NORTH MAHARASHTRA UNIVERSITY,

JALGAON

Question Bank

New syllabus w.e.f. June 2008
Class : S.Y. B. Sc.

Subject : Mathematics

Paper : MTH - 212 (A) Abstract Algebra
Prepared By :

1) Dr. J. N. Chaudhari

Haed, Department of Mathematics
M. J. College, Jalgaon.
2) Prof Mrs. R. N. Mahajan

Haed, Department of Mathematics

Dr. A.G.D.B.M.M., Jalgaon.

Question Bank

Paper : MTH - 212 (A)
 Abstract Algebra

Unit - I

1 : Questions of 2 marks

1)

Define product of two permutations on n symbols. Explain it by an example on 5 symbols.
2)
3)

Define inverse of a permutation. If $\sigma=$

$$
\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 1 & 5 & 4 & 2 & 7 & 6
\end{array}\right) \in \mathrm{S}_{7} \quad \text { then find } \sigma^{-1}
$$

Let $\sigma=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 5 & 2 & 6 & 3\end{array}\right)$ and $\lambda=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 2 & 5 & 1 & 4\end{array}\right)$
$\in \mathrm{S}_{6}$. Find (i) $\lambda \sigma$ (ii) σ^{-1}.
4)

Let $\mathrm{f}=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 5 & 2 & 6 & 3\end{array}\right)$ and $\mathrm{g}=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 2 & 6 & 5\end{array}\right) \in$
S_{6}. Find (i) $f g$ (ii) g^{-1}.
5)

Let $\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 1 & 4 & 2\end{array}\right), \beta=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3\end{array}\right) \in \mathrm{S}_{5}$.
Find $\alpha^{-1} \beta^{-1}$.
6)

Define i) a permutation ii) a symmetric group.
7) Define i) a cycle ii) a transposition.
8) Let $\mathrm{C}_{1}=\left(\begin{array}{ll}2 & 3\end{array}\right.$ 7) , $\mathrm{C}_{2}=\left(\begin{array}{llll}1 & 4 & 3 & 2\end{array}\right)$ be cycles in S_{8}. Find $\mathrm{C}_{1} \mathrm{C}_{2}$ and express it as product of transpositions.
9) For any transposition $(a b) \in S_{n}$, prove that $(a b)=(a b)^{-1}$.
10) Prove that every cycle can be written as product of transpositions.
11)

Define disjoint cycles. Are (147), (432) disjoint cycles in S_{8} ?

Write down all permutations on 3 symbols $\{1,2,3\}$.
Define an even permutation. Is $\mathrm{f}=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 5 & 4 & 6\end{array}\right)$ an even permutation?
Define an odd permutation. Is $\mathrm{f}=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 2 & 7 & 5 & 4 & 6\end{array}\right)$ an odd permutation? Prove that A_{n} is a subgroup of S_{n}.
Let f be a fixed odd permutation in $\mathrm{S}_{\mathrm{n}}(\mathrm{n}>1)$. Show that every odd permutation in S_{n} is a product of f and some permutation in S_{n}.

2 : Multiple choice Questions of 1 marks

Choose the correct option from the given options.

1) Let A, B be non empty sets and $f: A \rightarrow B$ be a permutation.

Then -- -
a) f is bijective and $\mathrm{A}=\mathrm{B}$
b) f is one one and $\mathrm{A} \neq \mathrm{B}$
c) f is bijective and $A \neq B$
d) f is onto and $\mathrm{A} \neq \mathrm{B}$
2) Let A be a non empty set and $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ be a permutation.

Then -- -
a) f is one one but not onto
b) f is one one and onto
c) f is onto but not one one
d) f is neither one one nor onto
3) Cycles (2 47) and (4 31) are -- -
a) inverses of each other
b) disjoint
c) not disjoint
d) transpositions
4) Every permutation in A_{n} can be written as product of --
a) p transpositions, where p is an odd prime
b) odd number of transpositions
c) even number of transpositions
d) none of these
5) The number of elements in $S_{n}=--$
a) n
b) n !
c) $n!/ 2$
d) 2^{n}
6) The number of elements in $\mathrm{A}_{6}=--$
a) 6
b) 720
c) 360
d) 2^{6}
7) If $\alpha=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 2 & 4 & 5 & 7 & 6\end{array}\right) \in \mathrm{S}_{7} \quad$ then $\alpha^{-1}=\ldots$
a) (12367)
b) $(12)(367)$
c) $(123)(67)$
d) (45)
8) $\mu=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 6 & 5 & 2\end{array}\right) \in \mathrm{S}_{6}$ is a product of - transpositions.
a) 1
b) 2
c) 3
d) 4

