not an eigen value of A
c) $\lambda = 0$ d) None of these

38) If
$$A = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 then A^{-1} exists if
a) $\rho(A) = 0$ b) $\rho(A) = 3$ c) $\rho(A) = 1$ d) None of these
39) If $A = \begin{bmatrix} -2 & 1 \\ -3 & 2 \end{bmatrix}$ then which of the following is incorrect ?
a) $A = A^{-1}$ b) $A^2 = I$ c) $A^2 = 0$ d) None of these

Marks:04

1) If A is a square matrix of order n then prove that (adjA)' = adjA'

and verify it for $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$

2) For the following matrix, verify that (adjA)' = adjA'

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$

3) If $A = \begin{bmatrix} 4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$ then show that $adj A = A$
4) If $A = \begin{bmatrix} -3 & 1 & 0 \\ 2 & -2 & 1 \end{bmatrix}$ show that $A(adj A)$ is null mat

4) If $A = \begin{bmatrix} 2 & -2 & 1 \\ -1 & -1 & 1 \end{bmatrix}$, show that A(adj A) is null matrix.

5) Show that the adjoint of a symmetric matrix is symmetric and verify it for $A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$ 6) Verify that (adjA)A = |A|I for the matrix A = $\begin{bmatrix} 4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$

7) Verify that A(adjA) = (adjA)A = |A|I for the matrix $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

8) Verify that A(adjA) = |A|I for the matrix $A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2 \end{bmatrix}$

9) Find the inverse of A =
$$\begin{bmatrix} -1 & -2 & -1 \\ 2 & 1 & 0 \\ -3 & 1 & -1 \end{bmatrix}$$

10) Find the inverse of A =
$$\begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ -3 & -1 & 1 \end{bmatrix}$$

11) Show that the matrix
$$A = \begin{bmatrix} 4 & -1 \\ -3 & 2 \end{bmatrix}$$
 satisfies the equation $A^2 - 6A + 5I = 0$.
Hence find A^{-1}

12) If $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 3 \\ 7 & 2 \end{bmatrix}$, show that adj(AB) = adjB adjA

13) If
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
 show that $A(adjA) = (adjA)A = |A|I$

14) If
$$A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$
 then show that $adjA = 3A'$

15) If
$$A = \begin{bmatrix} -2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$
, show that $A^2 = A$, but A^{-1} does not exist.

16) If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$
 show that $A^3 = A^{-1}$

17) What is the reciprocal of the following matrix ?

$$\mathbf{A} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$$

18) If
$$A = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$, verify that $(AB)^{-1} = B^{-1} A^{-1}$

19) Using adjoint method find the inverse of the matrix
$$A = \begin{bmatrix} -1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$$

20) If A is a non-singular matrix of order n then prove that $adj (adjA) = |A|^{n-2} A$

21) For a non-singular square matrix A of order n, prove that

$$|\operatorname{adj}(\operatorname{adj} A)| = |A|^{(n-1)^2}$$

22) For a non-singular square matrix A of order n, prove that

adj {adj (adjA)} =
$$|A|^{n^2 - 3n + 3} A^{-1}$$

23) If A = $\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$, show that $A^3 = A^{-1}$

24) Find the rank of the matrix
$$A = \begin{bmatrix} 2 & 3 & 2 \\ 3 & 2 & 3 \\ 1 & 4 & 1 \end{bmatrix}$$

25) Find the rank of the matrix $A = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 3 & 4 \\ 3 & 2 & 4 \end{bmatrix}$

26) Compute the elementary matrix $[E_2(-3)]^{-1}$. $E_{31}(2)$. $E'_{21}(1/2)$ of order 3

27) Compute the matrix
$$E'_{2}(1/3) \cdot E_{31} \cdot [E_{2}(-4)]^{-1}$$
 for E-matrices of order 3

28) Determine the values of x so that the matrix
$$\begin{bmatrix} x & x & 2 \\ 2 & x & x \\ x & 2 & x \end{bmatrix}$$
 is of

i) rank 3 ii) rank 2 iii) rank 1

29) Determine the values of x so that the matrix
$$\begin{bmatrix} x & x & 1 \\ 1 & x & x \\ x & 1 & x \end{bmatrix}$$
 is of

i) rank 3 ii) rank 2 iii) rank 1

30) Reduce the matrix A to the normal form. Hence determine its rank,

where
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 6 & 8 & 10 \end{bmatrix}$$

31) Reduce the matrix A to the normal form. Hence determine its rank,

where
$$A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 1 & 2 & 3 & 4 \\ 2 & 6 & 7 & 5 \end{bmatrix}$$

32) Reduce the matrix A to the normal form. Hence determine its rank,

where
$$A = \begin{bmatrix} 3 & 2 & 5 & 7 & 12 \\ 1 & 1 & 2 & 3 & 5 \\ 3 & 3 & 6 & 9 & 15 \end{bmatrix}$$

33) Find non-singular matrices P and Q such that PAQ is in normal form,

where A =
$$\begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix}$$

34) Find non-singular matrices P and Q such that PAQ is in normal form,

where
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1 \end{bmatrix}$$

35) Find non-singular matrices P and Q such that PAQ is in normal form,

where
$$A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$
 Also find $\rho(A)$

36) Show that the matrix
$$A = \begin{bmatrix} x - 1 & 1 & 2 \\ 0 & x & 4 \\ -3 & 2 & x \end{bmatrix}$$

has rank 3 when $x \neq 2$ and $x \neq \pm \sqrt{2}$, find its rank when x = 2.

37) Find a non-singular matrix P such that $PA = \begin{bmatrix} G \\ 0 \end{bmatrix}$ for the matrix

$$A = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 3 & 4 \\ 3 & 2 & 4 \end{bmatrix}$$
 Hence find $\rho(A)$.

38) Given A =
$$\begin{bmatrix} -1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5 \end{bmatrix}$$
, B = $\begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$

verify that $\rho(AB) \le \min \{\rho(A), \rho(B)\}$

39) Find all values of θ in $[-\pi/2, \pi/2]$ such that the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \text{ is of rank 2.}$$

40) Express the following non-singular matrix A as a product of E – matrices,

where
$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$

41) Express the following non-singular matrix A as a product of E – matrices,

where A =
$$\begin{bmatrix} 7 & 0 & 3 \\ 0 & 1 & 0 \\ 2 & 0 & -1 \end{bmatrix}$$

42) Express the following non-singular matrix A as a product of E – matrices,

where
$$A = \begin{bmatrix} 13 & 3 & 3 \\ 4 & 1 & 1 \\ 4 & 0 & 1 \end{bmatrix}$$

43) State Cayley- Hamilton Theorem. Verify it for $A = \begin{bmatrix} 1 & -5 \\ 3 & 2 \end{bmatrix}$

44) State Cayley- Hamilton Theorem. Verify it for $A = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$

45) Verify Cayley- Hamilton Theorem for A =
$$\begin{bmatrix} 1 & 2 & 0 \\ -3 & -2 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$

46) Find the characteristics equation of A =
$$\begin{bmatrix} 3 & 2 & -1 \\ 1 & 3 & 0 \\ 2 & -1 & 2 \end{bmatrix}$$

47) Find eigen values of A =
$$\begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix}$$

- 48) If λ is a non-zero eigen value of a non-singular matrix A, show that $1/\lambda$ is an eigen value of A^{-1}
- 49) If $\lambda \neq 0$ is an eigen value of a non-singular matrix A, show that $|A|/\lambda$ is an eigen value of adj A.
- 50) Let k be a non-zero scalar and A be a non-zero square matrix, show that if λ is an eigen value of A then λk is an eigen value of kA.
- 51) Let A be a square matrix. Show that 0 is an eigen value of A iff A is singular.

52) Show that
$$A = \begin{bmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & b & a \\ b & 0 & c \\ a & c & 0 \end{bmatrix}$

have the same characteristic equation.

53) Find eigen values and corresponding eigen vectors of A =
$$\begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$$

54) Find eigen values and corresponding eigen vectors of A = $\begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$

55) Find characteristic equation of A =
$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$$

Also find A⁻¹ by using Cayley Hamilton theorem.

