NORTH MAHARASHTRA UNIVERSITY, JALGAON

QUESTION BANK FOR S.Y.BSc. - BIOTECHNOLOGY

PAPER

<u>BT 211 & 212</u>

CELL BIOLOGY AND BASIC METABOLISM

SEMESTER- FIRST

(WITH EFFECT FROM JUNE, 2008)

NORTH MAHARASHTRA UNIVERSITY, JALGAON

QUESTION BANK OF BIOTECHNOLOGY

CLASS- S.Y.B.Sc SEMESTER-I

PAPER: BT 211- CELL BIOLOGY AND BASIC METABOLISUM

Unit I: Cell Division & Cell Ageing Q.1 Question for 2 Marks (Objective). 1). ----- divide cell cycle into four phases a) Darnell b) Bottino d) Howard C) Hapler 2). M phase of cell cycle is also called -----a) Meosis b) Mitotic c). Median d) Post Median 3) During G2 phase synthesis of ------ continuous a) RNA b) r RNA C) m RNA d) t RNA Interphase of cell division includes following phases------. 4). G1 Phase b) G2 phase a) S phase d) All the above. C) 5). G1 phase of Cell cycle involved ------. RNA synthesis DNA replication. a) b) c) Division of cell d) None of these. 6) S phase is carried out by------**RNA** synthesis DNA replication. a) b) C) Protein synthesis d) none of these. 7) Mitotic cell division occurred in------. Somatic cell b) Germ cell. a) Both a and b d) None of these. C) 8) Condensation of chromosome is carried in-----. a) Prophase Metaphase b) C) Anaphase d) Telophase

9) Equatorial plate formation is a result of-----.

	a)	Prophase	b)	Metaphase			
	C)	Anaphase	d)	Telophase.			
10)	Cross	sing over is observe	d in				
	a)	Pachytene	b)	Leptotene			
	C)	Zygotene	d)	Diplotene.			
11)	Progr	ammed cell death is	s called	as			
	a)	Apoptosis	b)	Cell ageing.			
	C)	Cell lysis	d)	None of the	se.		
12)	Chias	mata formation take	es plac	e in			
	a)	Mitosis	b)	Meiosis			
	C)	Interphase	d)	None of the	se.		
13)	Zygot	ene is characterized	d by				
	a)	Chiasmata formati	on	b) Cros	sing over		
	C)	Pairing of homolog	jous ch	iromosomes	d) Tetrad formation		
*	Ques	tion for 2 Marks (S	hort A	nswer)			
* 1)	Ques Define	-	hort A	nswer)			
		-		nswer) nase c)	G2 phase		
	Defin a)	e:	M pl	nase c)	G2 phase		
1)	Defin a) Expla	e: Cell cycle b)	M pl	nase c)	G2 phase		
1) 2)	Define a) Expla Expla	e: Cell cycle b) in cell cycle with de	M pl	nase c)	G2 phase		
1) 2) 3)	Define a) Expla Expla Define	e: Cell cycle b) in cell cycle with de in interphase.	M pl finition	nase c)	G2 phase		
1) 2) 3) 4)	Define a) Expla Expla Define Desci	e: Cell cycle b) in cell cycle with de in interphase. e meiosis and class	M pl finition ify it. se.	nase c)	G2 phase		
1) 2) 3) 4) 5)	Define a) Expla Expla Define Desci	e: Cell cycle b) in cell cycle with de in interphase. e meiosis and class ribe Pachytene phas	M pl finition ify it. se.	nase c)	G2 phase		
1) 2) 3) 4) 5) 6)	Define a) Expla Expla Define Expla Define	e: Cell cycle b) in cell cycle with de in interphase. e meiosis and class ribe Pachytene phas in significance of me	M pl finition ify it. se.	nase c)	G2 phase		
1) 2) 3) 4) 5) 6) 7)	Define a) Expla Expla Define Expla Define Define	e: Cell cycle b) in cell cycle with de in interphase. e meiosis and class ribe Pachytene phas in significance of me e apoptosis.	M pl finition ify it. se.	nase c)	G2 phase		

- 10) Define-Mitotic spindle.
- 11) Comment on morphological changes in apoptosis.
- 12) Describe chiasmata formation.
- 13) Explain cytokinesis.
- 14) Define and explain apoptosis.
- 15) Draw cell cycle and explain it briefly.

Question for 3 Marks

- 1) What is concept of cell Apoptosis?
- 2) Give the significance of mitosis.
- 3) Comment on sub- cellular mechanism of ageing.
- 4) Comment on prophase II and metaphase II.
- 5) Write a note on telophase and cytokinesis.
- 6) Discuss about free radical theory of cell ageing.
- 7) Discuss briefly cell apoptosis.

Question for 4 Marks

- 1) Comment on Interphase in Cell Division.
- 2) Describe anaphase of mitosis.
- 3) Describe meiotic division II.
- 4) What is Apoptosis? Give its importance.
- 5) Describe briefly, cell ageing.
- 6) Comment on metaphase.
- 7) Comment on prophase.
- 8) Describe 'G1' Phase and 'S' phase
- 9) What is cell cycle? Explain briefly the stages of cell cycle
- 10) Enlist the stages of cell cycle? Comment on longest stage of Cell Cycle?
- 11) What basic activities occurring during mitosis?
- 12) Compare: Mitosis & Meiosis.
- 13) Compare the cytogenic view & chromatin in interphase in Mitosis & Meiosis.

