NORTH MAHARASHTRA UNIVERSITY,

JALGAON

Question Bank

New syllabus w.e.f. June 2008

Class : S.Y. B. Sc.

Subject : Mathematics

Paper : MTH – 212 (A) Abstract Algebra

Prepared By :

1) Dr. J. N. Chaudhari

Haed, Department of Mathematics

M. J. College, Jalgaon.

2) Prof Mrs. R. N. Mahajan

Haed, Department of Mathematics

Dr. A.G.D.B.M.M., Jalgaon.

Question Bank Paper : MTH – 212 (A) Abstract Algebra

Unit – I

1 : Questions of 2 marks

1)	Define product of two permutations on n symbols. Explain it
	by an example on 5 symbols.
2)	Define inverse of a permutation. If $\sigma =$
	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 5 & 4 & 2 & 7 & 6 \end{pmatrix} \in \mathbf{S}_7 \text{then find } \sigma^{-1} $
3)	Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 5 & 2 & 6 & 3 \end{pmatrix}$ and $\lambda = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 2 & 5 & 1 & 4 \end{pmatrix}$
	\in S ₆ . Find (i) $\lambda \sigma$ (ii) σ^{-1} .
4)	Let $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 5 & 2 & 6 & 3 \end{pmatrix}$ and $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 2 & 6 & 5 \end{pmatrix} \in$
	S_6 . Find (i) f g (ii) g^{-1} .
5)	Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 1 & 4 & 2 \end{pmatrix}$, $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{pmatrix} \in S_5$.
	Find $\alpha^{-1} \beta^{-1}$.
6)	Define i) a permutation ii) a symmetric group.
7)	Define i) a cycle ii) a transposition.
8)	Let $C_1 = (2 \ 3 \ 7)$, $C_2 = (1 \ 4 \ 3 \ 2)$ be cycles in S_8 . Find C_1C_2 and
	express it as product of transpositions.

9) For any transposition $(a b) \in S_n$, prove that $(a b) = (a b)^{-1}$.

- 10) Prove that every cycle can be written as product of transpositions.
- 11) Define disjoint cycles. Are $(1 \ 4 \ 7)$, $(4 \ 3 \ 2)$ disjoint cycles in S_8 ?
- 12) Write down all permutations on 3 symbols $\{1, 2, 3\}$.
- 13) Define an even permutation. Is $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 5 & 4 & 6 \end{pmatrix}$ an even permutation?
- 14) Define an odd permutation. Is $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 2 & 7 & 5 & 4 & 6 \end{pmatrix}$ an odd permutation?
- 15) Prove that A_n is a subgroup of S_n .
- 16) Let f be a fixed odd permutation in S_n (n > 1). Show that every odd permutation in S_n is a product of f and some permutation in S_n .

2 : Multiple choice Questions of 1 marks

Choose the correct option from the given options.

- 1) Let A, B be non empty sets and $f: A \rightarrow B$ be a permutation. Then --
 - a) f is bijective and A = B
 - b) f is one one and A \neq B
 - c) f is bijective and A \neq B
 - d) f is onto and A \neq B
- 2) Let A be a non empty set and $f: A \rightarrow A$ be a permutation.

Then - - -

- a) f is one one but not onto
- b) f is one one and onto

c) f is onto but not one one

d) f is neither one one nor onto

3) Cycles (2 4 7) and (4 3 1) are - - a) inverses of each other b) disjoint c) not disjoint d) transpositions 4) Every permutation in A_n can be written as product of --a) p transpositions, where p is an odd prime b) odd number of transpositions c) even number of transpositions d) none of these 5) The number of elements in $S_n = - -$ c) n!/2d) 2^{n} a) n b) n! 6) The number of elements in $A_6 = --$ d) 2^{6} c) 360 a) 6 b) 720 7) If $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 2 & 4 & 5 & 7 & 6 \end{pmatrix} \in S_7$ then $\alpha^{-1} = --$ a) (1 2 3 6 7) b) (1 2) (3 6 7) c) (1 2 3) (6 7) d) (4 5) 8) $\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 6 & 5 & 2 \end{pmatrix} \in S_6$ is a product of --- transpositions. a) 1 b) 2 c) 3 d) 4

3 : Questions of 4 marks

1) Let $g \in S_A$, $A = \{a_1, a_2, \dots, a_n\}$. Prove that i) g^{-1} exists in S_A . ii) $g g^{-1} = I = g^{-1} g$, where I is the identity permutation in S_A .