3 : Questions of 4 marks

1) Let $g \in S_{A}, A=\left\{a_{1}, a_{2},---, a_{n}\right\}$. Prove that
i) $\quad \mathrm{g}^{-1}$ exists in S_{A}.
ii) $\quad \mathrm{g} \mathrm{g}^{-1}=\mathrm{I}=\mathrm{g}^{-1} \mathrm{~g}$, where I is the identity permutation in S_{A}.
2) Let A be a non empty set with n elements. Prove that S_{A} is a group with respect to multiplication of permutations.
3) Let S_{n} be a group of permutations on n symbols $\left\{a_{1}, a_{2},--, a_{n}\right\}$. prove that $\mathrm{o}\left(\mathrm{S}_{\mathrm{n}}\right)=\mathrm{n}$!. Also prove that S_{n} is not abelian if $\mathrm{n} \geq 3$.
4) Define a cycle. Let $\alpha=\left(\mathrm{a}_{1}, \mathrm{a}_{2},---, \mathrm{a}_{\mathrm{r}-1}, \mathrm{a}_{\mathrm{r}}\right)$ be a cycle of length r in S_{n}. Prove that $\alpha^{-1}=\left(\mathrm{a}_{\mathrm{r}}, \mathrm{a}_{\mathrm{r}-1},---, a_{2}, a_{1}\right)$.
5) Prove that every permutation in S_{n} can be written as a product of transpositions.
6) Prove that every permutation in S_{n} can be written as a product of disjoint cycles.
7) Define i) a cycle ii) a transposition. Prove that every cycle can be written as a product of transpositions.
8) Let f, g be disjoint cycles in S_{A}. Prove that $f g=g f$.
9) Define an even permutation. Express $\sigma=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1\end{array}\right)$ as a product of disjoint cycles. Determine whether σ is odd or even.
10) Express $\mu=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 7 & 9 & 8 & 1 & 6\end{array}\right)$ as a product of transpositions. State whether $\mu^{-1} \in \mathrm{~A}_{9}$.
11) Let $\alpha=\left(\begin{array}{llll}1 & 3 & 2 & 5\end{array}\right)\left(\begin{array}{ll}1 & 4\end{array}\right)\left(\begin{array}{ll}2 & 5\end{array}\right) \in \mathrm{S}_{5}$ Find α^{-1} and express it as a product of disjoint cycles. State whether $\alpha^{-1} \in \mathrm{~A}_{5}$.
12) Let $\lambda=\left(\begin{array}{lll}1 & 3 & 5 \\ \hline\end{array}\right)(3267) \in S_{8}$ Find λ^{-1} and express it as a product of disjoint cycles. State whether $\lambda^{-1} \in \mathrm{~A}_{8}$.
13)Prove that there are exactly $n!/ 2$ even permutations and exactly $n!/ 2$ odd permutations in $\mathrm{S}_{\mathrm{n}}(\mathrm{n}>1)$.
14)Prove that for every subgroup H of S_{n} either all permutations in H are even or exactly half of them are even.
13) If f, g are even permutations in S_{n} then prove that $\mathrm{f} g$ and g^{-1} are even permutations in S_{n}.
14) Define an odd permutation. Let H be a subgroup of $S_{n},(n>1)$, and H contains an odd permutation. Show that $\mathrm{o}(\mathrm{H})$ is even.
15) Let $\alpha=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 6 & 4 & 9 & 7 & 8 & 3 & 2 & 1\end{array}\right) \in S_{9}$. Express α and α^{-1} as a product of disjoint cycles. State whether $\alpha^{-1} \in \mathrm{~A}_{9}$.
16) Let $\beta=\left(\begin{array}{llll}2 & 5 & 3 & 7\end{array}\right)\left(\begin{array}{lll}4 & 8 & 2\end{array}\right) \in \mathrm{S}_{8}$. Express β as a product of disjoint cycles. State whether $\beta^{-1} \in A_{8}$.
17) Let G be a finite group and $a \in G$ be a fixed element. Show that f_{a} : $G \rightarrow G$ defined by $f_{a}(x)=a x$, for all $x \in G$, is a permutation on G.
18) Let G be a finite group and $a \in G$ be a fixed element. Show that f_{a} : $G \rightarrow G$ defined by $f_{a}(x)=a x^{-1}$, for all $x \in G$, is a permutation on G.
19) Let G be a finite group and $a \in G$ be a fixed element. Show that f_{a} : $G \rightarrow G$ defined by $f_{a}(x)=a^{-1} x$, for all $x \in G$, is a permutation on G.
20) Let G be a finite group and $a \in G$ be a fixed element. Show that f_{a} : $\mathrm{G} \rightarrow \mathrm{G}$ defined by $\mathrm{f}_{\mathrm{a}}(\mathrm{x})=$ axa $^{-1}$, for all $\mathrm{x} \in \mathrm{G}$, is a permutation on G.
21) Compute a^{-1} ba where $\mathrm{a}=\left(\begin{array}{lll}2 & 3 & 5\end{array}\right)\left(\begin{array}{ll}1 & 4\end{array}\right), \mathrm{b}=\left(\begin{array}{lll}3 & 4 & 6\end{array}\right) \in \mathrm{S}_{7}$. Also express a^{-1} ba as a product of disjoint cycles.
22) Show that there can not exist a permutation $a \in S_{8}$ such that $a(157) a^{-1}=(15)(246)$.
23) Show that there can not exist a permutation $a \in S_{9}$ such that $a(25) a^{-1}=(278)$.
24) Show that there can not exist a permutation $\mu \in \mathrm{S}_{8}$ such that $\mu(126)(32) \mu^{-1}=\left(\begin{array}{ll}5 & 6\end{array}\right)$.
25) Show that there can not exist a permutation $a \in S_{7}$ such that $a^{-1}(15)(246) a=(157)$.
26) Write down all permutations on 3 symbols $\{1,2,3\}$ and prepare a composition table.
27) Show that the set of 4 permutations $e=(1),(12),(34),(12)(34)$ $\in \mathrm{S}_{4}$. form an abelian group with respect to multiplication of permutations.
28) Show that the set $\mathrm{A}=\{(4),(13),(24),(13)(24)\}$ form an abelian group with respect to multiplication of permutations in S_{4}.

Unit - II

1 : Questions of 2 marks

1) Define i) a normal subgroup ii) a simple group.
2) Show that a subgroup H of a group G is normal if and only if $g \in G, x \in$ $H \Rightarrow g^{-1} x g \in H$.
3) Show that every subgroup of an abelian group is normal.
4) Show that the alternating subgroup A_{n} of a symmetric group S_{n} is normal.
5) If a finite group G has exactly one subgroup H of a given order then show that H is normal in G .
6) Show that every group of prime order is simple.
7) Is a group of order 61 simple? Justify.
8) Define a normalizer $N(H)$ of a subgroup H of a group G. Show that $N(H)$ ia a subgroup of G.
9) Let H be a subgroup of a group G. Show that $N(H)=G$ if and only if H is normal in G.
10) Define index of a subgroup. Find index of A_{n} in $S_{n}, n \geq 2$.
11)Prove that intersection of two normal subgroups of a group G is a normal subgroup of G.
11) Let H, K be normal subgroups of a group G and $\mathrm{H} \cap \mathrm{K}=\{\mathrm{e}\}$. show that $a b=b a$ for all $a \in H, b \in K$.
12) Prove that intersection of any finite number of normal subgroups of a group G is a normal subgroup of G .
13) Let H be a normal subgroup of a group G and K a subgroup of G such that $\mathrm{H} \subseteq \mathrm{K} \subseteq \mathrm{G}$. Show that H is a normal subgroup of K .
14) Is union of two normal subgroups a normal subgroup? Justify.
16)Define a quotient group. If H is a normal subgroup of a group G then show that H is the identity element of G / H.
15) Let H be a normal subgroup of a group G and $\mathrm{a}, \mathrm{b} \in \mathrm{G}$. Show that

