North MaharashtraUniversity; Jalgaon.

Question Bank

S.Y.B.Sc. Mathematics (Sem –II)

MTH – 221 . Functions of a Complex Variable.

Authors;

Prof. M.D.Suryawanshi (Co-ordinator) Head, Department of Mathematics, S.S.V.P.S.'s L.K.Dr.P.R.Ghogrey Science College , Dhule .

Prof. U.S.Shirole Department of Mathematics, S.S.V.P.S.'s L.K.Dr.P.R.Ghogrey Science College , Dhule.

> **Prof. A.G.Patil** Kisan Mahavidyalaya, Parola, Dist.- Jalgaon.

Prof. J.G.Patil S.S.V.P.S.'s Arts , Commerce and Science College, Sindkheda Dist. Dhule. Unit – 1 : Functions of a Complex Variable.

I) Questions of Two marks :
1) The lim
$$[3x + i(2x - 4y)]$$
 is -----
 $z \rightarrow 2 + 3i$
2) Does lim $\frac{z}{z}$ exist
 $z \rightarrow 0$

3) What are the points of discontinuties of $f(z) = \frac{2z-3}{z^2-2z+2}$

4) Write the real and imaginary parts of $f(z) = z^3$ where z = x+iy. 5) Find the limit, $\lim [x + i(2x + y)]$

$$z \rightarrow 1-i$$

- 1) Does Continuity at a point imply differentiability there at. Justify by an example.
- 2) Define an analytic function .

4)

3) Define singular points of an analytic function f(z).

Find the singular points for the function
$$f(z) = \frac{z-2}{(z+1)(z^2+1)}$$

- 5) Define a Laplace's Didifferential Equation for $\Phi(x, y)$.
- 6) What is harmonic function ?
- 7) What do you mean by f(z) is differentiable at ?

8) Is the function
$$u = \frac{1}{2} .log(x^2 + y^2)$$
 harmonic?

- 9) When do you say f(z) tends to a limit as z tends to z_0 ?
- 10) State Cauchy- Riemann equations.
- 11) State the necessary condition for the function f(x) to be abalytic.

12) Every differential function is continuous . True or False.

II) Multiple Choice Questions :

1) If
$$\lim [x+i(2x+y)] = p+iq$$
, then $(p,q) = \dots + z$
 $z \to 1-i$
(i) (1,1) (ii) (-1,1) (iii) (1,-1) (iv) (-1,-1)

2) The function $f(z) = \frac{xy}{x^2 + y^2}$ when $z \neq 0$ and f(0) = 0 is

(i) Continuous at z = 0, (ii) Discontinuous at z = 0

(iii) Not predictable, (iv) Constant

3)A Continous function is ifferential :

(i) True ,(ii) False.

- (iii)True & False, (v) True or False
- 1) A function $\Phi(x, y)$ satisfying Laplace equation is called
- (i) Analytic (ii) Holomorphic
- (iii) Harmonic, (iv)Non-hormonic
- 2) Afunction $f(z) = e^{z}$ is
- (i) Analytic everywhere , (ii) Analytic nowhere
- (iii) only differentiable, (iv) None

- 3) If f(z) = u iv is analytic in the z-plane , then the C-R equations satisfied by it's real and imaginary parts are ,
- (i) $u_x = u_y$; $u_y = -v_x$ (ii) $u_x = -v_y, u_y = v_x$
- 7) An analytic function with constant modulus is
- (a) Constant , (b) not constant , (c) analytic , (d) None of these.
- 8) A Milne Thomson method is used to construct
- a) analytic function, b) Continuous function
- c) differentiable function, d) None of these.

III) Questions for Four marks ;

1) Define he continuity of f(z) at $z = z_0$ and examine for continuity at z=0 the function

$$f(z) = \frac{x^4 y(iy - x)}{(x^8 + y^2)z}; z \neq 0$$

1) Define limit of a function f(Z).