- Let A be a non empty set with n elements. Prove that S_A is a group with respect to multiplication of permutations.
- 3) Let S_n be a group of permutations on n symbols $\{a_1, a_2, -- , a_n\}$. prove that $o(S_n) = n!$. Also prove that S_n is not abelian if $n \ge 3$.
- 4) Define a cycle. Let $\alpha = (a_1, a_2, \dots, a_{r-1}, a_r)$ be a cycle of length r in S_n . Prove that $\alpha^{-1} = (a_r, a_{r-1}, \dots, a_2, a_1)$.
- 5) Prove that every permutation in S_n can be written as a product of transpositions.
- Prove that every permutation in S_n can be written as a product of disjoint cycles.
- Define i) a cycle ii) a transposition. Prove that every cycle can be written as a product of transpositions.
- 8) Let f, g be disjoint cycles in S_A . Prove that f g = g f.
- 9) Define an even permutation. Express $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1 \end{pmatrix}$

as a product of disjoint cycles. Determine whether σ is odd or even.

10) Express $\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 7 & 9 & 8 & 1 & 6 \end{pmatrix}$ as a product of

transpositions. State whether $\mu^{-1} \in A_9$.

- 11) Let $\alpha = (1 \ 3 \ 2 \ 5) (1 \ 4 \ 3) (2 \ 5) \in S_5$ Find α^{-1} and express it as a product of disjoint cycles. State whether $\alpha^{-1} \in A_5$.
- 12) Let $\lambda = (1 \ 3 \ 5 \ 7 \ 8) (3 \ 2 \ 6 \ 7) \in S_8$ Find λ^{-1} and express it as a product of disjoint cycles. State whether $\lambda^{-1} \in A_8$.
- 13)Prove that there are exactly n!/2 even permutations and exactly n!/2 odd permutations in S_n (n>1).
- 14)Prove that for every subgroup H of S_n either all permutations in H are even or exactly half of them are even.

- 15) If f , g are even permutations in S_n then prove that f g and g⁻¹ are even permutations in S_n .
- 16) Define an odd permutation. Let H be a subgroup of S_n , (n>1), and H contains an odd permutation. Show that o(H) is even.

17) Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 6 & 4 & 9 & 7 & 8 & 3 & 2 & 1 \end{pmatrix} \in S_9$. Express α and α^{-1} as a

product of disjoint cycles. State whether $\alpha^{-1} \in A_9$.

- 18) Let $\beta = (2 \ 5 \ 3 \ 7) \ (4 \ 8 \ 2 \ 1) \in S_8$. Express β as a product of disjoint cycles. State whether $\beta^{-1} \in A_8$.
- 19) Let G be a finite group and $a \in G$ be a fixed element. Show that $f_a : G \rightarrow G$ defined by $f_a(x) = ax$, for all $x \in G$, is a permutation on G.
- 20) Let G be a finite group and $a \in G$ be a fixed element. Show that $f_a : G \rightarrow G$ defined by $f_a(x) = ax^{-1}$, for all $x \in G$, is a permutation on G.
- 21) Let G be a finite group and $a \in G$ be a fixed element. Show that $f_a : G \rightarrow G$ defined by $f_a(x) = a^{-1}x$, for all $x \in G$, is a permutation on G.
- 22) Let G be a finite group and $a \in G$ be a fixed element. Show that $f_a : G \rightarrow G$ defined by $f_a(x) = axa^{-1}$, for all $x \in G$, is a permutation on G.
- 23) Compute $a^{-1}ba$ where $a = (2 \ 3 \ 5)(1 \ 4 \ 7)$, $b = (3 \ 4 \ 6 \ 2) \in S_7$. Also express $a^{-1}ba$ as a product of disjoint cycles.
- 24) Show that there can not exist a permutation $a \in S_8$ such that $a(1 5 7)a^{-1} = (1 5)(2 4 6).$
- 25) Show that there can not exist a permutation $a \in S_9$ such that $a(25)a^{-1} = (278)$.
- 26) Show that there can not exist a permutation $\mu \in S_8$ such that $\mu(1\ 2\ 6)(3\ 2)\mu^{-1} = (5\ 6\ 8).$
- 27) Show that there can not exist a permutation $a \in S_7$ such that $a^{-1}(15)(246)a = (157)$.

- 28) Write down all permutations on 3 symbols {1, 2, 3} and prepare a composition table.
- 29) Show that the set of 4 permutations e = (1), (1 2), (3 4), (1 2)(3 4)
 ∈ S₄. form an abelian group with respect to multiplication of permutations.
- 30) Show that the set A = {(4), (1 3), (2 4), (1 3)(2 4)} form an abelian group with respect to multiplication of permutations in S₄.