$$
\text { i) } \mathrm{a}^{-1} \mathrm{H}=(\mathrm{aH})^{-1} \quad \text { ii) }(\mathrm{ab})^{-1} \mathrm{H}=(\mathrm{bH})^{-1}(\mathrm{aH})^{-1} .
$$

18)Let $H=3 Z \subseteq(Z,+)$. Write the elements of Z / H and prepare a composition table for Z / H.
19)Let $H=4 Z \subseteq(Z,+)$. Write the elements of Z / H and prepare a composition table for Z / H.
20)Prove that the quotient group of an abelian group is abelian.
21) Give an example of an abelian group G / H such that G is not abelian. Explain.
22) Give an example of a cyclic group G / H such that G is not cyclic. Explain.
23) Let H, K be normal subgroups of a group G . If $\mathrm{G} / \mathrm{H}=\mathrm{G} / \mathrm{K}$ then show that $\mathrm{H}=\mathrm{K}$.
24) Let H be a normal subgroup of a group G . If G / H is abelian then show that $\mathrm{xyx}^{-1} \mathrm{y}^{-1} \in \mathrm{G}$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{G}$.
25)Let H be a normal subgroup of a group G. If $x^{-1} y^{-1} \in H$, for all $x, y \in$ G then show that G / H is abelian.
26) If H is a normal subgroup of a group G and $i_{G}(H)=m$ then show that x^{m} $\in H$, for all $x \in G$.
27) Show that every subgroup of a cyclic group is normal.
28) Give an example of a non cyclic group in which every subgroup is normal.
29) If H is a subgroup of a group G and N a normal subgroup of G then show that $\mathrm{H} \cap \mathrm{N}$ is a normal subgroup of H .
30) If H, K are normal subgroups of a group G then show that a subgroup HK is normal in G.
31)Let H be a subgroup of index 2 of a group G. If $x \in G$ then show that x^{2} $\in \mathrm{H}$.

2 : Multiple choice Questions of 1 marks

Choose the correct option from the given options.

1) The number of normal subgroups in a nontrivial simple group $=-$ -
a) 0
b) 1
c) 2
d) 3
2) In any abelian group every subgroup is ---
a) cyclic
b) normal
c) finite
d) $\{e\}$
3) Order of a group $Z / 3 Z=--$
a) 0
b) 1
c) 3
d) ∞
4) A proper subgroup of index -- is always normal.
a) 1
b) 2
c) 3
d) 6
5) Let H be a normal subgroup of order 2 in a group G . Then -- -
a) $H=G$
b) $\mathrm{H} \subseteq \mathrm{Z}(\mathrm{G})$
c) $\mathrm{Z}(\mathrm{G}) \subseteq \mathrm{H}$
d) neither $\mathrm{H} \subseteq \mathrm{Z}(\mathrm{G})$ nor $\mathrm{Z}(\mathrm{G}) \subseteq \mathrm{H}$
6) For a group G, the center $Z(G)$ is defined as -- -
a) $\{\mathrm{x} \in \mathrm{G}: \mathrm{ax}=\mathrm{xa}$, for all $\mathrm{a} \in \mathrm{G}\}$
b) $\{\mathrm{x} \in \mathrm{G}: \mathrm{ax}=\mathrm{xa}$, for some $\mathrm{a} \in \mathrm{G}\}$
c) $\left\{x \in G: x^{2}=x\right\}$
d) $\left\{x \in G: x^{2}=e\right\}$
7) Every subgroup of a cyclic group is ---
a) cyclic and normal
b) cyclic but not normal
c) normal but not cyclic
d) neither cyclic nor normal
8) Index of A_{3} in S_{3} is --
a) 1
b) 2
c) 3
d) 6