Evaluate;
$$\lim \frac{z^3 + 8}{z^4 + 4z^2 + 16}$$
$$z \rightarrow \frac{2\Pi i}{3}$$

- 2) Prove that a differentiable function is always continuous. Is the converse true ? Justify by an example.
- 3) Use the definition of limit to prove that, $\lim [x + i(2x + y)] = 1 + i$

$$z \rightarrow 1 - i$$

5) Show that if $\lim f(z)$ exists, it is unique

6) Prove that
$$\lim_{z \to 0} \frac{\overline{z}}{z}$$
 does not exist
 $z \to 0$
4) Prove that $\lim_{z \to 0} \frac{x^3 y(y - ix)}{(x^6 + y^2) z}$ does not exist, where $z \neq 0$
 $z \to 0$
5) Evaluate : $\lim_{z \to i} \frac{z^5 - i}{z + i}$
 $z \to i$
6) 9) Evaluate : $\lim_{z \to 1+i} \frac{z^4 + 4}{z - 1 - i}$

10) Examine for continuity the function, $f(z) = \frac{z^4 + 4}{z - 2i}$ at $z \neq 2i$

= 3+4i; z=2i, at z = 2i

11) If $f(z) = \frac{3z^4 - 2z^3 + 8z^2 - 2z + 5}{z - i}$ when $z \neq i$ and f(i) = 2+3i, examine f(z) for continuity At z = i.

- 12)Show that the function $f(z) = \overline{z}$ is continuous everywhere but not differentiable.
- 13) Define an analytic function. Give two examples of an analytic function.

14) Show that $f(z) = |z|^2$ is not analytic at any point in the z-plane.

15) State and prove the necessary condition for the f(z) to be analytic . Are these conditions sufficient ?

16) State and prove the sufficient conditions for the function f(z) to be analytic.

17) Prove that a necessary condition for a complex function w = f(z) = u(x,y)+iv(x,y) to be analytic at a point z = x+iy of its domain D is that at (x,y) the first order partial derivatives of u and v with respect to x and y exist and satisfy the Cauchy – Riemann equations : $u_x = v_y$ and $u_y = -v_x$.

- Prove that for the function F(z) = U(x,y) + V(x, y), if the four partial derivatives U_x , U_y , V_x and V_y exist and are continuous at a point z = x + iy in the domain D and that they satisfy Cauchy-Riemann equations: $U_x = V_y$; $U_y = -V_x$ at (x, y), then F(z) is analytic at the point z = x + iy.
- 19) Show that the function defined by $F(z) = \sqrt{IxyI}$, when $z \neq 0$ and F(0) = 0, is not analytic at z = 0 even though the C-R equations are satisfied at z = 0. Define $F(z) = z^5 I z I^{-4}$; if $z \neq 0$

20) Define
$$F(z) = 2 + 2 + 2 + 1 + 1 + 1 = 0; \text{ if } z = 0.$$

Show that F(z) is not analytic at the origin even though it satisfies C-R equations at the origin.

21) Show that the function
$$F(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}$$
 when $z \neq 0$ and $F(0) = 0$ is continuous at

z = 0 and C-R equations are satisfied at the origin.

- ²²⁾ If F(z) and $\overline{F(z)}$ are analytic functions of z, show that F(z) is a constant function.
- 23) If F(z) is an analytic function with constant modulus, then prove that F(z) is a constant function.

24) Show that
$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \bar{z}}$$
.

25) Show that
$$F(z) = e^{\frac{z}{z}}$$
 is not analytic for any z.

26) Show that
$$\lim_{z \to 0} \frac{x y}{x^4 + y^2}$$
 does not exist.

27) Show that if W = F(z) = 3x - 2iy, then
$$\frac{dW}{dz}$$
 does not exist.

28) Show that the function
$$F(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}$$
 when $z \neq 0$ and $F(0) = 0$ is continuous and

that C-R equations are satisfied at the origin but $F^{1}(0)$ does not exist.

29) Show that the function defined by
$$F(z) = \frac{xy^2(x+iy)}{x^2+y^4}$$
; $z \neq 0$
= 0; $z = 0$.

satisfies C.R. equations at z = 0 but not analytic there at. If F(z) is an analytic function of z then show that

30) (i)
$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} |F(z)|^2 = 4 |F'(z)|^2$$

(ii)
$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} [RF(z)]^2 = 2 |F'(z)|^2$$

UNIT : 2 Laplace Equation and Complex Integration

I Questions of TWO marks

- 1) Define Laplace Differential equation.
- 2) Define harmonic and conjugate harmonic functions.
- 3) True or False:

i) If F(z) is an analytic function of z, then F(z) depends on \overline{z} .

ii) If F(z) and $\overline{F(z)}$ are analytic functions of z, then F(z) is a constant.