Unit – II

1 : Questions of 2 marks

- 1) Define i) a normal subgroup ii) a simple group.
- 2) Show that a subgroup H of a group G is normal if and only if $g \in G$, $x \in H \Rightarrow g^{-1}xg \in H$.
- 3) Show that every subgroup of an abelian group is normal.
- 4) Show that the alternating subgroup A_n of a symmetric group S_n is normal.
- 5) If a finite group G has exactly one subgroup H of a given order then show that H is normal in G.
- 6) Show that every group of prime order is simple.
- 7) Is a group of order 61 simple? Justify.
- 8) Define a normalizer N(H) of a subgroup H of a group G. Show that N(H) ia a subgroup of G.
- Let H be a subgroup of a group G. Show that N(H) = G if and only if H is normal in G.
- 10) Define index of a subgroup. Find index of A_n in S_n , $n \ge 2$.
- 11)Prove that intersection of two normal subgroups of a group G is a normal subgroup of G.
- 12) Let H, K be normal subgroups of a group G and $H \cap K = \{e\}$. show that ab = ba for all $a \in H$, $b \in K$.

- 13) Prove that intersection of any finite number of normal subgroups of a group G is a normal subgroup of G.
- 14) Let H be a normal subgroup of a group G and K a subgroup of G such that $H \subseteq K \subseteq G$. Show that H is a normal subgroup of K.
- 15) Is union of two normal subgroups a normal subgroup? Justify.
- 16)Define a quotient group. If H is a normal subgroup of a group G then show that H is the identity element of G/H.
- 17) Let H be a normal subgroup of a group G and a, $b \in G$. Show that i) $a^{-1}H = (aH)^{-1}$ ii) $(ab)^{-1}H = (bH)^{-1} (aH)^{-1}$.
- 18)Let H = $3Z \subseteq (Z, +)$. Write the elements of Z/H and prepare a composition table for Z/H.
- 19)Let H = 4Z \subseteq (Z , +). Write the elements of Z/H and prepare a composition table for Z/H.
- 20)Prove that the quotient group of an abelian group is abelian.
- 21)Give an example of an abelian group G/H such that G is not abelian. Explain.
- 22)Give an example of a cyclic group G/H such that G is not cyclic. Explain.
- 23) Let H, K be normal subgroups of a group G. If G/H = G/K then show that H = K.
- 24) Let H be a normal subgroup of a group G. If G/H is abelian then show that $xyx^{-1}y^{-1} \in G$, for all x, $y \in G$.
- 25)Let H be a normal subgroup of a group G. If $xyx^{-1}y^{-1} \in H$, for all x, $y \in G$ then show that G/H is abelian.
- 26) If H is a normal subgroup of a group G and $i_G(H) = m$ then show that $x^m \in H$, for all $x \in G$.
- 27) Show that every subgroup of a cyclic group is normal.
- 28) Give an example of a non cyclic group in which every subgroup is normal.

- 29) If H is a subgroup of a group G and N a normal subgroup of G then show that $H \cap N$ is a normal subgroup of H.
- 30) If H, K are normal subgroups of a group G then show that a subgroup HK is normal in G.
- 31)Let H be a subgroup of index 2 of a group G. If $x \in G$ then show that $x^2 \in H$.

2 : Multiple choice Questions of 1 marks

Choose the correct option from the given options.

1) The number of normal subgroups in a nontrivial simple group = --a) 0 b) 1 c) 2 d) 3 2) In any abelian group every subgroup is --a) cyclic b) normal c) finite d) $\{e\}$ 3) Order of a group Z/3Z = --a) 0 b) 1 c) 3 d) ∞ 4) A proper subgroup of index - - - is always normal. b) 2 a) 1 c) 3 d) 6 5) Let H be a normal subgroup of order 2 in a group G. Then --a) H = Gb) $H \subset Z(G)$ d) neither $H \subseteq Z(G)$ nor $Z(G) \subseteq H$ c) $Z(G) \subset H$

6) For a group G, the center Z(G) is defined as ---

a) {x ∈ G : ax = xa, for all a ∈ G}
b) {x ∈ G : ax = xa, for some a ∈ G}
c) {x ∈ G : x² = x}
d) {x ∈ G : x² = e}

- 7) Every subgroup of a cyclic group is -
 - a) cyclic and normal b) cyclic but not normal
 - c) normal but not cyclic d) neither cyclic nor normal
- 8) Index of A_3 in S_3 is --
 - a) 1 b) 2 c) 3 d) 6

3 : Questions of 3 marks

- Define center of a group. Show that center of a group is a normal subgroup.
- Show that a normal subgroup of order 2 in a group G is contained in the center of G.
- 3) Prove that a subgroup H of a group G is normal if and only if gHg⁻¹
 = H, for all g ∈ G.
- 4) Let H, K be subgroups of a group G. If H is normal then show that HK is a subgroup of G.
- 5) Let H, K be subgroups of a group G. If K is normal then show that HK is a subgroup of G.
- 6) If H is a subgroup of a group G then show that N(H) is the largest subgroup of G in which H is normal.
- 7) Prove that a non empty subset H of a group G is normal subgroup of G if and only if x, $y \in H$, $g \in G \implies (gx)(gy)^{-1} \in H$.
- 8) Prove that a subgroup H of a group G is normal if and only if Hx = xH, for all x ∈ G.
- 9) Prove that a subgroup H of a group G is normal if and only if HaHb
 = Hab, for all a , b ∈ G.
- 10)Prove that a subgroup H of a group G is normal if and only if aHbH
 = abH, for all a , b ∈ G.

