North MaharashtraUniversity ; Jalgaon.

Question Bank
S.Y.B.Sc. Mathematics (Sem -II)
MTH-221. Functions of a Complex Variable.

Authors ;
Prof. M.D.Suryawanshi (Co-ordinator)
Head, Department of Mathematics, S.S.V.P.S.'s L.K.Dr.P.R.Ghogrey Science College, Dhule .
Prof. U.S.Shirole
Department of Mathematics,
S.S.V.P.S.'s L.K.Dr.P.R.Ghogrey Science College, Dhule.

Prof. A.G.Patil
Kisan Mahavidyalaya, Parola, Dist.- Jalgaon.

Prof. J.G.Patil
S.S.V.P.S.'s Arts, Commerce and Science College, Sindkheda Dist. Dhule.

Unit-1:

Functions of a Complex Variable.
I) Questions of Two marks :

1) The $\lim [3 x+i(2 x-4 y)]$ is -----

$$
\mathrm{z} \rightarrow 2+3 i
$$

2) Does $\lim \frac{\bar{z}}{z}$ exist

$$
\mathrm{z} \rightarrow 0
$$

3) What are the points of discontinuties of $\mathrm{f}(\mathrm{z})=\frac{2 z-3}{z^{2}-2 z+2}$
4) Write the real and imaginary parts of $f(z)=z^{3} \quad$ where $z=x+i y$.
5) Find the limit, $\lim [x+i(2 x+y)]$

$$
z \rightarrow 1-i
$$

1) Does Continuity at a point imply differentiability there at. Justify by an example.
2) Define an analytic function
3) Define singular points of an analytic function $f(z)$.
4) Find the singular points for the function $f(z)=\frac{z-2}{(z+1)\left(z^{2}+1\right)}$
5) Define a Laplace's Didifferential Equation for $\Phi(x, y)$.
6) What is harmonic function ?
7) What do you mean by $\mathrm{f}(\mathrm{z})$ is differentiable at ?
8) Is the function $u=\frac{1}{2} \cdot \log \left(x^{2}+y^{2}\right)$ harmonic?
9) When do you say $\mathrm{f}(\mathrm{z})$ tends to a limit as z tends to z_{0} ?
10) State Cauchy- Riemann equations.
11) State the necessary condition for the function $f(x)$ to be abalytic.
12) Every differential function is continuous. True or False.
II) Multiple Choice Questions:
13) If $\lim [x+i(2 x+y)]=p+i q$, then $(p, q)=-----$.

$$
z \rightarrow 1-i
$$

(i) (1,1) (ii) ($-1,1$) (iii) ($1,-1$) (iv) ($(1,-1)$
2) The function $\mathrm{f}(\mathrm{z})=\frac{x y}{x^{2}+y^{2}}$ when $\mathrm{z} \neq 0$ and $\mathrm{f}(0)=0$ is
(i) Continuous at $\mathrm{z}=0$, (ii) Discontinuous at $\mathrm{z}=0$
(iii) Not predictable, (iv) Constant
3)A Continous function is ifferential :
(i) True
,(ii) False.
(iii)True \& False,
(v) True or False

1) A function $\Phi(x, y)$ satisfying Laplace equation is called
(i) Analytic
(ii) Holomorphic
(iii) Harmonic,
(iv)Non-hormonic
2) Afunction $f(z)=e^{z}$ is
(i) Analytic everywhere, (ii) Analytic nowhere
(iii) only differentiable, (iv) None
3) If $f(z)=u-i v$ is analytic in the z-plane, then the C-R equations satisfied by it's real and imaginary parts are,
$\begin{array}{ll}\text { (i) } \mathrm{u}_{x}=u_{y} \quad ; u_{y}=-v_{x} & \text { (ii) } u_{x}=-v_{y}, u_{y}=v_{x}\end{array}$
4) An analytic function with constant modulus is
(a) Constant
(b) not constant, (c) analytic, (d) None of these.
5) A Milne - Thomson method is used to construct
a) analytic function , b) Continuous function
c) differentiable function, d) None of these.