- iii) An analytic function with constant modulus is constant.
- 4) Is $u = x^2 y^2$ a harmonic function? Justify.
- 5) Show that $v(x, y) = x^2 y^2 + x$ is harmonic function.
- 6) Show that $u(x, y) = e^{-y} \sin x$ is a harmonic function.
- 7) Prove or disprove: $u = y^3 3x^2y$ is a harmonic function.
- 8) Show that $v = x^3 3xy^2$ satisfies Laplace's differential equation.
- 9) State Cauchy-Goursat Theorem.
- 10) Define simple closed curve.
- 11) Define the term Simply connected region.
- 12) Define Jordan Curve.
- 13) State Jordan Curve theorem.

14) Evaluate
$$\int_{C} \frac{1}{z-a} dz$$
 where C is circle $|z-a| = 2$.
15) Evaluate $\int_{0}^{3+i} z^2 dz$ along the line x = 3y.

II Multiple Choice questions1 mark each

1)	The harmonic conjugate of $e^x \cos y$ is (a) $e^x \cos y + c$ (b) $e^x \sin y + c$ (c) $e^x + c$ (d) None of these
2)	The harmonic conjugate of $e^{-y}sinx$ is (a) $e^{-y}cosx + c$ (b) $e^{-y}sinx + c$ (c) $e^{-x}cosy$ (d) None of these
3)	The value of the integral $\int_C (12z^2 - 4/z) dz$ where C is the curve $y = x^3 - 3x^2 + 4x - 1$ joining
	points (1,1) and (2,3) is given by (a) -156 + 58i (b) -156 - 58i (c) 50 (d) None of these
4)	The value of $\int_{0}^{1} z e^{2z} dz$ will be
	(a) e (b) $1/4$ (e ² +1) (c) $1/4$ (e ² -1) (d) None of these
5)	The value of the integral of $1/z$ along a semicircular arc from -1 to 1 in the clockwise direction will be
5)	(a) zero (b) $-\pi i$ (c) πi (d) None of these

Questions_of THREE marks

- 1) If F(z) = u + iv is an analytic function then show that u and v both satisfy Laplace's differential equation.
- ²⁾ If F(z) = u(x,y) + iv(x, y) is an analytic function, show that F(z) is independent of \overline{z} .
- 3) Explain the Milne-Thomson's method to construct an analytic function F(z) = u + iv when the real part u is given.
- 4) Explain the Milne-Thomson's method to construct an analytic function F(z) = u + iv when the imaginary part v is given.
- 5) Find an analytic function F(z) = u + iv and express it in terms of z if $u = x^3 3xy^2 + 3x^2 3y^2 + 1$.
- 6) Find an analytic function F(z) = u + iv if, $v = e^{-y}sinx$ and F(0) = 1.
- 7) Find an analytic function F(z) = u + iv where the real part is $e^{-2x} \sin(x^2 y^2)$.
- 8) If F(z) = u + iv is analytic function of z = x + iy and u v = $\frac{\cos x + \sin x e^{-y}}{2\cos x e^{y} e^{-y}}$, find F(z) if $f(\pi/2) = 0$.
- 9) Show that the function $F(z) = e^{-y} \sin x$ is harmonic and find its harmonic conjugate.
- 10) Use Milne-Thomson's method to construct an analytic function F(z) = u + iv where $u = e^{x} (x \cos y y \sin y)$.
- 11) Use Milne-Thomson's method to construct an analytic function F(z) = u + iv where $v = \tan^{-1} (y / x)$.
- 12) Determine the analytic function F(z) = u + iv if $u = x^2 y^2$ and F(0) = 1.
- 13) Find by Milne-Thomson's method the an analytic function F(z) = u + iv where $v = e^{x} (x \sin y + y \cos y)$.
- 14) If $u = x^2 y^2$ and $v = \frac{-y}{x^2 + y^2}$, then show that u and v satisfy Laplace equation but u + iv is
 - not an analytic function of z.
- 15) Show that if the harmonic functions u and v satisfy C.R. equations, then u + iv is an analytic function.
- 16) If F(z) is analytic in a simply connected region R then $\int_{a}^{b} F(z) dz$ is independent of the path of the integration in R joing the points a and b.
- 17) Evaluate $\int_{C} z \, dz$ where C is the arc of the parabola $y^2 = 4ax$ (a >0) in the first quadrant from

the vertex to the end point of its latus rectum.