- 11)Let H be a subgroup of a group G. If product of any two right cosets of H in G is again a right coset of H in G then prove that H is normal.
- 12)Let H be a subgroup of a group G. If product of any two left cosets of H in G is again a left coset of H in G then prove that H is normal.
- Define index of a subgroup. Show that any subgroup of index 2 is normal.
- 14)Define a group of quarterions and find all its normal subgroups.
- 15)If a cyclic subgroup of T of a group G is normal in G then show that every subgroup of T is normal in G.
- 16) Let H be a normal subgroup of a group G. Show that $\cap \{xHx^{-1} : x \in G\}$ is a normal subgroup of G.
- 17)Let H , K be normal subgroups of a group G. If o(H) , o(K) are relatively prime numbers then show that xy = yx, for all x ∈ H , y ∈ K.
- 18)Let H , K be normal subgroups of a group G. If H \cup K is a normal subgroup of G then show that H \subseteq K or K \subseteq H
- 19) Let H_1 , H_2 , ---, H_n be proper normal subgroups of a group G such that $G = \bigcup_{i=1}^{n} H_i$ and $H_i \cap H_j = \{e\}$, for all $i \neq j$. Prove that G is an

abelian group.

- 20) Write the elements of S_3 and A_3 on three symbols {1, 2, 3}. Prepare a composition table for S_3/A_3 .
- 21) Prove that the quotient group of a cyclic group is cyclic.
- 22) Let H be a normal subgroup of a finite group G and o(H), $i_G(H)$ are relatively prime numbers If $x \in G$ and $x^{o(H)} = e$ then show that $x \in H$.
- 23) Let H be a subgroup of a group G. Prove that $xHx^{-1} = H$, for all $x \in G$ if and only if Hxy = HxHy, for all $x, y \in G$.

- 24) Let H be a subgroup of a group G. Prove that $xHx^{-1} = H$, for all $x \in G$ if and only if xyH = xHyH, for all x, $y \in G$.
- 25) Show that a subgroup H of a group G is normal if and only if $xy \in$ H \Rightarrow yx \in H, where x, y \in G.
- 26) Show that a subgroup H of a group G is normal if and only if the set {Hx : x ∈ G} of all right cosets of H in G is closed under multiplication.
- 27) Let H be a subgroup of a group G and $x^2 \in H$, for all $x \in G$. Show that H is normal in G
- 28) Let G be a group and $a \in G$. Denote $N(a) = \{x \in G : xa = ax\}$ Show that $a \in Z(G)$ if and only if N(a) = G.
- 29) Let N be a normal subgroup of a group G and H a subgroup of G. If o(G/N) and o(H) are relatively prime numbers then show that $H \subseteq N$.

30) Write any six equivalent conditions of normal subgroup.

Unit – III

1 : Questions of 2 marks

- 1) Let (R, +) be a group of real numbers under addition. Show that $f : R \to R$, defined by f(x) = 3x, for all $x \in R$, is a group homomorphism. Find Ker(f).
- Let (R, +) be a group of real numbers under addition. Show that f: R → R, defined by f(x) = 2x, for all x ∈ R, is a group homomorphism. Find Ker(f).
- 3) If (R, +) is a group of real numbers under addition and (R⁺, ·) is a group of positive real numbers under multiplication. Show that f : R → R⁺, defined by f(x) = e^x, for all x ∈ R, is a group homomorphism. Find Ker(f).
- 4) Let (R^{*}, ·) be a group of non zero real numbers under multiplication. Show that f : R^{*} → R^{*}, defined by f(x) = x³, for all x ∈ R^{*}, is a group homomorphism. Find Ker(f).