3 : Questions of 3 marks

1) Define center of a group. Show that center of a group is a normal subgroup.
2) Show that a normal subgroup of order 2 in a group G is contained in the center of G.
3) Prove that a subgroup H of a group G is normal if and only if gHg^{-1} $=H$, for all $g \in G$.
4) Let H, K be subgroups of a group G. If H is normal then show that HK is a subgroup of G.
5) Let H, K be subgroups of a group G. If K is normal then show that HK is a subgroup of G.
6) If H is a subgroup of a group G then show that $N(H)$ is the largest subgroup of G in which H is normal.
7) Prove that a non empty subset H of a group G is normal subgroup of G if and only if $x, y \in H, g \in G \Rightarrow(g x)(g y)^{-1} \in H$.
8) Prove that a subgroup H of a group G is normal if and only if $\mathrm{Hx}=$ $x H$, for all $x \in G$.
9) Prove that a subgroup H of a group G is normal if and only if HaHb $=\mathrm{Hab}$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{G}$.
10)Prove that a subgroup H of a group G is normal if and only if aHbH $=\mathrm{abH}$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{G}$.
11)Let H be a subgroup of a group G. If product of any two right cosets of H in G is again a right coset of H in G then prove that H is normal.
12)Let H be a subgroup of a group G. If product of any two left cosets of H in G is again a left coset of H in G then prove that H is normal.
10) Define index of a subgroup. Show that any subgroup of index 2 is normal.
14)Define a group of quarterions and find all its normal subgroups.
15)If a cyclic subgroup of T of a group G is normal in G then show that every subgroup of T is normal in G .
11) Let H be a normal subgroup of a group G. Show that $\cap\left\{\mathrm{xHx}^{-1}: x \in\right.$ $\mathrm{G}\}$ is a normal subgroup of G .
17)Let H, K be normal subgroups of a group G. If $o(H), o(K)$ are relatively prime numbers then show that $x y=y x$, for all $x \in H, y \in$ K.
18)Let H, K be normal subgroups of a group G. If $H \cup K$ is a normal subgroup of G then show that $\mathrm{H} \subseteq \mathrm{K}$ or $\mathrm{K} \subseteq \mathrm{H}$
12) Let $H_{1}, H_{2},--, H_{n}$ be proper normal subgroups of a group G such that $G=\bigcup_{i=1}^{n} H_{i}$ and $H_{i} \cap H_{j}=\{e\}$, for all $i \neq j$. Prove that G is an abelian group.
13) Write the elements of S_{3} and A_{3} on three symbols $\{1,2,3\}$. Prepare a composition table for $\mathrm{S}_{3} / \mathrm{A}_{3}$.
14) Prove that the quotient group of a cyclic group is cyclic.
15) Let H be a normal subgroup of a finite group G and $\mathrm{o}(\mathrm{H}), \mathrm{i}_{\mathrm{G}}(\mathrm{H})$ are relatively prime numbers If $x \in G$ and $x^{o(H)}=e$ then show that $x \in$ H.
16) Let H be a subgroup of a group G. Prove that $\mathrm{xHx}^{-1}=H$, for all $x \in$ G if and only if $H x y=H x H y$, for all $x, y \in G$.
17) Let H be a subgroup of a group G. Prove that $\mathrm{xHx}^{-1}=\mathrm{H}$, for all $\mathrm{x} \in$ G if and only if $x y H=x H y H$, for all $x, y \in G$.
18) Show that a subgroup H of a group G is normal if and only if $x y \in$ $H \Rightarrow y x \in H$, where $x, y \in G$.
19) Show that a subgroup H of a group G is normal if and only if the set $\{H x: x \in G\}$ of all right cosets of H in G is closed under multiplication.
20) Let H be a subgroup of a group G and $x^{2} \in H$, for all $x \in G$. Show that H is normal in G
21) Let G be a group and $a \in G$. Denote $N(a)=\{x \in G: x a=a x\}$ Show that $\mathrm{a} \in \mathrm{Z}(\mathrm{G})$ if and only if $\mathrm{N}(\mathrm{a})=\mathrm{G}$.
22) Let N be a normal subgroup of a group G and H a subgroup of G . If $\mathrm{o}(\mathrm{G} / \mathrm{N})$ and $\mathrm{o}(\mathrm{H})$ are relatively prime numbers then show that $\mathrm{H} \subseteq \mathrm{N}$.
23) Write any six equivalent conditions of normal subgroup.

Unit - III

1 : Questions of 2 marks

1) Let $(R,+)$ be a group of real numbers under addition. Show that $f: R \rightarrow R$, defined by $f(x)=3 x$, for all $x \in R$, is a group homomorphism. Find $\operatorname{Ker}(f)$.
2) Let $(R,+)$ be a group of real numbers under addition. Show that $f: R \rightarrow R$, defined by $f(x)=2 x$, for all $x \in R$, is a group homomorphism. Find $\operatorname{Ker}(f)$.
3) If $(R,+)$ is a group of real numbers under addition and $\left(R^{+}, \cdot\right)$ is a group of positive real numbers under multiplication. Show that $f: R \rightarrow R^{+}$, defined by $f(x)=e^{x}$, for all $x \in R$, is a group homomorphism. Find $\operatorname{Ker}(f)$.
4) Let $\left(R^{*}, \cdot\right)$ be a group of non zero real numbers under multiplication. Show that $f: R^{*} \rightarrow R^{*}$, defined by $f(x)=x^{3}$, for all $x \in R^{*}$, is a group homomorphism. Find $\operatorname{Ker}(f)$.
5) Let $\left(\mathrm{C}^{*}, \cdot\right)$ be a group of non zero complex numbers under multiplication. Show that $f: C^{*} \rightarrow C^{*}$, defined by $f(z)=z^{4}$, for all $z \in C^{*}$, is a group homomorphism. Find $\operatorname{Ker}(\mathrm{f})$.
6) Let $\left(\mathrm{Z},+\right.$) be a group of integers under addition and $\mathrm{G}=\left\{5^{\mathrm{n}}: \mathrm{n} \in \mathrm{Z}\right\}$ a group under multiplication. Show that $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{G}$, defined by $\mathrm{f}(\mathrm{n})=5^{\mathrm{n}}$, for all $\mathrm{n} \in \mathrm{Z}$, is onto group homomorphism.
7) Let $(\mathrm{Z},+)$ and $(\mathrm{E},+$) be the groups of integers and even integers respectively under addition. Show that $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{E}$, defined by $\mathrm{f}(\mathrm{n})=2 \mathrm{n}$, for all $\mathrm{n} \in \mathrm{Z}$, is an isomorphism.
8) Define a group homomorphism. Let ($\mathrm{G},{ }^{*}$) , ($\left.\mathrm{G}^{\prime},,^{*}\right)$ be groups with identity elements e, e^{\prime} respectively. Show that $f: G \rightarrow G^{\prime}$, defined by $f(x)=e^{\prime}$, for all $x \in G$, is a group homomorphism.
9) Let $G=\left\{a, a^{2}, a^{3}, a^{4}, a^{5}=e\right\}$ be the cyclic group generated by a. Show that $\mathrm{f}:\left(\mathrm{Z}_{5},+_{5}\right) \rightarrow \mathrm{G}$, defined by $\mathrm{f}(\bar{n})=\mathrm{a}^{\mathrm{n}}$, for all $\bar{n} \in \mathrm{Z}_{5}$, is a group homomorphism. Find $\operatorname{Ker}(\mathrm{f})$.
10) Let $f:(R,+) \rightarrow(R,+)$ be defined by $f(x)=x+1$, for all $x \in R$. Is $f a$ group homomorphism? Why?
11) Let $\mathrm{G}=\{1,-1, \mathrm{i},-\mathrm{i}\}$ be a group under multiplication and $\mathrm{Z}_{8}^{\prime}=\{\overline{1}, \overline{3}, \overline{5}$, $\overline{7}\}$ a group under multiplication modulo 8 . Show that G and Z_{8}^{\prime} are not isomorphic.
12) Show that the group $\left(Z_{4},+_{4}\right)$ is isomorphic to the group $\left(Z_{5}^{\prime}, x_{5}\right)$.
13) Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a group homomorphism. If $\mathrm{a} \in \mathrm{G}$ and $\mathrm{o}(\mathrm{a})$ is finite then show that $o(f(a)) \mid o(a)$.
14) Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a group homomorphism If H^{\prime} is a subgroup of G^{\prime} then show that $\operatorname{Ker}(\mathrm{f}) \subseteq \mathrm{f}^{-1}\left(\mathrm{H}^{\prime}\right)$.
15) Let $f: G \rightarrow G^{\prime}$ be a group homomorphism and $o(a)$ is finite, for all $a \in G$. If f is one one then show that $o(f(a))=o(a)$.
16) Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a group homomorphism and $\mathrm{o}(\mathrm{f}(\mathrm{a}))=\mathrm{o}(\mathrm{a})$, for all $\mathrm{a} \in \mathrm{G}$. Show that f is one one.