- 18) Evaluate $\int_C \frac{1}{z-a} dz$ where C is circle |z-a|=2.
- 19) Evaluate $\int_{C} (y x 3x^2 i) dz$ where C is the straight line joining 0 to 1 + i.
- 20) Evaluate $\int_{C} (y x 3x^2 i) dz$ where C is the straight line joining 0 to i first and then i to 1 + i.
- 21) Show that the integral of 1 / z along a semicircular are from -1 to 1 has the value πi or $-\pi i$ according as the arc lies below or above the real axis.

Show that if F(z) is an analytic function in a region bounded by two simple closed curves C_1

- 22) and C₂ and also on C₁ and C₂, then $\int_{C_1} F(z) dz = \int_{C_2} F(z) dz$.
- 23) State Cauchy's theorem for integrals and verify it for F(z) = z + 1 rounder the contour |z| = 1.
- 24) If C is a circle |z-a| = r, prove that $\int_{C} (z-a)^n dz = 0$; n being an integer other than -1.
- 25) Evaluate $\int_{C} \frac{dz}{z}$ where C is the circle with centre at origin and radius a.
- 26) Verify Cauchy-Goursat Theorem for F(z) = z + 2 taken round the unit circle |z| = 1.
- 27) Verify Cauchy's integral Theorem for $F(z) = z^2$ round the circle |z| = 1.
- 28) Verify Cauchy's Theorem for F(z) = z around a closed curve C. where c is the rectangle bounded by the lines : x = 0, x = 1, y = 0, y = 1,

Use Cauchy-Goursat Theorem to obtain the value of $\int_{C} e^{2} dz$, where C is the circle |z| = 1 and 29) deduce that (i) $\int_{0}^{2\pi} e^{\cos\theta} \sin(\theta + \sin\theta) d\theta = 0$ (ii) $\int_{0}^{2\pi} e^{\cos\theta} \cos(\theta + \sin\theta) d\theta = 0$.

- 1) State Cauchy's integral formula for F(a).
- 2) State Cauchy's integral formula for F' (a).

3) Evaluate by Cauchy's integral formula
$$\int_C \frac{z+2}{z} dz$$
 where C is the circle $|z| = 1$.

- 4) Evaluate $\int_{|z|=2} \frac{e^{2z}}{(z-1)^3} dz.$
- 5) Evaluate $\int_{C} \frac{ze^{z}}{(z-1)^{3}} dz$ where C is the circle |z-1|=2.

6) Evaluate by Cauchy's integral formula $\int_{C} \frac{e^{z}}{z-2} dz$ where C is the circle |z-2|=2. 7) Each table C and L integral formula $\int_{C} \frac{3z-1}{z-2} dz$ where C is the circle |z-2|=2.

7) Evaluate by Cauchy's integral formula $\int_C \frac{3z-1}{(z^2-2z-3)} dz$ where C is the circle |z|=4.

- 8) Evaluate $\int_C \frac{z+3}{z^2=1} dz$ where C is the circle |z|=1/2. Use Cauchy's integral formula.
- 9) Define apower series.
- 10) State Taylor's series for F(z) about z = a.
- 11) State Laurent's series for F(z) about z = a.

12) Expand in Taylor's series:
$$\frac{1}{z-2}$$
 for $|z| < 2$.

13) Expand in Laurent's series: $F(z) = \frac{1}{z-2}$ valid for |z| < 2.

- 14) Define zero of an analytic function.
- 15) Define singular point of an analytic function.
- 16) State the types of singularities.
- 17) Define a pole of an analytic function.

II Multiple Choice Questions 1 mark each

A power series R = $\sum_{n=0}^{\infty} a_n (z-a)^n$ converges if 1) (a) |z-a| < R (b) |z-a| > R (c) |z-a| = R (d) None of these If F(z) is an analytic function at z = a, then it has a power series expansion about z = a. 2) (b) Statement is false (a) Statement is true (d) None of these The region of validity for Taylor's series about z = 0 of the function e^z is 3) (b) |z| < 1 (c) $|z| < \infty$ (d) |z| > 1(a) |z| = 0The region of validity of $\frac{1}{1+z}$ for its Taylor's series expansion about z = 0 is 4) (a) |z| < 1 (b) |z| > 1 (c) |z| = 1 (d) None of these The expansion of $\frac{1}{z-2}$ is valid for 5) (b) |z| < 2 (c) |z| > 3 (d) None of these (a) |z| < 1If $F(z) = \frac{\sin z}{z}$, then z = 0 is its 6) (b) Isolated singularity (a) Removable singularity (c) Essential singularity (d) None of these 7) Z = 1 is a of F(z) = $\frac{1}{z(z-1)^2}$. (c) double pole (d) None of these (a) zero (b) simple pole The residue of F(z) = $\frac{1+z}{z^2-2z^4}$ at a pole of order 2 is 8) (a) 1 (b) - 1 (c) 2 (d) None of these The singular points of F(z) = $\frac{1}{z(z-1)^2}$ are..... 9) (c) 1, -1 (d) None of these (a) 0, 1, -1 (b)0,1,1 **III Questions of FOUR marks** State and prove Cauchy's integral formula for F(a). 1) State and prove Cauchy's integral formula for F' (a). 2) Evaluate by Cauchy's integral formula $\int_{C} \frac{z+3}{z^2+1} dz$, where C is 3) i) the circle |z| = 2ii) the circle $|z| = \frac{1}{2}$.