- 5) Let (C^*, \cdot) be a group of non zero complex numbers under multiplication. Show that $f : C^* \to C^*$, defined by $f(z) = z^4$, for all $z \in C^*$, is a group homomorphism. Find Ker(f).
- 6) Let (Z, +) be a group of integers under addition and G = {5ⁿ : n ∈ Z} a group under multiplication. Show that f : Z → G, defined by f(n) = 5ⁿ, for all n ∈ Z, is onto group homomorphism.
- 7) Let (Z , +) and (E , +) be the groups of integers and even integers respectively under addition. Show that f : Z → E, defined by f(n) = 2n , for all n ∈ Z, is an isomorphism.
- 8) Define a group homomorphism. Let (G, *), (G', *') be groups with identity elements e, e' respectively. Show that f: G → G', defined by f(x) = e', for all x ∈ G, is a group homomorphism.
- 9) Let G = {a, a², a³, a⁴, a⁵ = e} be the cyclic group generated by a. Show that f: (Z₅, +₅) → G, defined by f(n) = aⁿ, for all n ∈ Z₅, is a group homomorphism. Find Ker(f).
- 10) Let $f : (R, +) \rightarrow (R, +)$ be defined by f(x) = x + 1, for all $x \in R$. Is f a group homomorphism? Why?
- 11) Let G = {1, -1, i, -i} be a group under multiplication and $Z'_8 = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ a group under multiplication modulo 8. Show that G and Z'_8 are not isomorphic.
- 12) Show that the group $(Z_4, +_4)$ is isomorphic to the group (Z'_5, \times_5) .
- 13) Let $f: G \to G'$ be a group homomorphism. If $a \in G$ and o(a) is finite then show that o(f(a)) | o(a).
- 14) Let $f : G \to G'$ be a group homomorphism If H' is a subgroup of G' then show that $Ker(f) \subseteq f^{-1}(H')$.
- 15) Let f: G → G' be a group homomorphism and o(a) is finite, for all a ∈ G. If f is one one then show that o(f(a)) = o(a).

16) Let $f: G \to G'$ be a group homomorphism and o(f(a)) = o(a), for all $a \in G$. Show that f is one one.

2 : Multiple choice Questions of 1 marks

Choose the correct option from the given options.

1) Every finite cyclic group of order n is isomorphic to ---

a) (Z, +) b) $(Z_n, +_n)$ c) (Z_n, \times_n) d) (Z'_n, \times_n)

- 2) Every infinite cyclic group is isomorphic to --
 - a) (Z, +) b) $(Z_n, +_n)$ c) (Z_n, \times_n) d) (Z'_n, \times_n)
- 3) Let $f: G \to G'$ be a group homomorphism and $a \in G$. If o(a) is finite then - -

a) $o(f(a)) = \infty$	b) $o(f(a)) \mid o(a)$.
c) $o(a) o(f(a))$	d) $o(f(a)) = 0$.

4) A group $G = \{1, -1, i, -i\}$ under multiplication is not isomorphic to -

a) $(Z_4, +_4)$	b) G
c) (Z'_{8}, \times_{8})	d) none of these.

5) Let $f: G \to G'$ be a group homomorphism. If G is abelian then f(G) is

a) non abelian	b) abelian		
c) cyclic	d) empty set		

6) Let $f: G \to G'$ be a group homomorphism. If G is cyclic then f(G) is -

a) non abelian	b) non cyclic
c) cyclic	d) finite set

- -

7) A onto group homomorphism $f: G \to G'$ is an isomorphism if Ker(f) =

a) ϕ b) {e) c) {e'} d) none of these

8) A function f : G → G , (G is a group) , defined by f(x) = x-1, for all x ∈ G, is an automorphism if and only if G is - - -

a) abelian b) cyclic c) non abelian d) $G = \phi$.

3 : Questions of 4 marks

- 1) Let $f: G \to G'$ be a group homomorphism . prove that f(G) is a subgroup of G'. Also prove that if G is abelian then f(G) is abelian.
- Let f: G → G' be a group homomorphism. Show that f is one one if and only if Ker(f) = {e}.
- 3) Let G = {1, -1, i, -i} be a group under multiplication. Show that f: (Z, +) → G, defined by f(n) = iⁿ, for all n ∈ Z, is onto group homomorphism. Find Ker(f).
- 4) Let G = {1, -1, i, -i} be a group under multiplication. Show that f: (Z, +) → G, defined by f(n) =(-i)ⁿ, for all n ∈ Z, is onto group homomorphism. Find Ker(f).
- 5) Let $G = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} : a, b \in \mathbb{R}, a^2 + b^2 \neq 0 \right\}$ be a group under multiplication and C^* be a group of non zero complex numbers under multiplication. Show that $f : C^* \to G$ defined by $f(a + ib) = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$, for

all $a + ib \in C^*$, is an isomorphism.

- Define a group homomorphism. Prove that homomorphic image of a cyclic group is cyclic.
- 7) Let $f: G \to G'$ be a group homomorphism. Prove that
 - i) f(e) is the identity element of G['], where e is the identity element of G
 - ii) $f(a^{-1}) = (f(a))^{-1}$, for all $a \in G$
 - iii) $f(a^m) = (f(a))^m$, for all $a \in G$, $m \in Z$.

- 8) Let (C^{*}, ·).(R^{*}, ·) be groups of non zero complex numbers, non zero real numbers respectively under multiplication. Show that f : C^{*} → R^{*} defined by f(z) = | z |, for all z ∈ C^{*}, is a group homomorphism. Find Ker(f). Is f onto? Why?
- 9) Let (C^{*}, ·), (R^{*}, ·) be groups of non zero complex numbers, non zero real numbers respectively under multiplication. Show that f : C^{*} → R^{*} defined by f(z) = | z̄ |, for all z ∈ C^{*}, is a group homomorphism. Find Ker(f). Is f onto? Why?