III) Questions for Four marks ;

1) Define he continuity of $f(z)$ at $\mathrm{z}=z_{0}$ and examine for continuity at $\mathrm{z}=0$ the function

$$
\mathrm{f}(\mathrm{z})=\frac{x^{4} y(i y-x)}{\left(x^{8}+y^{2}\right) z} ; z \neq 0
$$

1) Define limit of a function $f(Z)$.

Evaluate $; \lim \frac{z^{3}+8}{z^{4}+4 z^{2}+16}$

$$
\mathrm{z} \rightarrow \frac{2 \Pi i}{3}
$$

2) Prove that a differentiable function is always continuous. Is the converse true ? Justify by an example.
3) Use the definition of limit to prove that, $\lim [x+i(2 x+y)]=1+i$

$$
\mathrm{z} \rightarrow 1-i
$$

5) Show that if $\lim f(z)$ exists, it is unique
6) Prove that $\lim \frac{\bar{z}}{z}$ does not exist

$$
\mathrm{z} \rightarrow 0
$$

4) Prove that $\lim \frac{x^{3} y(y-i x)}{\left(x^{6}+y^{2}\right) \cdot z}$ does not exist, where $z \neq 0$

$$
\mathrm{z} \rightarrow 0
$$

5) Evaluate $: \lim \frac{z^{5}-i}{z+i}$

$$
\mathrm{z} \rightarrow i
$$

6) 9) Evaluate: $\lim \frac{z^{4}+4}{z-1-i}$

$$
\mathrm{z} \rightarrow 1+i
$$

10) Examine for continuity the function, $f(z)=\frac{z^{4}+4}{z-2 i}$ at $z \neq 2 i$

$$
=3+4 \mathrm{i} ; \mathrm{z}=2 \mathrm{i}, \text { at } \mathrm{z}=2 \mathrm{i}
$$

11)If $f(z)=\frac{3 z^{4}-2 z^{3}+8 z^{2}-2 z+5}{z-i}$ when $z \neq i$ and $f(i)=2+3 i$, examine $f(z)$ for continuity

At $\mathrm{z}=\mathrm{i}$..
12)Show that the function $f(z)=\bar{z}$ is continuous everywhere but not differentiable .
13) Define an analytic function. Give two examples of an analytic function.
14) Show that $f(z)=|z|^{2}$ is not analytic at any point in the z-plane .
15) State and prove the necessary condition for the $f(z)$ to be analytic. Are these conditions sufficient?
16) State and prove the sufficient conditions for the function $f(z)$ to be analytic.
17) Prove that a necessary condition for a complex function $w=f(z)=u(x, y)+i v(x, y)$ to be analytic at a point $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ of its domain D is that at (x, y) the first order partial derivatives of u and v with respect to x and y exist and satisfy the Cauchy - Riemann equations: $\mathrm{u}_{x}=v_{y}$ and $\mathrm{u}_{y}=-v_{x}$.

Prove that for the function $F(z)=U(x, y)+V(x, y)$, if the four partial derivatives U_{x}, U_{y}, V_{x} and
V_{y} exist and are continuous at a point $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ in the domain D and that they satisfy CauchyRiemann equartions: $\mathrm{U}_{\mathrm{x}}=\mathrm{V}_{\mathrm{y}} ; \mathrm{U}_{\mathrm{y}}=-\mathrm{V}_{\mathrm{x}}$ at (x, y), then $\mathrm{F}(\mathrm{z})$ is analytic at the point $\mathrm{z}=\mathrm{x}+\mathrm{iy}$.

19)

Define $\mathrm{F}(\mathrm{z})=\mathrm{z}^{5} \mathrm{Iz} \mathrm{I}^{-4}$; if $\mathrm{z} \neq 0$
Show that $\mathrm{F}(\mathrm{z})$ is not analytic at the origin even though it satisfies $\mathrm{C}-\mathrm{R}$ equations at the origin.

> 21)
$\mathrm{z}=0$ and C-R equations are satisfied at the origin.
22)

If $\mathrm{F}(\mathrm{z})$ and $\overline{F(z)}$ are analytic functions of z , show that $\mathrm{F}(\mathrm{z})$ is a constant function.
23) If $\mathrm{F}(\mathrm{z})$ is an analytic function with constant modulus, then prove that $\mathrm{F}(\mathrm{z})$ is a constant function.
24) Show that $\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=4 \frac{\partial^{2}}{\partial z \partial \bar{z}}$.