2 : Multiple choice Questions of 1 marks

Choose the correct option from the given options.

1) Every finite cyclic group of order n is isomorphic to --
a) $(\mathrm{Z},+)$
b) $\left(Z_{n},+_{n}\right)$
c) $\left(Z_{n}, x_{n}\right)$
d) $\left(Z_{n}^{\prime}, x_{n}\right)$
2) Every infinite cyclic group is isomorphic to ---
a) $(\mathrm{Z},+)$
b) $\left(Z_{n},+_{n}\right)$
c) $\left(Z_{n}, x_{n}\right)$
d) $\left(Z_{n}^{\prime}, x_{n}\right)$
3) Let $f: G \rightarrow G^{\prime}$ be a group homomorphism and $a \in G$. If $o(a)$ is finite then - -
a) $o(f(a))=\infty$
b) $o(f(a)) \mid o(a)$.
c) $o(a) \mid o(f(a))$
d) $o(f(a))=0$.
4) A group $\mathrm{G}=\{1,-1, \mathrm{i},-\mathrm{i}\}$ under multiplication is not isomorphic to -
a) $\left(\mathrm{Z}_{4},+_{4}\right)$
b) G
c) $\left(Z_{8}^{\prime}, x_{8}\right)$
d) none of these.
5) Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a group homomorphism. If G is abelian then $\mathrm{f}(\mathrm{G})$ is --
a) non abelian
b) abelian
c) cyclic
d) empty set
6) Let $f: G \rightarrow G^{\prime}$ be a group homomorphism. If G is cyclic then $f(G)$ is ---
a) non abelian
b) non cyclic
c) cyclic
d) finite set
7) A onto group homomorphism $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is an isomorphism if $\operatorname{Ker}(\mathrm{f})=$
a) ϕ
b) $\{e)$
c) $\left\{e^{\prime}\right\}$
d) none of these
8) A function $f: G \rightarrow G$, (G is a group), defined by $f(x)=x-1$, for all x $\in G$, is an automorphism if and only if G is --
a) abelian
b) cyclic
c) non abelian
d) $\mathrm{G}=\phi$.