56) Verify Cayley Hamilton theorem for A and hence find A^{-1}

where A =
$$\begin{bmatrix} -2 & 7 \\ 3 & 4 \end{bmatrix}$$

Marks - 04 / 06

- If A, B are matrices such that product AB is defined then prove that
 (AB)' = B'A'
- 2) If A = [a_{ij}] is a square matrix of order n then show that A(adjA) = (adjA)A = |A|I
- 3) Show that a square matrix A is invertible if and only if $|A| \neq 0$
- 4) If A, B are non-singular matrices of order n then prove that AB is non-singular and $(AB)^{-1} = B^{-1} A^{-1}$
- 5) If A, B are non-singular matrices of same order then prove that adj(AB) = (adjB) (adjA)
- 6) If A is a non-singular matrix then prove that $(A^n)^{-1} = (A^{-1})^n$, $\forall n \in N$
- 7) If A is a non-singular matrix and $k \neq 0$ then prove that $(kA)^{-1} = \frac{1}{k}A^{-1}$

8) If A is a non-singular matrix then prove that $(adj A)^{-1} = adj A^{-1} = \frac{A}{|A|}$

- 9) State and prove the necessary and sufficient condition for a square matrix A to have an inverse.
- 10) If A is a non-singular matrix then show that AB = AC implies B = CIs the result true when A is singular ? Justify.
- 11) When does the inverse of a matrix exist ? Prove that the inverse of a matrix, if it exists, is unique.
- 12) If a non-singular matrix A is symmetric prove that A^{-1} is also symmetric.
- 13) Prove that inverse of an elementary matrix is an elementary matrix of the same type.
- 14) If A is a m x n matrix of rank r, prove that their exist non-singular matrices P and Q such that $PAQ = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$
- 15) Prove that every non-singular matrix can be expressed as a product of finite number of elementary matrices.

- 16) If A is an mxn matrix of rank r, then show that there exists a non-singular matrix P such that $PA = \begin{bmatrix} G \\ 0 \end{bmatrix}$, where G is rxn matrix of rank r and 0 is null matrix of order (m-r)xn.
- 17) Prove that the rank of the product of two matrices can not exceed the rank of either matrix.
- 18) If A is an mxn matrix of rank r then show that there exists a non-singular matrix Q such that $AQ = [H \ 0]$ Where H is mxr matrix of rank r and 0 is null matrix of order mx(n-r).

Unit - 02

System of Linear Equations and Theory of Equations Marks - 02

1) Examine for non-trivial solutions

x + y + z = 04x + y = 02x + 2y + 3z = 0

- 2) Define i) Consistent and inconsistent system ii) Equivalent system
- 3) Define homogeneous, non-homogeneous system of equations.
- 4) The equation $x^4+4x^3-2x^2-12x+9=0$ has two pairs of equal roots, find them.
- 5) Change the signs of the roots of the equation $x^7 + 5x^5 x^3 + x^2 + 7x + 3 = 0$
- 6) Transform the equation $x^7 7x^6 3x^4 + 4x^2 3x 2 = 0$ into another whose roots shall be equal in magnitude but opposite in sign to those of this equation.
- 7) Change of the equation $3x^4 4x^3 + 4x^2 2x + 1 = 0$ into another the coefficient of whose highest term will be unity.
- 8) A system AX = B, of m linear equations in n unknowns, is consistent iff
 - A) rank $A \neq$ rank [A, B] B) rankA = rank [A, B]
 - C) rankA \geq rank [A, B] D) rankA \leq rank [A, B]
- 9) For the equation $x^4 + x^2 + x + 1 = 0$, sum of roots taken one, two, three and four at time is respectively.
 - A) 1, 1, 1, 1 B) 0, 1, -1, 1
 - C) 1, 0, -1, 1 D) -1, 1, -1, 1
- 10) For the equation $x^4 + x^3 + x^2 + x + 1 = 0$, sum of roots taken one, two, three and four at a time is respectively.
 - A) 1, 1, 1, 1 B) -1, 1, -1, 1
 - C) 1, -1, 1, -1 D) -1, -1, -1, 1

11) If sum and product of roots of a quadratic equation are 1 and -1 respectively the required quadratic equation is

A)
$$x^{2} + x + 1 = 0$$

B) $x^{2} - x + 1 = 0$
C) $x^{2} + x - 1 = 0$
D) $-x^{2} + x + 1 = 0$

12) The quadratic equation having roots α and β is

- A) $x^2 (\alpha + \beta) x + \alpha \beta = 0$ B) $x^2 + (\alpha + \beta) x + \alpha \beta = 0$ C) $x^2 + (\alpha + \beta) x - \alpha \beta = 0$ D) $-x^2 + (\alpha + \beta) x + \alpha \beta = 0$
- 13) The equation having roots 2, 2, -1 is

A)
$$x^{3} + x^{2} + x + 4 = 0$$

B) $x^{3} + 3x^{2} + 4 = 0$
C) $x^{3} - 3x^{2} + 4 = 0$
D) $x^{3} - 3x^{2} + x - 4 = 0$

14) The equation having roots 1, 1, 1 is

A)
$$x^3 + 3x^2 + 3x + 1 = 0$$

B) $x^3 - 3x^2 + 3x - 1 = 0$

C)
$$x^3 + 3x^2 - x - 1 = 0$$

D) $x^3 + 3x^2 - 3x + 1 = 0$

15)Roots of equation
$$x^3 - 3x^2 + 4 = 0$$
 are 2, 2, -1,
so the roots of equation $x^3 - 6x^2 + 32 = 0$ areA) 4, 2, -1B) 4, -4, -1C) 4, 4, -2D) 4, -4, -216)Roots of equation $x^2 + 2x + 1 = 0$ are -1, -1 so the roots of equation
 $x^3 + 6x + 9 = 0$ areA) -3, 3B) 3, 3C) -3, -3D) 3, -3

17) Roots of equation $x^2-2x+4=0$ are 2, 2 so the roots of equation $4x^2-2x+1=0$ are

- A) 2, -2 B) 2, 2
- C) 1/2, 1/2 D) -1/2, 1/2

18) Roots of equation $x^2 - 5x + 6 = 0$ are 2, 3 so the roots of equation

 $6x^2 - 5x + 1 = 0$ are A) 2, -3 B) 2, 3 C) 1/2, 1/3 D) -1/2, 1/3 19) Find the equation whose roots are the roots of $x^2 - 4x + 4 = 0$ each diminished by 1.

A)
$$x^2 - 4x + 4 = 0$$

B) $x^2 - 2x + 1 = 0$
C) $x^2 + 2x + 1 = 0$
D) $x^2 - 2x - 1 = 0$

20) Find the equation whose roots are the roots of $x^3 - 6x^2 + 12x - 8 = 0$ each diminished by 1.

A)
$$x^{3} - 3x^{2} + 3x - 1 = 0$$

B) $x^{3} + 3x^{2} + 3x + 1 = 0$
C) $x^{3} - 3x^{2} - 3x - 1 = 0$
D) $x^{3} - 3x^{2} - 3x + 1 = 0$

21) To remove the second term from equation $x^4 - 8x^3 + x^2 - x - 3 = 0$ the roots diminished by

- A) 3 B) 2 C) 1 D) -2
- 22) To remove the second term from equation $x^4 4x^3 18x^2 3x + 2 = 0$ the roots diminished by

Marks - 04

1. Examine for consistency the following system of equations

$$x + z = 2$$

-2x + y + 3z = 3
-3x + 2y + 7z = 4

2. Solve the following system of equations

$$x + y + z = 6$$

$$2x + y + 3z = 13$$

$$5x + 2y + z = 12$$

$$2x - 3y - 2z = -10$$

3. If $A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & -2 & 3 \\ -1 & 3 & -4 \end{bmatrix}$, find A^{-1} . Hence solve the following system of linear
equations $2x + y - z = 1$ $x - 2y + 3z = 9$ $-x + 3y - 4z = -12$

4. Test the following equations for consistency and if consistent solve them

2x - y - 5z + 4w = 1x + 3y + z - 5w = 183x - 2y - 8z + 7w = -1

5. Solve the following system of equations

 $x_1 + 3x_2 + 4x_3 - 6x_4 = 0$ $x_2 + 6x_3 = 0$ $2x_1 + 2x_2 + 2x_3 - 3x_4 = 0$ $x_1 + x_2 - 4x_3 - 4x_4 = 0$

6. Examine for non-trivial solutions the following homogeneous system of linear equations

$$x + y + 3z = 0$$
$$x - y + z = 0$$
$$-x + 2y = 0$$
$$x - y + z = 0$$

7. Solve the system of equations

$$x + 3y + 3z = 14$$

 $x + 4y + 3z = 16$
 $x + 3y + 4z = 17$

by i) method of inversion ii) method of reduction.