4) Evaluate
$$\int_{C} \frac{\sin \pi z^2 + \cos \pi z^2}{z^2 - 3z + 2}$$
 where C is the circle $|z| = 3$

5) Use Cauchy's integral formula to evaluate $\int_C \frac{z+1}{z^3-2z^2} dz$, where C is the boundary of a square with vertices 1 + i, -1 + i, -1 - i and 1 - i traversed counter clock wise.

- 6) State Cauchy's integral formula for $F^n(a)$ and use it to evaluate $\int_{|z|=2}^{1} \frac{e^{2z}}{(z-1)^4} dz$.
- 7) Evaluate $\int_{|z|=2} \frac{e^{z}}{z} dz$. And hence deduce i) $\int_{0}^{2\pi} e^{\cos\theta} \cos(\sin\theta) d\theta = 2\pi$ and ii) $\int_{0}^{2\pi} e^{\cos\theta} \sin(\sin\theta) d\theta = 0$
- 8) State Taylor's series for F(z) about z = a and find the Taylor's series expansion of $F(z) = \sin z$ in powers of z.
- 9) Evaluate $\int_{|z-1|=2} \frac{\sin \pi z}{(z-1)^2}$ dz.Expand in Taylors series
- 10) Expand in Taylor's series: $\frac{1}{z-2}$ for |z| < 2.
- 11) Expand in Taylor's series about z = 0, the functions $F(z) = \frac{1}{1-z}$ and $g(z) = \cosh z$.
- 1 2) Expand in Taylor's series about z = 0 the following functions: (i) $\sin z$, (ii) $\sinh z$, (iii) $\cos z$.
- 13) Expand $F(x) = e^{z}$ in Taylor's series expansion about z = 0. State the region of its validity.
- 14) Expand sinz in powers of $(z \frac{\pi}{4})$.
- 15) Show that

$$\tan^{-1} z = z - \frac{z^3}{3} + \frac{z^5}{5} - \frac{z^7}{7} + \dots; |z| < 1.$$

16) Expand in Taylor's series: $F(z) = \frac{1}{(z-1)(z-2)} \text{ for } |z| < 1.$

17) Expand
$$F(z) = \frac{1}{z-2}$$
 for $|z| < 2$ in Taylor's series.

18) Expand F(z) =
$$\frac{1}{z-2}$$
 in Laurent's series valid for $|z| < 2$.

19) Expand F(z) = $\frac{z^2 - 4}{(z^2 + 5z + 4)}$ in powers of z for (i) |z| < 1 (ii) 1 < |z| < 4 and (iii) |z| > 4. 20) $z^2 - 2z + 5$

Expand
$$\frac{z^2 - 2z + 5}{(z - 2)(z^2 + 1)}$$
 on the annulus $1 < |z| < 2$.

21) Prove that
$$\frac{1}{4z-z^2} = \sum_{n=0}^{\infty} \frac{z^{n-1}}{4^{n+1}}$$
 where $0 < |z| < 4$.

1) Find poles and residues at these poles of $f(z) = \frac{1}{z \cdot (z-1)^2}$ also find the sum of these residues.

2) Find the sum of residues at poles of
$$f(z) = \frac{e^z}{z^2 + a^2}$$

3) Find the residues of
$$f(z) = \frac{z^2}{(z-1)(z-2)(z-3)}$$
 at its poles.

4) Find the residues of $\frac{1}{(z^2 + 1)^3}$ at z = i.