3 : Questions of 4 marks

1) Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a group homomorphism . prove that $\mathrm{f}(\mathrm{G})$ is a subgroup of G^{\prime}. Also prove that if G is abelian then $\mathrm{f}(\mathrm{G})$ is abelian.
2) Let $f: G \rightarrow G^{\prime}$ be a group homomorphism. Show that f is one one if and only if $\operatorname{Ker}(\mathrm{f})=\{\mathrm{e}\}$.
3) Let $G=\{1,-1, i,-i\}$ be a group under multiplication. Show that $f:(Z$, $+) \rightarrow G$, defined by $f(n)=i^{n}$, for all $n \in Z$, is onto group homomorphism. Find $\operatorname{Ker}(f)$.
4) Let $G=\{1,-1, i,-i\}$ be a group under multiplication. Show that $f:(Z$, $+) \rightarrow G$, defined by $\mathrm{f}(\mathrm{n})=(-\mathrm{i})^{\mathrm{n}}$, for all $\mathrm{n} \in \mathrm{Z}$, is onto group homomorphism. Find $\operatorname{Ker}(f)$.
5) Let $G=\left\{\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]: a, b \in R, a^{2}+b^{2} \neq 0\right\}$ be a group under multiplication and C^{*} be a group of non zero complex numbers under multiplication. Show that $f: C^{*} \rightarrow G$ defined by $f(a+i b)=\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$, for all $a+i b \in C^{*}$, is an isomorphism.
6) Define a group homomorphism. Prove that homomorphic image of a cyclic group is cyclic.
7) Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a group homomorphism. Prove that
i) $\quad f(e)$ is the identity element of G^{\prime}, where e is the identity element of G
ii) $\quad \mathrm{f}\left(\mathrm{a}^{-1}\right)=(\mathrm{f}(\mathrm{a}))^{-1}$, for all $\mathrm{a} \in \mathrm{G}$
iii) $\quad \mathrm{f}\left(\mathrm{a}^{\mathrm{m}}\right)=(\mathrm{f}(\mathrm{a}))^{\mathrm{m}}$, for all $\mathrm{a} \in \mathrm{G}, \mathrm{m} \in \mathrm{Z}$.
8) Let $\left(\mathrm{C}^{*}, \cdot\right) \cdot\left(\mathrm{R}^{*}, \cdot\right)$ be groups of non zero complex numbers, non zero real numbers respectively under multiplication. Show that $f: C^{*} \rightarrow R^{*}$ defined by $f(z)=|z|$, for all $z \in C^{*}$, is a group homomorphism. Find $\operatorname{Ker}(f)$. Is f onto? Why?
9) Let $\left(\mathrm{C}^{*}, \cdot\right),\left(\mathrm{R}^{*}, \cdot\right)$ be groups of non zero complex numbers, non zero real numbers respectively under multiplication. Show that $\mathrm{f}: \mathrm{C}^{*} \rightarrow \mathrm{R}^{*}$ defined by $f(z)=|\bar{z}|$, for all $z \in C^{*}$, is a group homomorphism. Find $\operatorname{Ker}(\mathrm{f})$. Is f onto? Why?
10)Let $G=\{1,-1\}$ be a group under multiplication. Show that $f:(Z,+) \rightarrow$ G defined by $f(n)=\left\{\begin{array}{cc}1 & , \text { if } n \text { iseven } \\ -1 & , \quad \text { if } n \text { is odd }\end{array}\right.$ is onto group homomorphism. Find $\operatorname{Ker}(\mathrm{f})$.
11)Let $\left(R^{+}, \cdot\right)$ be a group of positive reals under multiplication. Show that f : $(R,+) \rightarrow R^{+}$defined by $f(x)=2^{x}$, for all $x \in R$, is an isomorphism.
10) Let $\left(R^{+}, \cdot\right)$ be a group of positive reals under multiplication. Show that f : $(R,+) \rightarrow R^{+}$defined by $f(x)=e^{x}$, for all $x \in R$, is an isomorphism.
11) If $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is an isomorphism and $\mathrm{a} \in G$ then show that $\mathrm{o}(\mathrm{a})=\mathrm{o}(\mathrm{f}(\mathrm{a}))$.
12) Prove that every finite cyclic group of order n is isomorphic to $\left(Z_{n},{ }_{n}\right)$.
15)Prove that every infinite cyclic group is isomorphic to $(\mathrm{Z},+)$.
16)Let G be a group of all non singular matrices of order 2 over the set of reals and R^{*} be a group of all nonzero reals under multiplication. Show that $f: G \rightarrow R^{*}$, defined by $f(A)=|A|$, for all $A \in G$, is onto group homomorphism. Is f one one? Why?
13) Let G be a group of all non singular matrices of order n over the set of reals and R^{*} be a group of all nonzero reals under multiplication. Show that $f: G \rightarrow R^{*}$, defined by $f(A)=|A|$, for all $A \in G$, is onto group homomorphism.
14) Let R^{*} be a group of all nonzero reals under multiplication. Show that f : $R^{*} \rightarrow R^{*}$, defined by $f(x)=|x|$, for all $x \in R^{*}$, is a group homomorphism. Is f onto? Justify.
15) Prove that every group is isomorphic to it self. If G_{1}, G_{2} are groups such that $\mathrm{G}_{1} \cong \mathrm{G}_{2}$ then prove that $\mathrm{G}_{2} \cong \mathrm{G}_{1}$.
16) Let G_{1}, G_{2}, G_{3} be groups such that $G_{1} \cong G_{2}$ and $G_{2} \cong G_{3}$. Prove that $\mathrm{G}_{1} \cong \mathrm{G}_{3}$.
21)Show that $f:(C,+) \rightarrow(C,+)$ defined by $f(a+i b)=-a+i b$, for all $a+i b$ $\in \mathrm{C}$, is an automorphism.
17) Show that $f:(C,+) \rightarrow(C,+)$ defined by $f(a+i b)=a-i b$, for all $a+i b$ $\in \mathrm{C}$, is an automorphism.
18) Show that $f:(Z,+) \rightarrow(Z,+)$ defined by $f(x)=-x$, for all $x \in Z$, is an automorphism.
19) Let G be an abelian group. Show that $f: G \rightarrow G$ defined by $f(x)=x^{-1}$, for all $x \in G$, is an automorphism.
25)Let G be a group and $a \in G$. Show that $f_{a}: G \rightarrow G$ defined by $f_{a}(x)=$ axa^{-1}, for all $\mathrm{x} \in \mathrm{G}$, is an automorphism.
26)Let G be a group and $a \in G$. Show that $f_{a}: G \rightarrow G$ defined by $f_{a}(x)=$ $a^{-1} x a$, for all $x \in G$, is an automorphism.
20) Let $G=\left\{a, a^{2}, a^{3}, \cdots, a^{12}(=e)\right\}$ be a cyclic group generated by a. Show that $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}$, for all $\mathrm{x} \in \mathrm{G}$, is a group homomorphism. Find $\operatorname{Ker}(\mathrm{f})$.
28)Let $G=\left\{a, a^{2}, a^{3}, \cdots, a^{12}(=e)\right\}$ be a cyclic group generated by a. Show that $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}$, for all $\mathrm{x} \in \mathrm{G}$, is a group homomorphism. Find $\operatorname{Ker(f).~}$
21) Show that $f:(C,+) \rightarrow(R,+)$ defined by $f(a+i b)=a$, for all $a+i b \in$ C , is onto homomorphism. Find $\operatorname{Ker(f).~}$
22) Show that homomorphic image of a finite group is finite. Is the converse true? Justify.