8. Examine the following systems of equation for consistency

x - 2y + z - u = 1 x + y - 2z + 3u = -2 4x + y - 5z + 8u = -55x - 7y + 2z - u = 3

9. Test the following equations for consistency and solve them

$$x + 2y + z = 2$$
$$3x + y - 2z = 1$$
$$4x - 3y - z = 3$$
$$x + 2y + z = 2$$

10. Solve the following equations

4u + 2v + w + 3t = 02u + v + t = 06u + 3v + 4w + 7t = 0

- 11. Solve the equation $x^3 3x^2 6x + 8 = 0$ if the roots are in A.P.
- 12. Solve the equation $x^3 9x^2 + 14x + 24 = 0$ if two of its roots are in the ratio 3:2.
- 13. Solve the equation $3x^3 26x^2 + 52x 24 = 0$ if the roots are in G.P.
- 14. Solve the equation $x^4 + 2x^3 21x^2 22x + 40 = 0$ whose roots are in A.P.
- 15. If α , β and γ are roots of the equation $x^3 5x^2 2x + 24 = 0$ find the value of i) $\sum \alpha^2 \beta$ ii) $\sum \alpha^2$ iii) $\sum \alpha^3$ iv) $\sum \alpha^2 \beta^2$

16. Remove the fractional coefficients from the equation $x^3 - \frac{1}{2}x^2 + \frac{2}{3}x - 1 = 0$

- 17. Remove the fractional coefficients from the equation $x^3 \frac{5}{2}x^2 \frac{7}{18}x + \frac{1}{108} = 0$
- 18. Transform the equation $5x^3 \frac{3}{2}x^2 \frac{3}{4}x + 1 = 0$ to another with integral coefficients and unity for the coefficient of the first term.
- 19. Remove the fractional coefficients from the equation

$$x^4 + \frac{3}{10}x^2 + \frac{13}{25}x + \frac{77}{1000} = 0$$

20. Find the equation whose roots are reciprocals of the roots

of $x^4 - 5x^3 + 7x^2 + 3x - 7 = 0$

- 21. Find the equation whose roots are the roots of $x^4 5x^3 + 7x^2 17x + 11 = 0$ each diminished by 4.
- 22. Find the equation whose roots are those of $3x^3 2x^2 + x 9 = 0$ each diminished by 5.
- 23. Remove the second term from equation $x^4 8x^3 + x^2 x + 3 = 0$
- 24. Remove the third term of equation $x^4 4x^3 18x^2 3x + 2 = 0$, hence obtain the transformed equation in case h =3.
- 25. Transform the equation $x^4 + 8x^3 + x 5 = 0$ into one in which the second term is vanishing.
- 26. Solve the equation $x^4+16x^3+83x^2+152x+84 = 0$ by removing the second term.
- 27. Solve the equation $x^3 + 6x^2 + 9x + 4 = 0$ by Carden's method.
- 28. Solve the equation $x^3 15x^2 33x + 847 = 0$ by Carden's method.
- 29. Solve the equation $z^3 6z^2 9 = 0$ by Carden's method.
- 30. Solve the equation $x^3 21x 344 = 0$ by Carden's method.
- 31. Solve $x^3 15x 126 = 0$ by Carden's method
- 32. Solve $27x^3 54x^2 + 198x 73 = 0$ by Carden's method
- 33. Solve $x^3 + 3x^2 27x + 104 = 0$ by Carden's method
- 34. Solve $x^3 3x^2 + 12x + 16 = 0$ by Carden's method
- 35. Solve $x^4 5x^2 6x 5 = 0$ by Descarte's method.
- 36. Solve the biquadratic $x^4 + 12x 5 = 0$ by Descarte's method.
- 37. Solve $x^4 8x^2 24x + 7 = 0$ by Descarte's method.

Marks - 04 / 06

1. For what values of a , the equations

x + y + z = 1 2x + 3y + z = a $4x + 9y - z = a^{2}$ have a solution and solve then completely in each case.

2. Investigate for what values of λ and μ the following system of equations

x + 3y + 2z = 2 2x + 7y - 3z = -11 $x + y + \lambda z = \mu$ have i) No solution ii) A unique solution iii) Infinite number of solutions.

3. Show that the system of equations

ax + by + cz = 0 bx + cy + az = 0cx + ay + bz = 0 has a non-trivial solution iff a + b + c = 0 or a = b = c

4. Find the value of λ for which the following system have a non-trivial solution

x + 2y + 3z = 02x + 3y + 4z = 0 $3x + 4y + \lambda z = 0$

5. Discuss the solutions of system of equations

 $(5 - \lambda) x + 4y = 0$

 $x + (2 - \lambda) y = 0$ for all values of λ .

- 6. Obtain the relation between the roots and coefficients of general polynomial equation $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_{n-1}x + a_n = 0$
- 7. Solve the equation $x^3 5x^2 16x + 80 = 0$ if the sum of two of its roots being equal to zero.
- 8. Solve the equation $x^3 3x^2 + 4 = 0$ if the two of its roots are equal.
- 9. Solve the equation $x^3-5x^2-2x+24 = 0$ if the product of two of the roots is 12.

- 10. Solve the equation $x^3 7x^2 + 36 = 0$ if one root is double of another.
- 11. Find the condition that the roots of the equation $x^3 px^2 + qx r = 0$ are in A.P.
- 12. Find the condition that the cubic equation $x^3 + px^2 + qx + r = 0$ should have two roots α and β connected by the relation $\alpha\beta + 1 = 0$
- 13. If α , β and γ are roots of the cubic equation $x^3 + px^2 + qx + r = 0$ find the value of i) $\sum \alpha^2 \beta$ ii) $\sum \alpha^2$ iii) $\sum \alpha^3$ iv) $\sum \alpha^2 \beta^2$
- 14. If α , β and γ are roots of the cubic equation $x^3 + px^2 + qx + r = 0$ find the value of $(\beta + \gamma) (\gamma + \alpha)(\alpha + \beta)$
- 15. If α , β and γ are roots of the cubic equation $x^3 px^2 + qx r = 0$ find the value of $\frac{1}{\beta^2 \gamma^2} + \frac{1}{\gamma^2 \alpha^2} + \frac{1}{\alpha^2 \beta^2}$
- 16. If α , β , γ and δ are roots of biquadratic equation $x^4 + px^3 + qx^2 + rx + s = 0$, find the value of the following symmetric functions

i)
$$\sum \alpha^2 \beta$$
 ii) $\sum \alpha^2$ iii) $\sum \alpha^3$

17. If α , β , γ and δ are roots of biquadratic equation $x^4 + px^3 + qx^2 + rx + s = 0$, find the value of the following symmetric functions

i)
$$\sum \alpha^2 \beta \gamma$$
 ii) $\sum \alpha^2 \beta^2$ iii) $\sum \alpha^4$

18. Remove the fractional coefficients from the equation

$$x^4 - \frac{5}{6}x^3 + \frac{5}{12}x^2 - \frac{13}{900} = 0$$

19. Find the equation whose roots are the reciprocals of the roots of

$$x^4 - 3x^3 + 7x^2 + 5x - 2 = 0$$

- 20. Transform an equation $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_{n-1}x + a_n = 0$ into another whose roots are the roots of given equation diminished by given quantity h.
- 21. If α , β , γ are the roots of $8x^3 4x^2 + 6x 1 = 0$ find the equation whose roots are $\alpha + 1/2$, $\beta + \frac{1}{2}$, $\gamma + 1/2$
- 22. Solve the equation $x^4 + 20x^3 + 143x^2 + 430x + 462 = 0$ by removing its second term.
- 23. Reduce the cubic $2x^3 3x^2 + 6x 1 = 0$ to the form $Z^3 + 3HZ + G = 0$
- 24. Explain Carden's method of solving equation $a_0x^3 + 3a_1x^2 + 3a_2x + a_3 = 0$

Unit – 03

Relations, Congruence Classes and Groups

Marks - 02

1) Let $A = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}$

 $A_1 = \{ 1, 2, 3, 4 \}, A_2 = \{ 5, 6, 7 \}, A_3 = \{ 4, 5, 7, 9 \}, A_4 = \{ 4, 8, 10 \}, A_5 = \{ 8, 9, 10 \}, A_6 = \{ 1, 2, 3, 6, 8, 10 \}$ Which of the following is the partition of A.