Show that $\mathrm{F}(\mathrm{z})=e^{\bar{z}}$ is not analytic for any z .
Show that $\lim _{z \rightarrow 0} \frac{x^{2} y}{x^{4}+y^{2}}$ does not exist.
Show that if $\mathrm{W}=\mathrm{F}(\mathrm{z})=3 \mathrm{x}-2 \mathrm{iy}$, then $\frac{d W}{d z}$ does not exist.
Show that the function $\mathrm{F}(\mathrm{z})=\frac{\left.x^{3}(1+i)\right)-y^{3}(1-i)}{x^{2}+y^{2}}$ when $\mathrm{z} \neq 0$ and $\mathrm{F}(0)=0$ is continuous and that C-R equations are satisfied at the origin but $\mathrm{F}^{1}(0)$ does not exist .
Show that the function defined by $\mathrm{F}(\mathrm{z})=\frac{x y^{2}(x+i y)}{x^{2}+y^{4}} ; z \neq 0$

$$
=0 ; \mathrm{z}=0
$$

satisfies C.R. equations at $z=0$ but not analytic there at.
If $F(z)$ is an analytic function of z then show that
(i) $\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}|F(z)|^{2}=4\left|F^{\prime}(z)\right|^{2}$
(ii) $\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}[R F(z)]^{2}=2\left|F^{\prime}(z)\right|^{2}$

UNIT : 2 Laplace Equation and Complex Integration

I Questions of TWO marks

1) Define Laplace Differential equation.
2) Define harmonic and conjugate harmonic functions.
3) True or False:
i) If $F(z)$ is an analytic function of z, then $F(z)$ depends on \bar{z}.
ii) If $\mathrm{F}(\mathrm{z})$ and $\overline{F(z)}$ are analytic functions of z , then $\mathrm{F}(\mathrm{z})$ is a constant.
iii) An analytic function with constant modulus is constant.
4) Is $u=x^{2}-y^{2}$ a harmonic function? Justify.
5) Show that $v(x, y)=x^{2}-y^{2}+x$ is harmonic function.
6) Show that $u(x, y)=e^{-y} \sin x$ is a harmonic function.
7) Prove or disprove: $u=y^{3}-3 x^{2} y$ is a harmonic function.
8) Show that $v=x^{3}-3 x y^{2}$ satisfies Laplace's differential equation.
9) State Cauchy-Goursat Theorem.
10) Define simple closed curve.
11) Define the term Simply connected region.
12) Define Jordan Curve.
13) State Jordan Curve theorem.
14)

Evaluate $\int_{C} \frac{1}{z-a} d z$ where C is circle $|z-a|=2$.
Evaluate $\int_{0}^{3+i} z^{2} d z$ along the line $\mathrm{x}=3 \mathrm{y}$.

II Multiple Choice questions1 mark each

1)

The harmonic conjugate of e^{x} cosy is
(a) $e^{x} \cos y+c$
(b) $e^{x} \sin y+c$
(c) $\mathrm{e}^{\mathrm{x}}+\mathrm{c}$
(d) None of these
2)

The harmonic conjugate of $e^{-y} \sin x$ is \qquad
(a) $e^{-y} \cos x+c$
(b) $e^{-y} \sin x+c$
(c) e^{-x} cosy
(d) None of these
3)

The value of the integral $\int_{C}\left(12 z^{2}-4 / z\right) d z$ where C is the curve $y=x^{3}-3 x^{2}+4 x-1$ joining points $(1,1)$ and $(2,3)$ is given by \qquad
(a) $-156+58 \mathrm{i}$
(b) $-156-58 \mathrm{i}$
(c) 50
(d) None of these
4)

The value of $\int_{0}^{1} z e^{2 z} d z$ will be
(a) e
(b) $1 / 4\left(e^{2}+1\right)$
(c) $1 / 4\left(e^{2}-1\right)$
(d) None of these

The value of the integral of $1 / \mathrm{z}$ along a semicircular arc from -1 to 1 in the clockwise direction
5) will be \qquad
(a) zero
(b) $-\pi \mathrm{i}$
(c) $\pi \mathrm{i}$
(d) None of these