5) Compute residues at double poles of $f(z) = \frac{z^2 + 2z + 3}{(z-i)^2 \cdot (z+4)}$

6) Use Cauchy's integral formulae to evaluate (Any one)

i)
$$\int_{C} \frac{1}{(z^2 + 1)(z^2 + 4)} dz$$
, where C is the circle $|Z| = \frac{3}{2}$

ii)
$$\int_{C} \frac{dz}{z^3 \cdot (z+4)}$$
, Where C is the circle $|z| = 2$.

iii)
$$\int_{|z-1|=2} \frac{ze^z}{(z-1)^3} dz$$

.

iv)
$$\int_C \frac{dz}{(z^2+4)^2}$$
, Where C is the circle $|z-i|=2$.

- 7) Show that $\int_C \frac{e^{2z}}{(z+1)^4} dz = \frac{8\Pi i e^{-2}}{3}$, where C is the circle |z| = 3.
- 8) Expand $f(z) = \frac{z^2 1}{(z+2)(z+3)}$ in the regions:

i)
$$|z|\langle 2$$
, ii) $2\langle |z|\langle 3$, iii) $|z|\rangle 3$

30) Expand :
$$\frac{1}{z^2 - 3z + 2}$$
 for

i)
$$0\langle |z|\langle 1, ii\rangle 1\langle |z|\langle 2 \text{ and } iii\rangle |z|\rangle 2$$

Unit -4

Cauchy's Residue Theorem and Contour Integration

I) Questions of Two Marks ;

1) State Cauchy's Residue Theorem.

2) find all poles of
$$f(z) = \frac{3z^2 + 2}{(z-1)(z^2 + 9)}$$

3) Find the residues of f(z) a z = 0,

Where,
$$f(z) = \frac{e^{z}}{z(z-1)^{2}}$$
.

4) Define a rational function.

5) Find the residues of
$$f(z) = . \frac{3z^2 + 2}{(z-1)(z^2 + 9)}$$

6) Find Zeros and poles of
$$f(z) = \frac{e^z}{z(z-1)^2}$$

7) Find all zeros and poles of
$$f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$$

8) Classify the poles of $f(z) = \frac{1}{z^3(z+4)}$

9) Which of the poles of $f(z) = \frac{1}{(3z+1)(z+3)}$

Lies inside the circle |z| = 1.

- 7) Which of the poles of $f(z) = \frac{1}{z^2 + 1}$ lies in the upper half of the z- plane.
- 8) Find the poles of $f(z) = \frac{1}{(z^2 + a^2)(z^2 + b^2)}$ which lie in the lower half of the complex plane.
- 9) Find all zeros and poles of $f(z) = \frac{z^2}{(z^2+1)(z^2+4)}$ and Classify them.

10) Find all zeros and poles of $\frac{\cos x}{x^2 + 1}$

11) Find all zeros and poles of $\frac{x^3 . \sin x}{(x^2 + a^2)(x^2 + b^2)}$

III) Questions of Six Marks :

1) State and prove Cauchy's Residue Theorem.

2) Evaluate by Cauchy Residue Theorem :
$$\int_C \frac{5z-2}{z \cdot (z-1)} dz$$
, where C is the

Circle |z| = 2 taken Counter clockwise.

3)Evaluate:
$$\int_{c} \frac{3z^{2}+2}{(z-1)(z^{2}+9)} dz$$
 by Cauchy's Residue Theorem , where C is
i) the circle $|z-2| = 2$,
ii) the circle $|z| = 4$
4)Evaluate:
$$\int_{c} \frac{e^{z}}{z(z-1)^{2}} dz$$
, where C is the circle $|z| = 3$ traversed in positive direction,
5) Evaluate :
$$\int_{c} \frac{z^{2}-2z}{(z+1)^{2}(z^{2}+4)} dz$$
 by Cauchy's Residue Theorem , where C is the
rectangle formed by the lines $x=\pm 2$, $y=\pm 3$.
6) Use Cauchy's residue theorem to evaluate
$$\int_{|z|=2}^{2\pi} \frac{dz}{z^{3}.(z+4)}$$

7) Use Contour integration to evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{5+3\cos\theta}$$

8) Evaluate :
$$\int_{0}^{2\pi} \frac{d\theta}{5+3\sin\theta}$$

9) Evaluate :
$$\int_{0}^{2\pi} \frac{d\theta}{(\cos\theta+2)^{2}}$$

10) Use method of contour integration to evaluate
$$\int_{-x}^{\pi} \frac{dx}{x^{2}+1}$$