A) $\{A_1, A_2, A_5\}$	B) $\{A_1, A_3, A_5\}$
C) { A_2, A_3, A_6 }	D) $\{A_2, A_3, A_6\}$

2) Let $A = Z^+$, the set of all positive integers. Define a relation on A as "aRb iff a divides b" then this relation is not ---

A) Reflexive	B) Symmetric

- C) Transitive D) Antisymmetric
- 3) For $n \in \mathbb{N}$, $a, b \in \mathbb{Z}$ and d = (a, n), linear congruence $ax \equiv b \pmod{n}$ has a solution iff ----

A) d l b	B) x l b
C) nld	D) alb

If the Linear congruence ax ≡ b (mod n) has a solution then it has exactly --- non-congruent modulo n solutions

A) a	B) b	
C) n	D) (a, n)	

5) If $a^2 \equiv b^2 \pmod{p}$ then $p \mid a+b$ or $p \mid a-b$ only when p is ----

A) Even	B) Odd
---------	--------

C) Prime D) Composite

6) $G = \{ 1, -1 \}$ is a group w.r.t. usual

- A) Addition B) Subtraction
- C) Multiplication D) None of these

7)	In the group (Z_6 , $+_6$), o($\overline{5}$) is			
	A) 2	B) 5	C) 6	D) 1
8)	Linear congru	sence $207x \equiv 6 \pmod{1}$	8) has	
	A) No solutio	n	B) Nine solutions	
	C) Three solu	utions	D) One solution	
9)	The number of	of residue classes of int	tegers modulo 7 are	
	A) one	B) five	C) six	D) seven
10)	The solution of	of the linear congruence	the $5x \equiv 2 \pmod{7}$ is	
	A) x = 2	B) $x = 4$	C) $x = 6$	D) x = 3
11)	The set of p following doe	oositive integers unde es not exist	r usual multiplication	is not a group as
	A) identity		B) inverse	
	C) associativ	ity	D) commutativity	
12)	Define an equivalence r	uivalence relation and elation.	show that '>' on set of	of naturals is not an
13)	Define a parti	tion of a set and find a	ny two partitions of A	$= \{ a, b, c, d \}$
14)	Define equiv	alence class of an el	ement. Find equivaler	nce classe of '2' if
	$R = \{ (1, 1), (1, 1), (1, 2)$	1, 2), (1, 3), (2, 1), (2, nce relation on $A = \{1, 2\}$	2), (3, 1), (2, 3), (3, 3), , 2, 3, 4, 5}	(4, 4),(3, 2), (5, 5)}
15)	Define residue classes of integers modulo n. Find the residue class of $\overline{2}$ for the relation "congruence modulo 5".			
16)	Define prime	residue class modulo i	n. Find the prime residu	ue class modulo 7
17)	Define a gr multiplicatior	oup and show that	set of integers with	n respect to usual
18)	Define Abelia	an group and show that	t group	

$$G = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : ad - bc \neq 0, a, b, c, d \in R \right\}$$
 is not abelian.

19) Define finite and infinite group. Illustrate by an example.

- 20) Define order of an element and find order of each element in a group $G = \{1, -1, i, -i\}$ under multiplication.
- 21) Find any four partitions of the set $S = \{1, 3, 5, 7, 9, 11, 13, 15, 17, 19\}$
- 22) Show that $AxB \neq BxA$ if $A = \{2, 4, 6\}, B = \{7, 9, 11\}$
- 23) In the group (Z_{8}, X_{8}) , find order of $\overline{3}$, $\overline{4}$, $\overline{5}$, $\overline{6}$
- 24) Let $Z_8^{'} = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$, find $(\overline{3})^4$, $(\overline{3})^0$, $(\overline{3})^{-4}$ in a group $(Z_8^{'}, X_8)$
- 25) In the group (Z_{7}, X_{7}) , find $(\bar{3})^{2}$, $(\bar{4})^{-3}$, $o(\bar{3})$, $o(\bar{4})$
- 26) Find domain and range of a relation $R = \{ (x, y) : x \mid y \text{ for } x \in A, y \in B \}$ where $A = \{2, 3, 7, 8\}, B = \{4, 6, 9, 14\}$
- 27) Solve the linear congruence $2x + 1 \equiv 4 \pmod{5}$
- 28) Let $X = \{1, 2, 3\}$ and $R = \{(1,1), (1, 2), (2, 1), (2, 2), (3, 3), (1, 3), (3, 1), (2, 3), (3, 2)\}$ Is the relation R reflexive, symmetric and transitive ?
- 29) Prepare the multiplication table for the set of prime residue classes modulo 12.
- 30) Show that in a group G every element has unique inverse.
- 31) Show that the linear congruence $13x \equiv 9 \pmod{25}$ has only one solution.
- 32) Show that the linear congruence $4x \equiv 11 \pmod{6}$ has no solution.
- 33) If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then show that $ac \equiv bd \pmod{n}$
- 34) A relation R is defined in the set Z of all integers as "aRb iff 7a 4b is divisible by 3". Prove that R is symmetric.
- 35) Let ~ be an equivalence relation on a set A and a, $b \in A$. Show that $b \in [a]$ iff [a] = [b]
- 36) If in a group G, every element is its own inverse then prove that G is abelian.
- 37) In a group every element except identity element is of order two. Show that G is abelian.
- 38) If R and S are equivalence relations in set X. Prove that $R \cap S$ is an equivalence relation.
- 39) In the set R of all real numbers, a relation ~ is defined by a~b if 2 + ab >0.Show that ~ is reflexive, symmetric and not transitive.

Marks - 04

- 1. Let Z be the set of all integers. Define a relation R on Z by xRy iff x-y is an even integer. Show that R is an equivalence relation.
- Let P be the set of all people living in a Jalgaon city. Show that the relation "has the same surname as" on P is an equivalence relation.
- 3. Let P(X) be the collection of all subsets of X (power set of X). Show that the relation "is a proper subset of" in P(X) is not an equivalence relation.
- 4. Show that in the set of integers $x \sim y$ iff $x^2 = y^2$ is an equivalence relation and find the equivalence classes.
- Let S be the set of points in the plane. For any two points x, y ∈ S, define x ~ y if distances of x and y is same from origin. Show that ~ is an equivalence relation. What are the equivalence classes?
- 6. Consider the set NxN. Define $(a, b) \sim (c, d)$ iff ad = bc. Show that \sim is an equivalence relation. What are the equivalence classes?
- 7. Find the composition table for

i)
$$(Z_5, +_5)$$
 and (Z_5, x_5) ii) $(Z_7, +_7)$ and (Z_7, x_7)

- 8. Prepare the composition tables for addition and multiplication of $Z_6 = \{ \overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5} \}$
- 9. Show that $\overline{a} \in Z_n$ has a multiplicative inverse in Z_n iff (a, n) = 1
- 10. Find the remainder when 8^{103} is divided by 13.
- 11. Show that $G = \{ 1, -1, i, -i \}$, where $i = \sqrt{-1}$, is an abelian group w.r.t. usual multiplication of complex numbers.
- 12. Show that the set of all 2 x 2 matrices with real numbers w.r.t multiplication of matrices is not a group.
- 13. Show that $G = \{ A : A \text{ is non-singular matrix of order n over } R \}$ is a group w.r.t. usual multiplication of matrices.
- 14. Let Q^+ denote the set of all positive rationals. For $a, b \in Q^+$ define $a * b = \frac{ab}{2}$ Show that $(Q^+, *)$ is a group.