Unit - IV

1 : Questions of 2 marks

1) In a ring (Z, \oplus, \odot), where $a \oplus b=a+b-1$ and $a \odot b=a+b-a b$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{Z}$, find zero element and identity element.
2) Define an unit. Find all units in $\left(Z_{6},+_{6}, x_{6}\right)$.
3) Define a zero divisor. Find all zero divisors in $\left(\mathrm{Z}_{8},+_{8}, x_{8}\right)$.
4) Let R be a ring with identity 1 and $a \in R$. Show that
i) $(-1) a=-a$
ii) $(-1)(-1)=1$
5) Let R be a commutative ring and $a, b \in R$. Show that $(a-b)^{2}=a^{2}-2 a b$ $+b^{2}$.
6) Let $(\mathrm{Z}[\sqrt{-5}],+, \cdot)$ be a ring under usual addition and multiplication of elements of $Z[\sqrt{-5}]$. Show that $Z[\sqrt{-5}]$ is a commutative ring. Is $2+$ $3 \sqrt{-5}$ a unit in $Z[\sqrt{-5}]$?
7) Let $\bar{m} \in\left(Z_{n},+_{n}, x_{n}\right)$ be a zero divisor. Show that m is not relatively prime to n , where $\mathrm{n}>1$.
8) If $\bar{m} \in\left(Z_{n},+_{n}, x_{n}\right)$ is invertible then show that m and n are relatively prime to n, where $n>1$.
9) Let $\mathrm{n}>1$ and $0<\mathrm{m}<\mathrm{n}$. If m is relatively prime to n then show that $\overline{\mathrm{m}} \in\left(\mathrm{Z}_{\mathrm{n}},+_{\mathrm{n}}, x_{\mathrm{n}}\right)$ is invertible.
10) Let $\mathrm{n}>1$ and $0<\mathrm{m}<\mathrm{n}$. If m is not relatively prime to n then show that $\overline{\mathrm{m}} \in\left(\mathrm{Z}_{\mathrm{n}},+_{\mathrm{n}}, x_{\mathrm{n}}\right)$ is a zero divisor.
11) Show that a field has no zero divisors.
12)Let R be a ring in which $a^{2}=a$, for all $a \in R$. Show that $a+a=0$, for all a $\in R$.
13)Let R be a ring in which $a^{2}=a$, for all $a \in R$. If $a, b \in R$ and $a+b=0$, then show that $\mathrm{a}=\mathrm{b}$.
14)Let R be a commutative ring with identity 1 . If a, b are units in R then show that a^{-1} and ab are units in R .
12) In $\left(\mathrm{Z}_{12},+_{12}, \times_{12}\right)$ find (i) $(\overline{3})^{2}+{ }_{12}(\overline{5})^{-2}$ (ii) $(\overline{7})^{-1}+_{12} \overline{8}$.
13) In $\left(Z_{12},+_{12}, \times_{12}\right)$ find (i) $(\overline{5})^{-1}-\overline{7}$ (ii) $(\overline{11})^{-2}+_{12} \overline{5}$.

2 : Multiple choice Questions of 1 marks

Choose the correct option from the given options.

1) $\mathrm{R}=\{ \pm 1, \pm 2, \pm 3,-\cdots\}$ is not a ring under usual addition and multiplication of integers because ---
a) R is not closed under multiplication
b) R is not closed under addition
c) R does not satisfy associativity w.r.t. addition
d) R does not satisfy associativity w.r.tmultiplication
2) Number of zero divisors in $\left(\mathrm{Z}_{6},+_{6}, x_{6}\right)=--$
a) 0
b) 1
c) 2
d) 3
3) $\left(Z_{43},{ }_{43}, x_{43}\right)$ is --
a) both field and integral domain
b) an integral domain but not a field
c) a field but not an integral domain
d) neither a field nor an integral domain
4) $\operatorname{In}\left(\mathrm{Z}_{9},+_{9}, x_{9}\right), \overline{6}$ is --
a) a zero divisor
b) an invertible element
c) a zero element
d) an identity element
5) Every Boolean ring is --
a) an integral domain
b) a field
c) a commutative ring
d) a division ring
6) If a is a unit in a ring R then a is -- -
a) a zero divisor
b) an identity element
c) a zero element
d) an invertible element
7) If R is a Boolean ring and $a \in R$ then --
a) $a+a=a$
b) $\mathrm{a}^{2}=0$
c) $\mathrm{a}^{2}=1$
d) $a+a=0$
8) Value of $(\overline{7})^{2}-\overline{7}$ in $\left(Z_{8},+_{8}, x_{8}\right)$ is --
a) $\overline{6}$
b) $\overline{4}$
c) $\overline{2}$
d) $\overline{0}$

3 : Questions of 6 marks

1) a) Define i) a ring ii) an integral domain iii) a division ring.
b) Show that the set $\mathrm{R}=\{0,2,4,6\}$ is a commutative ring under addition and multiplication modulo 8 .
2) a) Define i) a commutative ring ii) a field iii) a skew field.
b) In $2 Z$, the set of even integers, we define $a+b=$ usual addition of a and b and $\mathrm{a} \odot \mathrm{b}=\frac{\mathrm{ab}}{2}$. Show that $(2 \mathrm{Z},+, \odot)$ is a ring.
3) a) Define i) a ring with identity element ii) an unit element iii) a Boolean ring.
b) Let $(2 Z,+)$ be an abelian group of even integers under usual addition. Show that $(2 \mathrm{Z},+, \odot)$ is a commutative ring with identity 2 , where $\mathrm{a} \odot \mathrm{b}=\frac{\mathrm{ab}}{2}$, for all $\mathrm{a}, \mathrm{b} \in 2 \mathrm{Z}$.
4) a) Define i) a zero divisor ii) an invertible element iii) a field.
b) Let $(3 Z,+)$ be an abelian group under usual addition where $3 Z$ $=\{3 n \mid n \in Z\}$. Show that $(3 Z,+, \odot)$ is a commutative ring with identity 3 , where $\mathrm{a} \odot \mathrm{b}=\frac{\mathrm{ab}}{3}$, for all $\mathrm{a}, \mathrm{b} \in 3 \mathrm{Z}$.
5) a) Let $(R,+, \cdot)$ be a ring and $a, b, c \in R$. Prove that
i) $a \cdot 0=0$
ii) $(\mathrm{a}-\mathrm{b}) \mathrm{c}=\mathrm{ac}-\mathrm{bc}$.
b) Show that (Z, \oplus, \odot) is a ring, where $a \oplus b=a+b-1$ and a $\odot b=a+b-a b$, for all $a, b \in Z$.
6) a) Let $(\mathrm{R},+, \cdot)$ be a ring and a, b, c $\in \mathrm{R}$. Prove that