1) If $F(z)=u+i v$ is an analytic function then show that u and v both satisfy Laplace's differential equation.
If $F(z)=u(x, y)+i v(x, y)$ is an analytic function, show that $F(z)$ is independent of \bar{z}.
2) Explain the Milne-Thomson's method to construct an analytic function $\mathrm{F}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ when the real part u is given.
3) Explain the Milne-Thomson's method to construct an analytic function $\mathrm{F}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ when the imaginary part v is given.
Find an analytic function $F(z)=u+i v$ and express it in terms of z if
4) $\quad u=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$.
5) Find an analytic function $F(z)=u+i v$ if, $v=e^{-y} \sin x$ and $F(0)=1$.
6) Find an analytic function $F(z)=u+i v$ where the real part is $e^{-2 x} \sin \left(x^{2}-y^{2}\right)$.
7) If $\mathrm{F}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is analytic function of $\mathrm{z}=\mathrm{x}+$ iy and $\mathrm{u}-\mathrm{v}=\frac{\cos x+\sin x-e^{-y}}{2 \cos x-e^{y}-e^{-y}}$, find $\mathrm{F}(\mathrm{z})$ if $\mathrm{f}(\pi / 2)=0$.
8) Show that the function $F(z)=e^{-y} \sin x$ is harmonic and find its harmonic conjugate.

Use Milne-Thomson's method to construct an analytic function $\mathrm{F}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ where $u=e^{\mathrm{x}}$ (xcosy - ysiny).
11) Use Milne-Thomson's method to construct an analytic function $\mathrm{F}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ where $v=\tan ^{-1}(y / x)$.
12) Determine the analytic function $F(z)=u+$ iv if $u=x^{2}-y^{2}$ and $F(0)=1$.
13) Find by Milne-Thomson's method the an analytic function $\mathrm{F}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ where $\mathrm{v}=\mathrm{e}^{\mathrm{x}}(\mathrm{x} \sin \mathrm{y}+\mathrm{y} \cos \mathrm{y})$.

If $u=x^{2}-y^{2}$ and $v=\frac{-y}{x^{2}+y^{2}}$, then show that u and v satisfy Laplace equation but $u+i v$ is not an analytic function of z.
15) Show that if the harmonic functions u and v satisfy C.R. equations, then $u+i v$ is an analytic function.
16) If $F(z)$ is analytic in a simply connected region R then $\int_{a}^{b} F(z) d z$ is independent of the path of the integration in R joing the points a and b.
17)

Evaluate $\int_{C} z d z$ where C is the arc of the parabola $y^{2}=4 a x \quad(a>0)$ in the first quadrant from the vertex to the end point of its latus rectum.
18) Evaluate $\int_{C} \frac{1}{z-a} d z$ where C is circle $|z-a|=2$.
19) Evaluate $\int_{C}\left(y-x-3 x^{2} i\right) d z$ where C is the straight line joining 0 to $1+i$.
20) Evaluate $\int_{C}\left(y-x-3 x^{2} i\right) d z$ where C is the straight line joining 0 to i first and then i to $1+i$.
21) Show that the integral of $1 / \mathrm{z}$ along a semicircular are from -1 to 1 has the value $\pi \mathrm{i}$ or $-\pi \mathrm{i}$ according as the arc lies below or above the real axis.

Show that if $\mathrm{F}(\mathrm{z})$ is an analytic function in a region bounded by two simple closed curves C_{1}
22) and C_{2} and also on C_{1} and C_{2}, then $\int_{C_{1}} F(z) d z=\int_{C_{2}} F(z) d z$.
23) State Cauchy's theorem for integrals and verify it for $F(z)=z+1$ rounder the contour $|z|=1$.
24) If C is a circle $|z-a|=r$, prove that $\int_{C}(z-a)^{n} d z=0 ; n$ being an integer other than -1 .
25)

Evaluate $\int_{C} \frac{d z}{z}$ where C is the circle with centre at origin and radius a.
26) Verify Cauchy-Goursat Theorem for $\mathrm{F}(\mathrm{z})=\mathrm{z}+2$ taken round the unit circle $|z|=1$.
27) Verify Cauchy's integral Theorem for $F(z)=z^{2}$ round the circle $|z|=1$.
28) Verify Cauchy's Theorem for $F(z)=z$ around a closed curve C. where c is the rectangle bounded by the lines : $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1$,
Use Cauchy-Goursat Theorem to obtain the value of $\int_{C} e^{2} d z$, where C is the circle $|z|=1$ and 29)
deduce that (i) $\int_{0}^{2 \pi} e^{\cos \theta} \sin (\theta+\sin \theta) d \theta=0 \quad$ (ii) $\int_{0}^{2 \pi} e^{\cos \theta} \cos (\theta+\sin \theta) d \theta=0$.