15. Show that $G = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : ad - bc \neq 0 \& a, b, c, d \in R \right\}$ w.r.t. matrix

multiplication is a group but it is not an abelian group.

- 16. Let Z_n be the set of residue classes modulo n with a binary operation $a+_nb = \overline{a+b} = \overline{r}$ where \overline{r} is the remainder when a + b is divided by n Show that $(Z_n, +_n)$ is a finite abelian group.
- 17. Let Z'_n denote the set of all prime residue classes modulo n. Show that Z'_n is an abelian group of order $\phi(n)$ w.r.t. x_n
- 18. Let G be a group and a, $b \in R$ be such that ab = ba. Prove that $(ab)^n = a^n b^n$, $n \in Z$
- 19. If in a group G every element is its own inverse then prove that G is an abelian group.
- 20. Let $G = \{ (a, b) / a, b \in \mathbb{R} , a \neq 0 \}$ Define Θ on G as

(a, b) \odot (c, d) = (ac, bc + d). Show that (G, \odot) is a non-abelian group.

- 21. Let f_1 , f_2 be real valued functions defined by $f_1(x) = x$ and $f_2(x) = 1-x$, $\forall x \in \mathbb{R}$. Show that $G = \{ f_1, f_2 \}$ is group w.r.t. composition of mappings.
- 22. Let G be a group and $\forall a, b \in G$, $(ab)^n = a^n b^n$ for three consecutive integers n. Show that G is an abelian group.
- 23. Show that a group G is abelian iff $(ab)^2 = a^2 b^2$, $\forall a, b \in G$
- 24. Prove that a group having 4 elements must be abelian.
- 25. Using Fermat's Theorem, Show that $5^{10} 3^{10}$ is divisible by 11.
- 26. Using Fermat's Theorem find the remainder when 2^{105} is divided by 11.
- 27. Solve

i) $8x \equiv 6 \pmod{14}$ ii) $13x \equiv 9 \pmod{25}$

- 28. Let * be an operation defined by $a * b = a + b + 1 \forall a, b \in Z$ where Z is the set of integers. Show that $\langle Z, * \rangle$ is an abelian group.
- 29. Let $A_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, where $\alpha \in R$ and $G = \{A\alpha : \alpha \in R . Prove that G is an abelian group under multiplication of matrices.$

- 30. Let Q⁺ be the set of all positive real numbers and define * on Q⁺ by a*b = $\frac{ab}{3}$. Show that (Q⁺, *) is an abelian group.
- 31. Find the remainder when $2^{73} + 14^3$ is divided by 11.
- 32. Show that the set $G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$ is a group w.r.t. multiplication.
- 33. Show that $G = R \{1\}$ is an abelian group under the binary operation a * b = a + b - ab, $\forall a, b \in G$
- 34. If the elements a, b and ab of a finite group G are each of order 2 then show that ab = ba.
- 35. A relation R is defined in the set of integers Z by xRy iff 7x 3y is divisible by 4. Show that R is an equivalence relation in Z.
- 36. A relation R is defined in the set of integers Z by xRy iff 3x + 4y is a multiple of 7. Show that R is an equivalence relation in Z.
- 37. Consider the set NxN, the set of ordered pairs of natural numbers. Let ~ be a relation in NxN defined by $(x, y) \sim (z, u)$ if x + u = y + z. Prove that ~ is an equivalence relation. Determine the equivalence class of (1, 4).
- 38. Define congruence modulo n relation and prove that congruence modulo n is an equivalence relation in Z.
- 39. Show that the set of all 2x2 matrices with real numbers w.r.t. addition of matrices is a group.

Marks - 04 / 06

- Let ~ be an equivalence relation on set A. Prove that any two equivalence classes are either disjoint or identical.
- 2. Prove that every equivalence relation on a non-empty set S induces a partition on S and conversely every partition of S defines an equivalence relation on S.
- 3. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ for $a, b, c, d \in Z$ and $n \in N$ then prove that
 - i) $(a+c) \equiv (b+d) (mod n)$
 - ii) $(a c) \equiv (b d) (mod n)$
 - iii) ac \equiv bd (mod n)
- 4. Write the algorithm to find solution of linear congruence,

 $ax \equiv b \pmod{n}$, for $a, b \in Z$ and $n \in N$

- 5. State and prove Fermat's Theorem.
- 6. If G is a group then prove that
 - i) identity of G is unique
 - ii) Every element of G has unique inverse in G.
 - iii) $(a^{-1})^{-1} = a$, $\forall a \in G$
- 7. If G is a group then prove that
 - i) identity of G is unique
 - ii) $(a^{-1})^{-1} = a$, $\forall a \in G$
 - iii) $(ab)^{-1} = b^{-1}a^{-1}, \forall a, b \in G.$
- 8. Let G be a group and $a,b,c \in G$. Prove that
 - i) $ab = ac \Rightarrow b = c$ left cancellation law. ii) $ba = ca \Rightarrow b = c$ Right cancellation law
 - ii) $ba = ca \implies b = c$ Right cancellation law.
- Let G be a group and a, b ∈ G. Prove that the equations i) ax = b ii) ya = b have unique solutions in G
- 10. Let G be a group and $a \in G$. Prove that $(a^n)^{-1} = (a^{-1})^n$, $\forall n \in N$

- 11. Let G be a group and $a \in G$. For m, $n \in N$, Prove that i) $a^m a^n = a^{m+n}$ ii) $(a^m)^n = a^{mn}$
- 12. Define an abelian group. If in a group G the order of every element (except identity element) is two then prove that G is an abelian group.
- 13. Solve the following linear congruence equations

i) $3x \equiv 2 \pmod{8}$ ii) $6x \equiv 5 \pmod{9}$

- 14. Define a group. Show that any element $a \in G$ has a unique inverse in G. Further show that $(a*b)^{-1} = b^{-1}*a^{-1}$, $\forall a, b \in G$.
- 15. If R is an equivalence relation on a set A then for any a , $b \in A$, prove that

i) $[a] = [b] \text{ or } [a] \cap [b] = \phi$

$$ii) \cup \{ [a] / a \in A \} = A$$

16. If \sim is an equivalence relation on set A and A and a , b \in A then show that

i) a ∈ [a] for all a ∈ A
ii) b ∈ [a] iff [a] = [b]
iii) a ~ b iff [a] = [b]

17. Define residue classes of integers modulo n. Show that the number of residue classes of integers modulo n are exactly n.

Unit – 04

Subgroups and Cyclic Groups

Marks - 02

- 1) Define subgroup. Give example
- 2) Define proper and improper subgroups. Give example.
- 3) Define a cyclic group. Give example.
- 4) Define left coset and right coset..
- 5) State Lagrange's Theorem.
- 6) State Fermat's Theorem.
- 7) State Euler's Theorem.
- 8) Show that $nZ = \{ nr / r \in Z \}$ is a subgroup of (Z, +), where $n \in N$.
- 9) Show that (5Z, +) is a subgroup of (Z, +)
- 10) Is group (Q^+, \cdot) a subgroup of (R, +)? Justify.
- 11) Determine whether or not $H = \{ix : x \in R\}$ under addition is a subgroup of G = group of complex numbers under addition.
- 12) Find all possible subgroups of $G = \{1, -1, i, -i\}$ under multiplication.
- 13) Find proper subgroups of (Z, +)
- 14) Write all subgroups of the multiplicative group of 6^{th} roots of unity.
- 15) Find all proper subgroups of the group of non-zero reals under multiplication.
- 16) Give an example of a proper subgroup of a finite group.
- 17) Give an example of a proper finite subgroup of an infinite group.
- 18) Give an example of a proper infinite subgroup of an infinite group.
- 19) Is union of two subgroups a subgroup ? Justify.
- 20) Prove that cyclic group ia abelian.
- 21) Show by an example that abelian group need not be cyclic.
- 22) Let $G = \{ 1, -1, i, -i \}$ be a group under multiplication and $H = \{ 1, -1 \}$ be its subgroup. Find all right cosets of H in G.
- 23) Find the order of each proper subgroup of a group of order 15. Are they cyclic.
- 24) Find generators of Z_6 under addition modulo 6.
- 25) Verify Euler's theorem by taking m = 12, a = 7.
- 26) Verify Lagrange's theorem for Z₉ under addition modulo 9.