10)Let G = {1, -1} be a group under multiplication. Show that $f: (Z, +) \rightarrow$ G defined by $f(n) = \begin{cases} 1 & , \text{ if } n \text{ iseven} \\ -1 & , \text{ if } n \text{ is odd} \end{cases}$

is onto group homomorphism. Find Ker(f).

- 11)Let (R^+, \cdot) be a group of positive reals under multiplication. Show that f : $(R, +) \rightarrow R^+$ defined by $f(x) = 2^x$, for all $x \in R$, is an isomorphism.
- 12) Let (R^+, \cdot) be a group of positive reals under multiplication. Show that f :

 $(R, +) \rightarrow R^+$ defined by $f(x) = e^x$, for all $x \in R$, is an isomorphism.

- 13) If $f: G \rightarrow G'$ is an isomorphism and $a \in G$ then show that o(a) = o(f(a)).
- 14) Prove that every finite cyclic group of order n is isomorphic to $(Z_n, +_n)$.
- 15)Prove that every infinite cyclic group is isomorphic to (Z, +).
- 16)Let G be a group of all non singular matrices of order 2 over the set of reals and R^* be a group of all nonzero reals under multiplication. Show that $f: G \rightarrow R^*$, defined by f(A) = |A|, for all $A \in G$, is onto group homomorphism. Is f one one? Why?
- 17) Let G be a group of all non singular matrices of order n over the set of reals and R^* be a group of all nonzero reals under multiplication. Show that $f: G \rightarrow R^*$, defined by f(A) = |A|, for all $A \in G$, is onto group homomorphism.

- 18) Let R^* be a group of all nonzero reals under multiplication. Show that f : $R^* \rightarrow R^*$, defined by f(x) = |x|, for all $x \in R^*$, is a group homomorphism. Is f onto? Justify.
- 19) Prove that every group is isomorphic to it self. If G_1 , G_2 are groups such that $G_1 \cong G_2$ then prove that $G_2 \cong G_1$.
- 20) Let G_1 , G_2 , G_3 be groups such that $G_1 \cong G_2$ and $G_2 \cong G_3$. Prove that $G_1 \cong G_3$.
- 21)Show that $f: (C, +) \rightarrow (C, +)$ defined by f(a + ib) = -a + ib, for all $a + ib \in C$, is an automorphism.
- 22)Show that $f: (C, +) \rightarrow (C, +)$ defined by f(a + ib) = a ib, for all $a + ib \in C$, is an automorphism.
- 23) Show that $f: (Z, +) \rightarrow (Z, +)$ defined by f(x) = -x, for all $x \in Z$, is an automorphism.
- 24) Let G be an abelian group. Show that $f: G \to G$ defined by $f(x) = x^{-1}$, for all $x \in G$, is an automorphism.
- 25)Let G be a group and $a \in G$. Show that $f_a : G \to G$ defined by $f_a(x) = axa^{-1}$, for all $x \in G$, is an automorphism.
- 26)Let G be a group and $a \in G$. Show that $f_a : G \to G$ defined by $f_a(x) = a^{-1}xa$, for all $x \in G$, is an automorphism.
- 27) Let $G = \{a, a^2, a^3, \dots, a^{12} (= e)\}$ be a cyclic group generated by a. Show that $f : G \to G$ defined by $f(x) = x^4$, for all $x \in G$, is a group homomorphism. Find Ker(f).
- 28)Let $G = \{a, a^2, a^3, \dots, a^{12} (= e)\}$ be a cyclic group generated by a. Show that $f : G \to G$ defined by $f(x) = x^3$, for all $x \in G$, is a group homomorphism. Find Ker(f).
- 29) Show that f: (C, +) → (R, +) defined by f(a + ib) = a, for all a + ib ∈
 C, is onto homomorphism. Find Ker(f).

30) Show that homomorphic image of a finite group is finite. Is the converse true? Justify.