UNIT : 3 Cauchy's Integral Formulae and Residues. I Questions of TWO marks

1) State Cauchy's integral formula for $F(a)$.
2) State Cauchy's integral formula for $\mathrm{F}^{\prime}(\mathrm{a})$.
3) Evaluate by Cauchy's integral formula $\int_{C} \frac{z+2}{z} d z$ where C is the circle $|z|=1$.
4) Evaluate $\int_{|z|=2} \frac{e^{2 z}}{(z-1)^{3}} d z$.
5) Evaluate $\int_{C} \frac{z e^{z}}{(z-1)^{3}} d z$ where C is the circle $|z-1|=2$.
6) Evaluate by Cauchy's integral formula $\int_{C} \frac{e^{z}}{z-2} d z$ where C is the circle $|z-2|=2$.
7) Evaluate by Cauchy's integral formula $\int_{C} \frac{3 z-1}{\left(z^{2}-2 z-3\right)} d z$ where C is the circle $|z|=4$.
8) Evaluate $\int_{C} \frac{z+3}{z^{2}=1} d z$ where C is the circle $|z|=1 / 2$. Use Cauchy's integral formula.
9) Define apower series.
10) State Taylor's series for $F(z)$ about $z=a$.
11) State Laurent's series for $F(z)$ about $z=a$.
12) Expand in Taylor's series: $\frac{1}{z-2}$ for $|z|<2$.
13) Expand in Laurent's series: $F(z)=\frac{1}{z-2}$ valid for $|z|<2$.
14) Define zero of an analytic function.
15) Define singular point of an analytic function.
16) State the types of singularities.
17) Define a pole of an analytic function.

II Multiple Choice Questions 1 mark each

A power series $\mathrm{R}=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ converges if \qquad
(a) $|z-a|<\mathrm{R}$
(b) $|z-a|>R$
(c) $|z-a|=\mathrm{R}$
(d) None of these
2)
(a) Statement is true
(b) Statement is false
(d) None of these
3)

The region of validity for Taylor's series about $z=0$ of the function e^{z} is
(a) $|z|=0$
(b) $|z|<1$
(c) $|z|<\infty$
(d) $|z|>1$
4) The region of validity of $\frac{1}{1+z}$ for its Taylor's series expansion about $z=0$ is \qquad
(a) $|z|<1$
(b) $|z|>1$
(c) $|z|=1$
(d) None of these
5) The expansion of $\frac{1}{z-2}$ is valid for \qquad
(a) $|z|<1$
(b) $|z|<2$
(c) $|z|>3$
(d) None of these

If $F(z)=\frac{\sin z}{z}$, then $z=0$ is its \qquad
6)
(a) Removable singularity
(b) Isolated singularity
(c) Essential singularity
(d) None of these
7) $Z=1$ is a $\ldots \ldots \ldots \ldots$ of $F(z)=\frac{1}{z(z-1)^{2}}$.
(a) zero
(b) simple pole
(c) double pole
(d) None of these
8) The residue of $F(z)=\frac{1+z}{z^{2}-2 z^{4}}$ at a pole of order 2 is \qquad
(a) 1
(b) -1
(c) 2
(d) None of these
9) The singular points of $F(z)=\frac{1}{z(z-1)^{2}}$ are. \qquad
(a) $0,1,-1$
(b) $0,1,1$
(c) $1,-1$
(d) None of these

III Questions of FOUR marks

1) State and prove Cauchy's integral formula for $F(a)$.
2) State and prove Cauchy's integral formula for $\mathrm{F}^{\prime}(\mathrm{a})$.