12) Evaluate by contour integration
$$\int_{-x}^{\pi} \frac{x^{2}-x+2}{x^{4}+10x^{2}+9} dx$$

13) Evaluate :
$$\int_{0}^{\pi} \frac{dx}{(x^{2}+a^{2})(x^{2}+b^{2})}$$
; where a)0,b)0
14) By Contour integration , evaluate
$$\int_{0}^{\pi} \frac{x^{2}}{(x^{2}+1)(x^{2}+4)} dx$$

15) Evaluate :
$$\int_{-x}^{\pi} \frac{\cos x}{x^{2}+1} dx$$
 by using Contour integration.

16) Evaluate by contour integration, $\int_{0}^{\infty} \frac{x^3 \sin x}{(x^2 + a^2)(x^2 + b^2)} dx$ where a $\langle 0, b \rangle 0$. 17) Evaluate by Cauchy's residues theorem $\int_{|z|=1}^{z} \frac{e^{-z}}{z^2} dz$ 18) Evaluate by contour integration $\int_{0}^{2\pi} \frac{d\theta}{5+4\sin\theta}$ 19) Evaluate by Contour integration $\int_{0}^{11} \frac{d\theta}{3 + 2\cos\theta}$ 20) Evaluate $\int_{0}^{2\pi} \frac{d\theta}{3 + 2\cos\theta + \sin\theta}$ 21) Evaluate : $\int_{\Pi}^{\Pi} \frac{\cos}{5 + 4\cos\theta} d\theta$ 22) Evaluate : $\int_{-\infty}^{\infty} \frac{dx}{x^4 + 13x^2 + 36}$ 23) Evaluate, $\int_{-\infty}^{\infty} \frac{dx}{x^2 + x + 1}$ 24) Evaluate : $\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)^2}$ 25) Evaluate ; $\int_{-\infty}^{\infty} \frac{dx}{(x^4 - 6x^2 + 25)}$ 26) Evaluate : $\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 4} dx$ 27) Evaluate : $\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} dx$ 28) Use Contour integration to prove that $\int_{-\pi}^{11} \frac{d\theta}{1+\sin^2\theta} = \Pi\sqrt{2}$ 29) Show that $\int_{a}^{2\Pi} \frac{d\theta}{a+b\cos\theta} = \int_{a}^{2\Pi} \frac{d\theta}{a+b\sin\theta} = \frac{2\Pi}{\sqrt{a^2-b^2}}$ where a > 0, b > 0

30) Prove that $\int_{0}^{\infty} \frac{\cos mx}{x^{2} + a^{2}} dx = \frac{\Pi}{2a} e^{-ma}, m \ge 0 \text{ and } a > 0$

31) Prove that,
$$\int_{-\infty}^{\infty} \frac{x \sin ax}{x^2 + 4} dx = \frac{\Pi}{2} e^{-a} \sin a; a > 0$$

I) Multipal Choice Questions;

- 1) The poles of $f(z) = \frac{e^z}{z^2 + a^2}$ are .----
- a) $\pm 2i$, b) 0,1, c) $\pm ai$, d) None of these.
- 2) The poles of $f(z) = \frac{1}{(z^2 + 1)^3}$ are
- a) $\pm 3i$, b) 2,3,c) $\pm i$,d) None of these.

3) The sum of the residues at poles of $f(z) = \frac{e^z}{z^2 + a^2}$ is

a) $\frac{1}{a}sina$, b) $-\frac{1}{2}$, c) $\frac{3}{2}$, d) None of these.

4) The sum of the residues of $f(z) = \frac{1}{(z^2 + 1)^3}$ is -----

a) 0, b)1, c) -1,d) None of these.

5) The residue of
$$f(z) = \frac{1+z}{z^2 - 2z^4}$$
 at $z = 0$ is

a) (1, b) (0, c) - 1, d None of these.

6) The sum of residues at its poles of $f(z) = \frac{1}{z(z-1)^2}$ is -----

a) 1 , b) 0 , c) -1 , d) None of these.

7) The simple poles of $f(z) = \frac{z^2 - 4}{z^2 + 5z + 4}$ are

a) 1,4 b)-1,4 c) -1,-4 d) None of these.

8) For the function $f(z) = \frac{z^2 + 3}{z^2 \cdot (z^2 + 4)}$, the pole z=0 has order ----a) 1, b)2, c)0, d) None of these.