Unit – IV

1 : Questions of 2 marks

- In a ring (Z, ⊕, ⊙), where a ⊕ b = a + b 1 and a ⊙ b = a + b ab, for all a, b ∈ Z, find zero element and identity element.
- 2) Define an unit. Find all units in $(Z_6, +_6, \times_6)$.
- 3) Define a zero divisor. Find all zero divisors in $(Z_8, +_8, \times_8)$.
- 4) Let R be a ring with identity 1 and $a \in R$. Show that

i)
$$(-1)a = -a$$
 ii) $(-1)(-1) = 1$

- 5) Let R be a commutative ring and a , $b \in R$. Show that $(a b)^2 = a^2 2ab + b^2$.
- 6) Let (Z[√-5], +, ·) be a ring under usual addition and multiplication of elements of Z[√-5]. Show that Z[√-5] is a commutative ring. Is 2 + 3√-5 a unit in Z[√-5]?
- 7) Let $\overline{m} \in (Z_n, +_n, \times_n)$ be a zero divisor. Show that m is not relatively prime to n, where n > 1.
- 8) If m ∈ (Z_n, +_n, ×_n) is invertible then show that m and n are relatively prime to n, where n > 1.
- 9) Let n > 1 and 0 < m < n. If m is relatively prime to n then show that $\overline{m} \in (Z_n, +_n, \times_n)$ is invertible.
- 10) Let n > 1 and 0 < m < n. If m is not relatively prime to n then show that $\overline{m} \in (Z_n, +_n, \times_n)$ is a zero divisor.
- 11) Show that a field has no zero divisors.
- 12)Let R be a ring in which $a^2 = a$, for all $a \in R$. Show that a + a = 0, for all $a \in R$.

- 13)Let R be a ring in which $a^2 = a$, for all $a \in R$. If a, $b \in R$ and a + b = 0, then show that a = b.
- 14)Let R be a commutative ring with identity 1. If a , b are units in R then show that a⁻¹ and ab are units in R.
- 15) In $(Z_{12}, +_{12}, \times_{12})$ find (i) $(\bar{3})^2 +_{12} (\bar{5})^{-2}$ (ii) $(\bar{7})^{-1} +_{12} \bar{8}$. 16) In $(Z_{12}, +_{12}, \times_{12})$ find (i) $(\bar{5})^{-1} - \bar{7}$ (ii) $(\bar{11})^{-2} +_{12} \bar{5}$.

2 : Multiple choice Questions of 1 marks

Choose the correct option from the given options.

- 1) $R = \{\pm 1, \pm 2, \pm 3, - \}$ is not a ring under usual addition and multiplication of integers because -
 - a) R is not closed under multiplication
 - b) R is not closed under addition
 - c) R does not satisfy associativity w.r.t. addition
 - d) R does not satisfy associativity w.r.tmultiplication
- 2) Number of zero divisors in $(Z_6, +_6, \times_6) = --$
 - a) 0 b) 1 c) 2 d) 3
- 3) $(Z_{43}, +_{43}, \times_{43})$ is --
 - a) both field and integral domain
 - b) an integral domain but not a field
 - c) a field but not an integral domain
 - d) neither a field nor an integral domain

4) In
$$(\mathbb{Z}_9, +_9, \times_9)$$
, 6 is - - -

- a) a zero divisor b) an invertible element
- c) a zero element d) an identity element
- 5) Every Boolean ring is -
 - a) an integral domain b) a field
 - c) a commutative ring d) a division ring

\sim	TO .	• .	•	•	D	. 1	•	
6)	11 2 19	a unit	1n a	rıno	R	then	2 15	
<i>v</i> ,	11 u 15	u unn	iii u	ing	T/	unon	u 15	

- a) a zero divisor b) an identity element
- c) a zero element d) an invertible element

7) If R is a Boolean ring and $a \in R$ then - - -

a) a + a = a b) $a^2 = 0$ c) $a^2 = 1$ d) a + a = 08) Value of $(\overline{7})^2 - \overline{7}$ in $(\mathbb{Z}_8, +_8, \times_8)$ is ---a) $\overline{6}$ b) $\overline{4}$ c) $\overline{2}$ d) $\overline{0}$

3 : Questions of 6 marks

- 1) a) Define i) a ring ii) an integral domain iii) a division ring.
 - b) Show that the set $R = \{0, 2, 4, 6\}$ is a commutative ring under addition and multiplication modulo 8.
- 2) a) Define i) a commutative ring ii) a field iii) a skew field.
 - b) In 2Z, the set of even integers, we define a + b = usual addition of a and b and $a \odot b = \frac{ab}{2}$. Show that $(2Z, +, \odot)$ is a ring.
- a) Define i) a ring with identity element ii) an unit element iii) a Boolean ring.
 - b) Let (2Z, +) be an abelian group of even integers under usual addition. Show that (2Z, +, ⊙) is a commutative ring with identity 2, where a ⊙ b = ^{ab}/₂, for all a, b ∈ 2Z.

4) a) Define i) a zero divisor ii) an invertible element iii) a field.

b) Let (3Z, +) be an abelian group under usual addition where $3Z = \{3n \mid n \in Z\}$. Show that $(3Z, +, \odot)$ is a commutative ring with identity 3, where a \odot b = $\frac{ab}{3}$, for all a, b $\in 3Z$.