Evaluate by Cauchy's integral formula $\int_{C} \frac{z+3}{z^{2}+1} d z$, where C is
3) i) the circle $|z|=2$
ii) the circle $|z|=1 / 2$.
4) Evaluate $\int_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{z^{2}-3 z+2}$ where C is the circle $|z|=3$
5) Use Cauchy's integral formula to evaluate $\int_{C} \frac{z+1}{z^{3}-2 z^{2}} d z$, where C is the boundary of a square with vertices $1+\mathrm{i},-1+\mathrm{i},-1-\mathrm{i}$ and $1-\mathrm{i}$ traversed counter clock wise.
6) State Cauchy's integral formula for $\mathrm{F}^{\mathrm{n}}(\mathrm{a})$ and use it to evaluate $\int_{|z|=2} \frac{e^{2 z}}{(z-1)^{4}} d z$.
7) Evaluate $\int_{|z|=2} \frac{e^{z}}{z} d z$. And hence deduce
i) $\int_{0}^{2 \pi} e^{\cos \theta} \cos (\sin \theta) d \theta=2 \pi$ and
ii) $\int_{0}^{2 \pi} e^{\cos \theta} \sin (\sin \theta) d \theta=0$
8) State Taylor's series for $\mathrm{F}(\mathrm{z})$ about $\mathrm{z}=\mathrm{a}$ and find the Taylor's series expansion of $\mathrm{F}(\mathrm{z})=\sin z$ in powers of z .
9) Evaluate $\int_{|z-1|=2} \frac{\sin \pi z}{(z-1)^{2}}$ dz.Expand in Taylors series
10) Expand in Taylor's series: $\frac{1}{z-2}$ for $|z|<2$.
11) Expand in Taylor's series about $\mathrm{z}=0$, the functions $\mathrm{F}(\mathrm{z})=\frac{1}{1-\mathrm{z}}$ and $\mathrm{g}(\mathrm{z})=\cosh \mathrm{z}$.
12) Expand in Taylor's series about $\mathrm{z}=0$ the following functions: (i) $\sin \mathrm{z}$,(ii) $\sinh \mathrm{z}$, (iii) $\cos \mathrm{z}$.
13) Expand $F(x)=e^{z}$ in Taylor's series expansion about $z=0$. State the region of its validity.
14) Expand $\sin z$ in powers of $\left(z-\frac{\pi}{4}\right)$.
15) Show that

$$
\tan ^{-1} z=z-\frac{z^{3}}{3}+\frac{z^{5}}{5}-\frac{z^{7}}{7}+\ldots \ldots \ldots \ldots ;|z|<1
$$

16) Expand in Taylor's series:
$F(z)=\frac{1}{(z-1)(z-2)}$ for $|z|<1$.
17) Expand $F(z)=\frac{1}{z-2}$ for $|z|<2$ in Taylor's series.
18) Expand $\mathrm{F}(\mathrm{z})=\frac{1}{\mathrm{z}-2}$ in Laurent's series valid for $|z|<2$.
19) Expand $F(z)=\frac{z^{2}-4}{\left(z^{2}+5 z+4\right)}$ in powers of z for
(i) $|z|<1 \quad$ (ii) $1<|z|<4 \quad$ and (iii) $|z|>4$.
20) Expand $\frac{z^{2}-2 z+5}{(z-2)\left(z^{2}+1\right)}$ on the annulus $1<|z|<2$.

Prove that $\frac{1}{4 z-z^{2}}=\sum_{n=0}^{\infty} \frac{z^{n-1}}{4^{n+1}}$ where $0<|z|<4$.