$$
\text { i) } a \cdot(-b)=-(a b) \quad \text { ii) } a(b-c) c=a b-a c .
$$

b) Show that the abelian group $(\mathrm{Z}[\sqrt{-5}],+$) is a ring under multiplication

$$
(\mathrm{a}+\mathrm{b} \sqrt{-5})(\mathrm{c}+\mathrm{d} \sqrt{-5})=\mathrm{ac}-5 \mathrm{bd}+(\mathrm{ad}+\mathrm{bc}) \sqrt{-5} .
$$

7) a) Define i) a division ring ii) an unit element iii) an integral domain
b) Show that the abelian group $(\mathrm{Z}[\mathrm{i}],+$) is a ring under multiplication $(a+b i)(c+d i)=a c-b d+(a d+b c) i$, for all $a+b i, c+d i \in Z[i]$.
8) a) Let R be a ring with identity 1 and $(a b)^{2}=a^{2} b^{2}$, for all $a, b \in R$. Show that R is commutative.
b) Show that the abelian group $\left(\mathrm{Z}_{\mathrm{n}},+_{\mathrm{n}}\right)$ is a commutative ring with identity $\overline{1}$ under multiplication modulo n operation.
9) a) Show that a ring R is commutative if and only if $(a+b)^{2}=a^{2}+2 a b$ $+b^{2}$, for all $a, b \in R$.
b) Show that $Z[i]=\{a+i b \mid a, b \in Z\}$, the ring of Gaussian integers, is an integral domain.
10)a) Show that a commutative ring R is an integral domain if and only if $a, b, c \in R, a \neq 0, a b=a c \Rightarrow b=c$.
b) Prepare addition modulo 4 and multiplication modulo 4 tables. Find all invertible elements in Z_{4}.
10) a) Show that a commutative ring R is an integral domain if and only if $a, b \in R, a b=0 \Rightarrow$ either $a=0$ or $b=0$.
b) Prepare addition modulo 5 and multiplication modulo 5 tables. Find all invertible elements in Z_{5}.
12)a) Let R be a commutative ring. Show that the cancellation law with respect to multiplication holds in R if and only if $a, b \in R, a b=0$ \Rightarrow either $\mathrm{a}=0$ or $\mathrm{b}=0$.
b) Prepare a multiplication modulo 6 table for a ring $\left(Z_{6},+_{6}, x_{6}\right)$. Hence find all zero divisors and invertible elements in Z_{6}.
13 a) For $\mathrm{n}>1$, show that Z_{n} is an integral if and only if n is prime.
b) Let $\mathrm{R}=\left\{\left[\begin{array}{cc}\mathrm{z} & \mathrm{w} \\ -\overline{\mathrm{w}} & \overline{\mathrm{z}}\end{array}\right]: \mathrm{z}, \mathrm{w} \in \mathrm{C}\right\}$ be a ring under addition and multiplication, where $C=\{a+i b \mid a, b \in R\}$. Show that R is a divison ring.

14 a) Prove that every field is an integral domain. Is the converse true? Justify.
b) Which of the following rings are fields? Why?
i) $(Z,+, \times)$
ii) $\left(Z_{5},+_{5}, x_{5}\right)$
iii) $\left(\mathrm{Z}_{25},+_{25}, \times_{25}\right)$.
15) a) Prove that every finite integral domain is a field.
b) Which of the following rings are integral domains? Why?
i) $(2 \mathrm{Z},+, \times)$
ii) $\left(\mathrm{Z}_{50},+_{50}, \times_{50}\right)$
iii) $\left(Z_{17},+_{17}, \times_{17}\right)$.

16 a) Prove that a Boolean ring is a commutative ring.
b) Give an example of a division ring which is not a field.

17 a) for $\mathrm{n}>1$, show that Z_{n} is a field if and onle if n is prime.
b) Let $\mathrm{R}=\{\mathrm{a}+\mathrm{bi}+\mathrm{cj}+\mathrm{dk} \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathrm{R}\}$, where $\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=-1, \mathrm{ij}$ $=\mathrm{k}=-\mathrm{ji}, \mathrm{jk}=\mathrm{i}=-\mathrm{kj}, \mathrm{ki}=\mathrm{j}=-\mathrm{ik}$. Show that every nonzero element of R is invertible.
18 a) If R is a ring and $a, b \in R$ then prove or disprove $(a+b)^{2}=a^{2}+2 a b$ $+b^{2}$.
b) Show that R^{+}, the set of all positive reals forms a ring under the following binary operations :
$\mathrm{a} \oplus \mathrm{b}=\mathrm{ab}$ and $\mathrm{a} \odot \mathrm{b}=\mathrm{a}^{\log _{5} \mathrm{~b}}$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}^{+}$.
19) a) Define
i) a ring
ii) a Boolean ring
iii) an invertible element.
b) Let p be a prime and ($\mathrm{pZ},+$) be an abelian group under usual addition, show that $(\mathrm{pZ},+, \odot)$ is a commutative ring with identity element p where $\mathrm{a} \odot \mathrm{b}=\frac{\mathrm{ab}}{\mathrm{p}}$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{pZ}$.
20) a) Define i) a ring with identity element ii) a commutative ring iii) a zero divisor.
b) Show that R^{+}, the set of all positive reals forms a ring under the following binary operations :
$\mathrm{a} \oplus \mathrm{b}=\mathrm{ab}$ and $\mathrm{a} \odot \mathrm{b}=\mathrm{a}^{\log _{7} \mathrm{~b}}$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}^{+}$.