27)	Let $G = Z$ be a additive group of integers and $H = 3Z$ a subgroup of G the			subgroup of G then
	H+2 is			
	A) {3. 6. 9. 12,	}	B) {2, 5, -1, 8, -4,}	}
	C) {1, 2, 3, 4, 5,	}	D) {1, 4, -2, 7, -5,	}
28)	Let $G = \{ 1, -1, i, $	-i) be a group	under multiplication and	$d H = \{ 1, -1 \}$ is a
	subgroup of G then	H(-i) is		
	A) {-1, 1}	B) {-i, i}	C) {i, -1}	D) {1,1}
29)	If $n = 12$ then $\phi(12)$	c) is		
	A) 5	B) 4	C) 7	D) 12
30)	If p is prime then g	enerators of a cy	clic group of order p	
	A) p	B) p-1	C) p^2	D) p+1
31)	A cyclic group hav	ing only one gen	erator can have at the m	ost element
	A) 1		B) 3	
	C) 2		D) None of these	
32)	In additive group Z	$L_{12}, (\bar{4}) = \dots$		
	A) {4, 8}	B) $\{\overline{4}, \overline{8}, \overline{0}\}$	C) $\{\bar{2}, \bar{4}, \bar{0}\}$	D) Z ₁₂

•

Marks-04

- 1) If H is a subgroup of G and $x \in G$, show that $xHx^{-1} = \{ xhx^{-1} / h \in H \}$ is a subgroup of G
- 2) Let G be a group. Show that $H = Z(G) = \{ x \in G / xa = ax, \forall a \in G \}$ is a subgroup of G.
- 3) Let G be an abelian group with identity e and $H = \{ x \in G / x^2 = e \}$. Show that H is a subgroup of G.
- 4) Let G be the group of all non-zero complex numbers under multiplication. Show that $H = \{ a+ib \in G / a^2+b^2 = 1 \}$ is a subgroup of G
- 5) Show that $H = \{ x \in G : xb^2 = b^2x, \forall b \in G \}$ is subgroup of G.
- 6) Write all subgroups of the multiplicative group of non-zero residue classes modulo 7.
- 7) Determine whether $H_1 = \{ \overline{0}, \overline{4}, \overline{8} \}$ and $H_2 = \{ \overline{0}, \overline{5}, \overline{10} \}$ are subgroups of $(Z_{12}, +_{12})$
- 8) Let G be a finite cyclic group of order n, and $G = \langle a \rangle$. Show that $G = \langle a^m \rangle \iff (m, n) = 1$, where 0 < m < n
- 9) Find all subgroups of $(Z_{12}, +_{12})$.
- 10) Find all subgroups of (Z_7^1, X_7)
- 11) Find all generators of additive group Z_{20}
- 12) Let G = { 1, -1, i, -i } be a group under multiplication and H = { 1, -1 } be it's subgroup. Find all right coset of H in G
- 13) Compute the right cosets of 4Z in (Z, +).
- 14) Let $Q = \{ 1, -1, i, -i, j, -j, k, -k \}$ be a group under multiplication and $H = \{ 1, -1, i, -i \}$ be its subgroup. Find all the right and left cosets of H in G
- 15) Let $G = (Z_8, +_8)$ and $H = \{\overline{0}, \overline{4}\}$. Find all right cosets of H in G
- 16) Let H be a subgroup of a group G and $a \in G$. Show that Ha = { $x \in G / xa^{-1} \in H$ }
- 17) Let $G = \{ 1,2,3,4,5,6,7,8,9,10 \}$. Show that G is a cyclic group under multiplication modulo 11. Find all its generators, all its subgroups and order of every element. Also verify the Lagrange's theorem.

- 18) List all the subgroups of a cyclic group of order 12.
- 19) Find order of each element in $(Z_7, +_7)$
- 20) If Z_8 is a group w.r.t. addition modulo 8
 - i) Show that Z_8 is cyclic.
 - ii) Find all generators of Z_8
 - iii) Find all proper subgroups of Z_8
- 21) Show that every proper subgroup of a group of order 35 is cyclic.
- 22) Show that every proper subgroup of a group of order 77 is cyclic.
- 23) Let G be a group of order 17. Show that for any $a \in G$ either o(a) = 1 or o(a) = 17.
- 24) Let A, B be subgroups of a finite group G , whose orders are relatively prime. Show that $A \cap B = \{e\}$.
- 25) Find the order of each element in the group $G = \{1, w, w^2\}$, where w is complex cube root of unity, under usual multiplication.
- 26) Find all subgroups of group of order 41. How many of them are proper ?
- 27) Find the remainder obtained when 3^{54} is divided by 11.
- 28) Find the remainder obtained when 33^{19} is divided by 7.
- 29) Using Fermat's theorem, find the remainder when
 - i) 9^{87} is divided by 13.
 - ii) $5^{41} + 41^{12}$ is divided by 13
- 30) Find the remainder obtained when 15^{27} is divided by 8.

Marks - 04 / 06

- A non-empty subset H of a group G is a subgroup of G iff
 a, b ∈ H ⇒.ab⁻¹∈ H.
- 2) A non-empty subset H of a group G is a subgroup of G iff

i)
$$a, b \in H \Rightarrow ab^{-1} \in H$$
 ii) $a \in H \Rightarrow a^{-1} \in H$.

- 3) Prove that Intersection of two subgroups of a group is a subgroup
- 4) Let H, K be subgroups of a group G. Prove that $H \bigcup K$ is a subgroup of G, iff either $H \subseteq K$ or $K \subseteq H$
- 5) Show that every cyclic group is abelian. Is the converse true? Justify.
- 6) Show that If G is a cyclic group generated by a , then a^{-1} also generated by G.
- 7) Show that every subgroup of a cyclic group is cyclic.
- 8) Let H be a subgroup of a group G. prove that

i) $a \in H \Leftrightarrow Ha = H$ ii) $a \in H \Leftrightarrow aH = H$

9) Let H be a subgroup of a group G. Prove that

 $Ha = Hb \iff ab^{-1} \in H$

 $aH = bH \Leftrightarrow b^{-1}a \in H$, $\forall a, b \in G$.

- 10) Let H be a subgroup of a group G. Prove that
 - i) Any two right cosets of H are either disjoint or identical.
 - ii) Any two left cosets of H are either disjoint or identical.
- 11) If H is a subgroup of a finite group G. Then prove that O(H) / O(G)
- 12) Prove that every group of prime order is cyclic and hence abelian
- 13) Order of every element 'a' of a finite group G is a divisor of order of a group i.e. 0(a) / 0(G)
- 14) If a is an element of a finite group G then $a^{o(G)} = e$
- 15) If an integer a is relatively prime to a natural number n then prove that $a^{\phi(n)} \equiv 1 \pmod{n}$, ϕ being the Euler's function.
- 16) Prove that If P is a prime number and a is an integer such that Pła, then a $p^{-1} \equiv 1 \pmod{p}$

Unit - 05

De-moiver's Theorem, Elementary Functions.

Marks - 02

- 1) State De-Moiver's Theorem for integral indices.
- 2) List n nth roots of unity.
- 3) Write 3- distinct cube roots of unity.
- 4) Find the sum of all n- nth roots of unity.
- 5) Simplify $(\cos 3\theta + i \sin 3\theta)^8$. $(\cos 4\theta i \sin 4\theta)^{-2}$

6) Simplify
$$\frac{(1+i)(1+\sqrt{3}i)}{i(1-\sqrt{3}i)}$$
, using De-Moiver's Theorem.