1) Find poles and residues at these poles of $f(z)=\frac{1}{z .(z-1)^{2}}$ also find the sum of these residues.
2) Find the sum of residues at poles of $f(z)=\frac{e^{z}}{z^{2}+a^{2}}$
3) Find the residues of $f(z)=\frac{z^{2}}{(z-1)(z-2)(z-3)}$ at its poles.
4) Find the residues of $\frac{1}{\left(z^{2}+1\right)^{3}}$ at $\mathrm{z}=\mathrm{i}$.
5) Compute residues at double poles of $f(z)=\frac{z^{2}+2 z+3}{(z-i)^{2} \cdot(z+4)}$
6) Use Cauchy's integral formulae to evaluate (Any one)
i) $\int_{C} \frac{1}{\left(z^{2}+1\right)\left(z^{2}+4\right)} d z$, where C is the circle $|Z|=\frac{3}{2}$
ii) $\int_{C} \frac{d z}{z^{3} \cdot(z+4)}$, Where C is the circle $|z|=2$.
iii) $\int_{|z-1|=2} \frac{z e^{z}}{(z-1)^{3}} d z$.
iv) $\int_{C} \frac{d z}{\left(z^{2}+4\right)^{2}}$, Where C is the circle $|z-i|=2$.
7) Show that $\int_{C} \frac{e^{2 z}}{(z+1)^{4}} d z=\frac{8 \Pi i e^{-2}}{3}$, where C is the circle $|z|=3$.
8) Expand $f(z)=\frac{z^{2}-1}{(z+2)(z+3)}$ in the regions:
i) $|z|<2 \quad, \quad$ ii) $2\langle | z \mid\langle 3$, iii $| z| \rangle 3$
9) Expand : $\frac{1}{z^{2}-3 z+2}$ for
i) $0\langle | z \mid\langle 1$, ii) $1\langle | z|\langle 2$ and iii) $| z| \rangle 2$

Unit -4
Cauchy's Residue Theorem and Contour Integration

I) Questions of Two Marks ;

1) State Cauchy's Residue Theorem.
2) find all poles of $f(z)=\frac{3 z^{2}+2}{(z-1)\left(z^{2}+9\right)}$
3) Find the residues of $f(z)$ a $z=0$,

Where, $\mathrm{f}(\mathrm{z})=\frac{e^{z}}{z(z-1)^{2}}$.
4) Define a rational function.
5) Find the residues of $f(z)=\frac{3 z^{2}+2}{(z-1)\left(z^{2}+9\right)}$
6) Find Zeros and poles of $f(z)=\frac{e^{z}}{z(z-1)^{2}}$
7) Find all zeros and poles of $f(z)=\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)}$
8) Classify the poles of $f(z)=\frac{1}{z^{3}(z+4)}$
9) Which of the poles of $f(z)=\frac{1}{(3 z+1)(z+3)}$

Lies inside the circle $|z|=1$.
7) Which of the poles of $f(z)=\frac{1}{z^{2}+1}$ lies in the upper half of the z - plane.
8) Find the poles of $f(z)=\frac{1}{\left(z^{2}+a^{2}\right)\left(z^{2}+b^{2}\right)}$ which lie in the lower half of the complex plane.
9) Find all zeros and poles of $f(z)=\frac{z^{2}}{\left(z^{2}+1\right)\left(z^{2}+4\right)}$ and Classify them.
10) Find all zeros and poles of $\frac{\cos x}{x^{2}+1}$
11) Find all zeros and poles of $\frac{x^{3} \cdot \sin x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$

III) Questions of Six Marks :

1) State and prove Cauchy's Residue Theorem.
2) Evaluate by Cauchy Residue Theorem : $\int_{C} \frac{5 z-2}{z \cdot(z-1)} d z$, where Cis the