Question for 6 Marks

- 1) Explain mitosis in detail.
- 2) Describe meiotic division I along with diagramme.
- 3) Enlist the differences between meiosis and mitosis.
- 4) Describe theories of cell ageing.
- 5) Comment on somatic mutation theory.
- 6) Comment on free radical theory.
- 7) Comparison & Significant of mitosis & meiosis.

 What is cell division? Discuss the use & biological significance of each type of cell division.

Unit II: Cell Membrane and Transport						
*	Q.1 C	Question for 2 Marks	s (Obje	ective).		
1)	provides rigidity to cell membrane.					
	a)	Glycerol	b)	Sterol		
	c)	Phospholipids	d)	All the above		
2)	Trans	port is a main function	on of			
	a)	Plasma membrane	b)	Cell wall		
	C)	Golgi complex	d)	Ribosome		
3)		type of lipid prese	nt in pl	asma membrane.		
	a)	Lecithin	b)	Cephalin		
	C)	Glycerol	d)	Sphingomyelin		
4)	Moleo	cules get transported	out is	called as		
	a)	Exocytosis	b)	Endocytosis		
	C)	Pinocytosis	d)	Phagocytosis.		
5)	Solid	particles engulfed by	[,] plasm	a membrane are called as		
	a)	Exocytosis	b)	Endocytosis		
	c)	Pinocytosis	d)	Phagocytosis.		
6)		enhances stability	of lipid	bilayer and reduces their		
	perm	eability.				
	a)	Cholesterol	b)	Cephalin		
	C)	Glycerol	d)	Sphingomyelin.		
7)	Clath	rin formation takes pl	ace in-			
	a)	Exocytosis	b)	Endocytosis		
	C)	Pinocytosis	d)	Receptor mediated Endocytosis.		
8)	t	ransport required me	etabolic	energy for its transport.		
	a)	Active transport	b)	Passive transport.		
	c)	Both a & b	d)	Antiport.		

9) Na-K ATPase pump is example of-----type of transport.

- a) Active transport b) Passive transport.
- c) Symport d) Antiport.
- 10) Chloride shift is example of-----type of transport.
 - a) Active transport b) Passive transport.
 - c) Symport d) Antiport.
- 11) All cell are bounded by a thin membrane -----.
 - a) Lipoprotein b) Plasma lemma
 - c) Jelly membrane d) cell membrane
- 12) Membrane contain about ------ protein-----carbohydrate dry weight.
 - a) 30% &20% b) 40% &20%
 - c) 10% &5% d) 60% & 40%.
- 13) ------ substance passed easily through cell membrane.
 - a) Lipid b) Fat soluble
 - c) Protein d) Amino acid.
- 14) The Pinocytosis was first observe by-----in amoeba.
 - a) Lewis b) Alberts
 - c) Edward d) Rothman

Question for 2 Marks (Short Answer)

- 1) Comment on distribution of lipid.
- 2) Describe structure of cell membrane.
- 3) Explain the mechanism of Exocytosis.
- 4) Describe the structure of flagella with Diagramme.
- 5) Comment on Danielli-Davson model.
- 6) Describe briefly Phagocytosis.
- 7) Explain Na-K pump.
- 8) Comment on membrane models.
- 9) What is active transport?
- 10) What is passive transport?
- 11) Describe role of flagella.
- 12) Explain simple diffusion.
- 13) Define active and passive transport.
- 14) Enlist different lipid present in membrane.

- 15) Comment on cilia.
- 16) Comment on transport system of glucose.
- 17) Describe Phagocytosis briefly.
- 18) Role of micro filament.

✤ Question for 3 Marks.

- 1) Explain Cytoskeltal element with help of microtubles.
- 2) Comment on active transport membrane.
- 3) What is membrane lipid?
- 4) Structure of cell membrane.
- 5) Describe organization of cell membrane.
- 6) Comment on receptor mediated Endocytosis.
- 7) Give Antigenic structure account of membrane lipid.
- 8) Explain passive transport briefly.
- 9) Describe the structure of lipid bilayer.
- 10) Organization of cell membrane.
- 11) Comment on Danielle model.
- 12) Give the difference between Phagocytosis and Pinocytosis

Question for 4 Marks

- 1) Comment on detail of Microtubule.
- 2) Explain features of active transport.
- 3) Explain phenomenon of osmosis.
- 4) Define and explain Exocytosis.
- 5) Describe microfilament.
- 6) Define and explain endocytosis.
- 7) Explain phagocytosis with its mechanism.
- 8) Describe flagella along with functions.
- 9) Explain Ca-ATPase pump.
- 10) Comment on lipid bilayer model.
- 11) How you will explain the primary active transport.
- 12) Comparison between active and passive transport.
- 13) Comparison between Endocytosis & Exocytosis.
- 14) Structure of micro filament.