- 7) Find 4- fourth roots of unity.
- 8) Solve the equation $x^2 i = 0$, using De-Moiver's Theorem.
- 9) Separate into real and imaginary parts of $e^{5+\frac{\pi}{2}i}$
- 10) Separate into real and imaginary parts of $e^{(5+3i)^2}$
- 11) Define sin z and $\cos z, z \in C$.
- 12) Define sinh z and $\cosh z, z \in C$.
- 13) Prove that $\cos^2 z + \sin^2 z = 1$, using definitions of $\cos z$ and $\sin z$.

14) Prove that
$$\tan z = \frac{2 \tan z}{1 - \tan^2 z}$$

- 15) Prove that $\sin iz = i \sinh z$
- 16) Prove that $\sinh(iz) = i \sin z$
- 17) Prove that $\cos(iz) = \cosh z$
- 18) Prove that $\cosh(iz) = \cos z$
- 19) Prove that tanh(iz) = i tan z
- 20) Prove that $\tan(iz) = i \tanh z$

21)	The four fourth roots of unity are	,,-	and
22)	If $z = \sqrt{3} - i$, then $z^{12} =$		
23)	$e^{-\pi i} =$, and $e^{4\pi i} =$		
24)	Period of sin z is		
	Period of cos z is		
25)	Period of sinh z is		
	Period of cosh z is		
26)	Express $\frac{(\sqrt{3}-i)^2}{(1+i)^{10}}$ in the form p + id	q where	p, q are reals.
27)	$(\cos\theta + i\sin\theta)^7$ has seven distinct v	alues.	
	T F		
28)	$(\cos\theta + i\sin\theta)^{3/4}$ has 4 distinct values	ies.	
	T F		
29)	$\operatorname{Re}\left(e^{Z}\right) = e^{\operatorname{Re}\left(Z\right)}$		
	T F		
30)	$ e^{z} = e^{ z }$		
	T F		
31)	Match		
	a) $\sinh^2 z + \cosh^2 z$	i)	1
	b) $\sinh^2 z - \cosh^2 z$	ii)	-1
	c) i sin (iz)	iii)	e ^Z
	d) sec z .cos z	iv)	- sinh z
		v)	2

$$\frac{2}{e^{iz}-e^{-iz}}$$

32) Consider

	a) The sum	of the n, nth ro	ots of unity is always 1	
	b) The prod	uct of any two	roots of unity is a root of unit	ty.
	A) Both a) & b) are	true	B) Only a) is true	
	C) Only b) is true		D) Both are false	
33)	A value of log i is			
	Α) πί	B) πi/2	C) 0	D) - πi / 2
34)	The real part of sin	(x + iy) is		
	A) sin x . cosh y		B) $\cos x \cdot \sinh y$	
	C) sinh x . cos y		D) cosh x . sin y	
35)	2π is period of			
	A) cos z	B) tan z	C) e ^z	D) cot z
36)	a) $\cos(iz) = co$	sh z b)	$\sin(iz) = i \sinh z$	
	A) Both are true		B) Both are false	
	C) Only a) is true		D) Only b) is true	
37)	$\sinh^2 z - \cosh^2 z$ is e	qual to		
	A) cosh 2z	B) 1	C) -1	D) sinh 2z
38)	If w is an imaginary	9 th root of unit	y, then $w + w^2 + + w^8$ is	s equal to
	A) 9	B) 0	C) 1	D) -1
39)	A square root of 2i	is		
	A) 1 - i	B) 1+i	C) $\sqrt{2}$	D) $\sqrt{2}$ i
40)	$(\cos \pi/4 + i \sin \pi/4)$) ⁻² is		
	A) i	D) ;	C) 1	D) 1

Marks - 04

1. Simplify using De-Moiver's Theorem, the expression

$$\frac{(\cos 2\theta - i\sin 2\theta)^7 (\cos 3\theta + i\sin 3\theta)^{-5}}{(\cos 4\theta + i\sin 4\theta)^{12} (\cos 5\theta - i\sin 5\theta)^{-6}}$$

2. Simplify

$$\frac{(\cos\theta + i\sin\theta)^{8/7} (\cos\theta - i\sin\theta)^{12/7}}{(\cos\theta + i\sin\theta)^{12/7} (\cos4\theta - i\sin4\theta)^{5/4}}$$

3. Prove that
$$\left[\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}\right]^n = \cos\left[\left(\frac{\pi}{2}-\theta\right)n\right] + i\sin\left[\left(\frac{\pi}{2}-\theta\right)n\right]$$

4. If α and β are roots of $x^2 - 2x + 2 = 0$ and n is a positive integer, then prove that

$$\alpha^{n} + \beta^{n} = 2^{\frac{n+2}{2}} \cos(n\pi/4)$$

- 5. Evaluate $(1 + i\sqrt{3})^{10} + (1 i\sqrt{3})^{10}$
- 6. Prove that $(1 + i\sqrt{3})^{-10} = 2^{-11}(-1 + i\sqrt{3})$

7. Prove that
$$(-1+i)^7 = -8(1+i)$$

- 8. Prove that $(1 + i\sqrt{3})^8 + (1 i\sqrt{3})^8 = -256$
- 9. If $x = \cos \alpha + i \sin \alpha$, $y = \cos \beta + i \sin \beta$ prove that

$$\frac{x-y}{x+y} = i \tan\left(\frac{\alpha-\beta}{2}\right)$$

- 10. Find $(3+4i)^{\frac{1}{2}} + (3-4i)^{\frac{1}{2}}$
- 11. Find all values of $(1-i\sqrt{3})^{1/4}$
- 12. Find all values of $(1+i)^{1/5}$

Show that their continued product is 1 + i.

- 13. Find the continued product of the four values of $\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{3/4}$
- 14. If w is a complex cube root of unity, prove that $(1 w)^6 = -27$

Using De-Moiver's Theorem, solve the following equations (15 to 25)

 $x^4 - x^3 + x^2 - x + 1 = 0$ 15. $x^4 + x^3 + x^2 + x + 1 = 0$ 16. $x^8 - x^4 + 1 = 0$ 17. $x^9 - x^5 + x^4 - 1 = 0$ 18. $x^{10} + 11x^5 + 10 = 0$ 19. $16x^4 - 8x^3 + 4x^2 - 2x + 1 = 0$ 20. $x^3 + x^2 + x + 1 = 0$ 21. $x^6 - 1 = 0$ 22 $x^4 + 1 = 0$ 23. $z^7 - z^4 + z^3 - 1 = 0$ 24. $z^{12} - z^6 + 1 = 0$ 25. 26. Express $\cos^5\theta$ in terms of cosines of multiple of angle θ . 27. Express $\cos^6\theta$ in terms of cosines of multiple of angle θ . 28. Express $\sin^5\theta$ in terms of sines of multiple of angle θ . Prove that $\cos^8 \theta = 1/128 \left[\cos 8\theta + 8 \cos 6\theta + 28 \cos 4\theta + 56 \cos 2\theta + 35 \right]$ 29. Prove that $\cos^7 \theta = 1/64 \left[\cos 7\theta + 7 \cos 5\theta + 21 \cos 3\theta + 35 \cos \theta \right]$ 30. Prove that $\sin 7\theta = 7\cos^6\theta \sin\theta - 35\cos^4\theta \sin^3\theta + 21\cos^2\theta \sin^5\theta - \sin^7\theta$ 31. Prove that $\cos 5\theta = \cos^5 \theta - 10 \cos^3 \theta \sin^2 \theta + 5 \cos \theta \sin^4 \theta$ 32. Prove that $\sin 5\theta = 5 \cos^4\theta \sin\theta - 10 \cos^2\theta \sin^3\theta + \sin^5\theta$ 33. 34. If $\sin \alpha + \sin \beta + \sin \gamma = \cos \alpha + \cos \beta + \cos \gamma$ prove that a) $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3 \sin (\alpha + \beta + \gamma)$ b) $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3 \cos (\alpha + \beta + \gamma)$ Express $\frac{\sin 7\theta}{\sin \theta}$ in powers of $\sin \theta$ only. 35. Prove that $\frac{\sin 6\theta}{\sin \theta} = 32 \cos^5 \theta - 24 \cos^3 \theta + 6 \cos \theta$ 36.