- 5) a) Let $(R, +, \cdot)$ be a ring and a, b, $c \in R$. Prove that i) $a \cdot 0 = 0$ ii) (a - b)c = ac - bc.
 - b) Show that (Z, \oplus, \odot) is a ring, where $a \oplus b = a + b 1$ and $a \odot b = a + b ab$, for all $a, b \in Z$.
- 6) a) Let $(R, +, \cdot)$ be a ring and a, b, $c \in R$. Prove that

i) $a \cdot (-b) = -(ab)$ ii) a (b - c)c = ab - ac.

b) Show that the abelian group $(Z[\sqrt{-5}], +)$ is a ring under multiplication

$$(a + b\sqrt{-5})(c + d\sqrt{-5}) = ac - 5bd + (ad + bc)\sqrt{-5}$$

- 7) a) Define i) a division ring ii) an unit element iii) an integral domain
 - b) Show that the abelian group (Z[i], +) is a ring under multiplication (a + bi)(c + di) = ac - bd + (ad + bc) i, for all a + bi, $c + di \in Z[i]$.
- 8) a) Let R be a ring with identity 1 and $(ab)^2 = a^2b^2$, for all $a, b \in R$. Show that R is commutative.
 - b) Show that the abelian group $(Z_n, +_n)$ is a commutative ring with identity $\overline{1}$ under multiplication modulo n operation.
- 9) a) Show that a ring R is commutative if and only if $(a + b)^2 = a^2 + 2ab + b^2$, for all a, $b \in R$.
 - b) Show that $Z[i] = \{a + ib \mid a, b \in Z\}$, the ring of Gaussian integers, is an integral domain.
- 10)a) Show that a commutative ring R is an integral domain if and only if a, b, c \in R, a \neq 0, ab = ac \Rightarrow b = c.
 - b) Prepare addition modulo 4 and multiplication modulo 4 tables. Find all invertible elements in Z₄.
- 11) a) Show that a commutative ring R is an integral domain if and only if $a, b \in R, ab = 0 \Rightarrow$ either a = 0 or b = 0.
 - b) Prepare addition modulo 5 and multiplication modulo 5 tables. Find all invertible elements in Z₅.

- 12)a) Let R be a commutative ring. Show that the cancellation law with respect to multiplication holds in R if and only if a , b ∈ R, ab = 0 ⇒ either a = 0 or b = 0.
 - b) Prepare a multiplication modulo 6 table for a ring (Z_6 , $+_6$, \times_6). Hence find all zero divisors and invertible elements in Z_6 .
- 13 a) For n > 1, show that Z_n is an integral if and only if n is prime.
 - b) Let $R = \left\{ \begin{bmatrix} z & w \\ -\overline{w} & \overline{z} \end{bmatrix} : z, w \in C \right\}$ be a ring under addition and multiplication, where $C = \{a + ib \mid a, b \in R\}$. Show that R is a divison ring.
- 14 a) Prove that every field is an integral domain. Is the converse true? Justify.
 - b) Which of the following rings are fields? Why?

i) $(Z, +, \times)$ ii) $(Z_5, +_5, \times_5)$ iii) $(Z_{25}, +_{25}, \times_{25})$.

- 15) a) Prove that every finite integral domain is a field.
 - b) Which of the following rings are integral domains? Why?

i) $(2Z, +, \times)$ ii) $(Z_{50}, +_{50}, \times_{50})$ iii) $(Z_{17}, +_{17}, \times_{17})$.

- 16 a) Prove that a Boolean ring is a commutative ring.
 - b) Give an example of a division ring which is not a field.
- 17 a) for n > 1, show that Z_n is a field if and onle if n is prime.
 - b) Let $R = \{a + bi + cj + dk \mid a, b, c, d \in R\}$, where $i^2 = j^2 = k^2 = -1$, ij = k = -ji, jk = i = -kj, ki = j = -ik. Show that every nonzero element of R is invertible.
- 18 a) If R is a ring and a, $b \in R$ then prove or disprove $(a + b)^2 = a^2 + 2ab + b^2$.
 - b) Show that R⁺, the set of all positive reals forms a ring under the following binary operations :

$$a \oplus b = ab \text{ and } a \odot b = a^{\log_5 b}$$
, for all $a, b \in \mathbb{R}^+$.

- 19) a) Define i) a ring ii) a Boolean ring iii) an invertible element.
 - b) Let p be a prime and (pZ, +) be an abelian group under usual addition, show that $(pZ, +, \odot)$ is a commutative ring with identity element p where $a \odot b = \frac{ab}{p}$, for all $a, b \in pZ$.
- 20) a) Define i) a ring with identity element ii) a commutative ring iii) a zero divisor.
 - b) Show that R⁺, the set of all positive reals forms a ring under the following binary operations :

$$a \oplus b = ab \text{ and } a \odot b = a \frac{\log_7 b}{b}$$
, for all $a, b \in R^+$.