Circle $|z|=2$ taken Counter clockwise.
3)Evaluate: $\int_{C} \frac{3 z^{2}+2}{(z-1)\left(z^{2}+9\right)} d z$ by Cauchy's Residue Theorem, where C is
i) the circle $|z-2|=2$,
ii) the circle $|z|=4$
4)Evaluate : $\int_{C} \frac{e^{z}}{z(z-1)^{2}} d z$, where C is the circle $|z|=3$ traversed in positive direction,
5) Evaluate : $\int_{C} \frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)} d z$ by Cauchy's Residue Theorem, where Cis the rectangle formed by the lines $x=+2, y=+3$.
6) Use Cauchy's residue theorem to evaluate $\int_{|z|=2} \frac{d z}{z^{3} \cdot(z+4)}$
7) Use Contour integration to evaluate $\int_{0}^{2 \Pi} \frac{d \theta}{5+3 \cos \theta}$
8) Evaluate : $\int_{0}^{2 \pi} \frac{d \theta}{5+3 \sin \theta}$
9) Evaluate $: \int_{0}^{2 \Pi} \frac{d \theta}{(\cos \theta+2)^{2}}$
10) Use method of contour integration to evaluate $\int_{0}^{\pi} \frac{2 d \theta}{4+\sin ^{2} \theta}$
11) Apply calculus of residues to evaluate $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+1}$
12) Evaluate by contour integration $\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x$
13) Evaluate : $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$; where a$\left.\rangle 0, b\right\rangle 0$
14) By Contour integration, evaluate $\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$
15) Evaluate : $\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+1} d x$ by using Contour integration.
16) Evaluate by contour integration, $\int_{0}^{\infty} \frac{x^{3} \cdot \sin x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x$ where $\left.a>0, b\right\rangle 0$.
17) Evaluate by Cauchy's residues theorem $\int_{|z|=1} \frac{e^{-z}}{z^{2}} d z$
18) Evaluate by contour integration $\int_{0}^{2 \Pi} \frac{d \theta}{5+4 \sin \theta}$
19) Evaluate by Contour integration $\int_{0}^{\Pi} \frac{d \theta}{3+2 \cos \theta}$
20) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{3+2 \cos \theta+\sin \theta}$
21) Evaluate : $\int_{-\Pi}^{\Pi} \frac{\cos }{5+4 \cos \theta} d \theta$
22) Evaluate : $\int_{-\infty}^{\infty} \frac{d x}{x^{4}+13 x^{2}+36}$
23) Evaluate, $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+x+1}$
24) Evaluate : $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}$
25) Evaluate $; \int_{0}^{\infty} \frac{d x}{\left(x^{4}-6 x^{2}+25\right)}$
26) Evaluate : $\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+4} d x$
27) Evaluate : $\int_{-\infty}^{\infty} \frac{x \sin x}{x^{2}+a^{2}} d x$
28) Use Contour integration to prove that $\int_{-\Pi}^{\Pi} \frac{d \theta}{1+\sin ^{2} \theta}=\Pi \sqrt{2}$
29) Show that $\int_{0}^{2 \Pi} \frac{d \theta}{a+b \cos \theta}=\int_{0}^{2 \Pi} \frac{d \theta}{a+b \sin \theta}=\frac{2 \Pi}{\sqrt{a^{2}-b^{2}}}$ where a$\left.\rangle 0, b\right\rangle 0$
30) Prove that $\int_{0}^{\infty} \frac{\cos m x}{x^{2}+a^{2}} d x=\frac{\Pi}{2 a} e^{-m a}, m \geq 0$ and $\left.a\right\rangle 0$
31) Prove that, $\left.\int_{-\infty}^{\infty} \frac{x \cdot \sin a x}{x^{2}+4} d x=\frac{\Pi}{2} e^{-a} \sin a ; a\right\rangle 0$

I) Multipal Choice Questions;

1) The poles of $\mathrm{f}(\mathrm{z})=\frac{e^{z}}{z^{2}+a^{2}}$ are.---
a) $\pm 2 i$, b) 0,1, c) $\pm a i$, d) None of these.
2) The poles of $f(z)=\frac{1}{\left(z^{2}+1\right)^{3}}$ are
a) $\pm 3 i \quad$, b) 2,3 ,c) $\pm i \quad$,d) None of these.
3) The sum of the residues at poles of $f(z)=\frac{e^{z}}{z^{2}+a^{2}}$ is
a) $\left.\frac{1}{a} \sin a, b\right)-\frac{1}{2}$, c) $\frac{3}{2}$, d) None of these.
4) The sum of the residues of $f(z)=\frac{1}{\left(z^{2}+1\right)^{3}}$ is ------
a) 0, b) $1, ~ c)-1, d)$ None of these.
5) The residue of $f(z)=\frac{1+z}{z^{2}-2 z^{4}}$ at $z=0$ is
a) 1, b) 0 , c) -1, d) None of these.
6) The sum of residues at its poles of $f(z)=\frac{1}{z(z-1)^{2}}$ is -- -- -
a) 1, b) 0 , c) -1, d) None of these.
7) The simple poles of $f(z)=\frac{z^{2}-4}{z^{2}+5 z+4}$ are
a) 1,4 b)- 1,4
c) $-1,-4$
d) None of these.
8) For the function $f(z)=\frac{z^{2}+3}{z^{2} \cdot\left(z^{2}+4\right)}$, the pole $z=0$ has order $-\cdots-$
a) 1, b) 2, c) 0, d) None of these.