37. Prove that
$$\frac{\sin 6\theta}{\cos \theta} = 32 \sin^5 \theta - 32 \sin^3 \theta + 6 \sin \theta$$

- 38. Using definitions of $\cos z$ and $\sin z$, prove that $\sin^2 z + \cos^2 z = 1$
- 39. If z_1 and z_2 are complex numbers, show that $\cos(z_1 + z_2) = \cos z_1 \cos z_2 - \sin z_1 \sin z_2$
- 40. Prove that $\cosh(z_1 + z_2) = \cosh z_1 \cosh z_2 + \sinh z_1 \sinh z_2$
- 41. Prove that a) $2\cosh^2 z 1 = \cosh 2z$

b)
$$2\sinh^2 z + 1 = \cosh 2z$$

42. Find the general values of a) Log (-i) b) Log (-5)

Separate into real and imaginary parts of (43 to 55)

- 43. $\log(4+3i)$
- 44. $\log(3+4i)$
- 45. $\sin(x + iy)$
- 46. $\cos(x + iy)$
- 47. tan(x + iy)
- 48. $\sec(x + iy)$
- 49. $\operatorname{cosec}(x + iy)$
- 50. $\cosh(x + iy)$
- 51. $\coth(x + iy)$
- 52. $\operatorname{sech}(x + iy)$
- 53. $\operatorname{cosech}(x + iy)$
- 54. $\tanh(x+iy)$
- 55. $\cot(x + iy)$

Prove the following (56 to 60)

- 56. $\sinh 2z = 2 \sinh z \cosh z$
- 57. $\sinh 2z = \frac{2 \tanh z}{1 \tanh^2 z}$
- 58. $\cosh 2z = \frac{1 + \tanh^2 z}{1 \tanh^2 z}$

59.
$$\tanh 2z = \frac{2 \tanh z}{1 + \tanh^2 z}$$

- $60. \qquad \cosh 3z = 4 \cosh^2 z 3 \cosh z$
- 61. If $\cos(x + iy) = \cos \alpha + i \sin \alpha$ show that $\cos 2x + i \cosh 2y = 2$
- 62. If sin (x + iy) = tan α + i sec α show that cos 2x cosh 2y = 3
- 63. If $\sin(\alpha + i\beta) = x + iy$, prove that

$$\frac{x^2}{\cosh^2\beta} + \frac{y^2}{\sinh^2\beta} = 1 \text{ and } \frac{x^2}{\sin^2\alpha} - \frac{y^2}{\cos^2\alpha} = 1$$

64. If $x + iy = \cosh(u + iv)$, show that

$$\frac{x^2}{\cosh^2 u} + \frac{y^2}{\sinh^2 u} = 1$$
 and $\frac{x^2}{\cos^2 v} - \frac{y^2}{\sin^2 v} = 1$

65. If $x + iy = \cosh(u + iv)$, show that $x^2 \operatorname{sech}^2 u + y^2 \operatorname{cosech}^2 u = 1$

66. If
$$x + iy = \cosh(u + iv)$$
, show that $(1 + x)^2 + y^2 = (\cosh v + \cos u)^2$

67. If
$$x + iy = \cos(u + iv)$$
, show that $(1 - x)^2 + y^2 = (\cosh v - \cos u)^2$

68. If
$$\cos(x + iy) = r(\cos \alpha + i \sin \alpha)$$
, show that $2y = \log \left[\frac{\sin(x - \alpha)}{\sin(x + \alpha)}\right]$

69. If
$$u = \log \left[\tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right]$$
. prove that $\tanh \frac{u}{2} = \tan \frac{x}{2}$

70. If
$$\tan(x + iy) = A + iB$$
 then show that $\frac{A}{B} = \left[\frac{\sin 2x}{\sinh 2y}\right]$

71. Prove that
$$sin[log(i^1)] = -1$$

72. Show that
$$\sin\left[i\log\left(\frac{1+ie^{-i\theta}}{1-ie^{-i\theta}}\right)\right]$$
 is purely real.

73. Find the $5-5^{\text{th}}$ roots of -1.

74. Find the modulus and principal value of the argument of $\frac{(1+i\sqrt{3})^7}{(\sqrt{3}-i)^{11}}$

75. Express
$$\frac{(\sqrt{3}-i)^7}{(1+i)^{10}}$$
 in the form a + ib, where a and b are reals.

76. If
$$z = -(\sqrt{3} + i)$$
, find z^{10}

77. If
$$x_i^2 + 1 = 2 x_i \cos \theta$$
 (i = 1, 2, 3), then prove that one of the value of $x_1 x_2 x_3$
+ $\frac{1}{x_1 x_2 x_3}$ is $2 \cos (\theta_1 + \theta_2 + \theta_3)$

78. If
$$2 \cos \alpha = x + \frac{1}{x}$$
 and $2 \cos \beta = y + \frac{1}{y}$, prove that one of the values of
 $x^{m}y^{n} + \frac{1}{x^{m}y^{n}}$ is $2 \cos (m\alpha + n\beta)$
79. If $2 \cos \theta = x + \frac{1}{x}$ and $2 \cos \phi = y + \frac{1}{y}$, prove that
 $\frac{x^{m}}{y^{n}} - \frac{y^{n}}{x^{m}} = 2i \sin (m\theta - n\phi)$

80. Solve the equation $x^2 - i = 0$, using De-moivre's theorem.

Marks - 04 / 06

- 1) State and prove De-Moiver's Theorem for integral indices.
- 2) State and prove De-Moiver's Theorem for rational indices.
- 3) State De-Moiver's Theorem. Obtain the formula for n-nth roots of unity.
- 4) Find n-nth roots of unity and represent them geometrically.
- 5) Show that the product of any two roots of unity is the root of unity.
- 6) Show that the 7th roots of unity form a series in G.P. and find their sum.
- 7) Show that the sum of n-nth roots of unity is zero.
- 8) Find n-nth roots of a complex number z = x + iy.
- 9) Prove that

$$(x + iy)^{m/n} + (x - iy)^{m/n} = 2(x^2 + y^2)^{m/2n} . \cos[(m/n) \tan^{-1}(y/x)]$$

10) If $2 \cos \theta = x + \frac{1}{x}$ and $2 \cos \phi = y + \frac{1}{y}$ then show that

$$\frac{xm}{y^n} + \frac{y^n}{xm} = 2\cos(m\theta - n\phi)$$

- 11) Define sin z, cos z and sinh z, cosh z. Prove that sin z and cos z are periodic functions with period 2π .
- 12) Define tan z. Prove that tan z is a periodic function with period π .
- 13) Define sinh z, and $\cosh z$. Prove that sinh z and $\cosh z$ are periodic functions with period $2\pi i$.
- Obtain the relation between circular functions sinz, cosz and hyperbolic functions sinhz, coshz.
- 15) Define Log z, $z \in C$ Separate Log z into real and imaginary parts.

16) Prove that
$$i \log \left[\frac{x-i}{x+i}\right] = \pi - 2 \tan^{-1} x$$

- 17) Prove that $\cos\left\{i\log\left(\frac{a+ib}{a-ib}\right)\right\} = \frac{a^2-b^2}{a^2+b^2}$
- 18) Prove that $\tan\left\{i\log\left(\frac{a-ib}{a+ib}\right)\right\} = \frac{2ab}{a^2 b^2}$
- 19) Using definition prove that $\cosh^2 z \sinh^2 z = 1$
- 20) If $\sin^{-1}(\alpha + i\beta) = u + iv$, prove that $\sin^2 u$ and $\cosh^2 v$ are the roots of the quadratic equation $\lambda^2 (1 + \alpha^2 + \beta^2)\lambda + \alpha^2 = 0$