15) Why Danielle model called sandwich model explain.

Question for 6 Marks

- 1) Explain facilited diffusion with example.
- 2) Explain Endocytosis with its type.
- 3) Describe active transport with example.
- 4) Describe the models of membrane.

Unit III: Biocatalysts

Q.1 Question for 2 Marks (Objective). Enzymes are -----in nature. 1) Acidic Proteinous a) C) C) Basic d) Neutral 2) Enzymes are categorized in to -----type. a) 1 C) 3 2 4 b) d) 3) The enzymes are classified into----- major groups. 5 a) C) 6 b) 10 d) 12 4) Enzyme shows maximum activity at temperature------37⁰-45⁰C 60⁰-75⁰C a) C) 85⁰-95⁰C $10^{0}-20^{0}C$ d) b) Ligases enzyme are also called as------5) a) Lysases C) Cellulase b) Proteases d) Synthetase ----- is the Unit of enzyme activity 6) a) Gm C) Farady d) S b) ketal Lock and key model was proposed by------. 7) a) Koshland b) **Emil Fishcer** Parlor C) d) Arora

8) As pH of an Enzyme is increases, rate of reaction is------.

	a)	Decrease	b)	Increase
	C)	Steady state	d)	All of the above
9)	The p	protein part of a conju	gated	enzyme is called as
	a)	Apo enzyme	b)	Isozyme
	c)	Coenzyme	d)	b & d
10)	Enzyr	mes are also called a	S	
	a)	Biocatalyst	b)	activators
	C)	Key of life	d)	all the above
11)	In 183	33 he word enzyme u	ise by ·	
	a)	Buchner	b)	Kihne
	c)	James sumner	d)	Duclax
12)		Is a good example	of Oxio	doreductase class.
	a)	Fumarase	b)	Chemotrypsin
	C)	L & D amino acid	d) Suo	ccinate thiokinase
13)	Enzyr	me from fungi & plant	ts are a	active incondition.
	a)	Basic	b)	Acidic
	c)	Neutral	d)	Alkaline
14)		is good example	of Meta	alloenzymes.
	a)	Copper	b)	Silver
	C)	Iron	d)	Aluminum
15)	A sub	stance which bind wi	ith enzy	yme and bring a decrease in
	cata	lytic activity called		
	a)	Activator	b)	Inhibitor
	c)	Allosteric	d)	None of these
16)	Optim	•		f the enzyme is between
	a)	40°- 42°c	b)	30°- 35°c
	c)	40°-45°c	d)	50°-52°c
17)	The L	ock & Key model wa	• •	•
	a)	Karl Fischer	b)	Emil Fischer
	c)	Sweden Fischer	,	Koshland
18)		ed fit theory was prop		•
	a)	1950	b)	1953
	c)	1958	d)	1957
19)	Koshl	ands model also exp	lain the	e action of

- a) Reversible Inhibition b) Competitive inhibition
- c) Non competitive inhibition d) Allosteric inhibition
- 20) Km stands for-----constant.
 - a) Koshland Menten b) Michealis Menten
 - c) Khune Menten d) None of these

Question for 2 Marks (Short Answer)

- 1) Give the industrial significance of Protease.
- 2) Give the industrial significance of Amylase.
- 3) What are Apoenzymes & coenzymes?
- 4) Enlist the functions of the enzymes?
- 5) What is Lineweaver Burk equation?
- 6) Give the graphical presentation of the enzyme concentration.
- 7) Importance of temperature in enzymology.
- 8) What are the Isoenzymes?
- 9) Give the functions of the enzyme in any biochemical reaction.
- 10) Graphically represent effect of the pH, Temperature.
- 12) What is Activator? Explain with suitable example.
- 13) What is Inhibitor? Explain with suitable example
- 14) Define β -oxidation.
- 15) Comment on Decarboxylation process.
- 16) What is Transmethylation.
- 17) Enlist essential and non essential amino acid.

Question for 3 Marks

- 1) Definition of enzymes and add a note on its types.
- 2) What is the optimum temperature and the optimum pH of an enzyme?
- 3) What are coenzymes? Explain their characteristics.
- 4) What are the activators?
- 5) What is non-competitive inhibition?
- 6) How enzyme activity affect by PH?
- 7) Enlist the Importance of lipase.
- 8) Explain Koshland's model.

- 9) Comparison between competitive & non competitive inhibitors.
- 10) How Substrate concentration affect on enzyme?

Question for 4 Marks

- 1) Give the Michelis- Menten equation.
- 2) What is enzyme? Add a note on its nomenclature? Explain I.U.B.?
- 3) Explain the classification of the enzymes with examples?
- 4) Explain the mechanism of enzyme catalysis?
- 5) What are the significance of the enzyme concentration?
- 6) What is enzyme inhibition? State its types.
- 7) What are activators and inhibitors? Explain with suitable example.
- 8) Enlist the factors affecting enzyme activity.
- 9) State the applications of the proteases and the lipases.
- 10) What is Enzymology? Explain the concept of biocatalysts
- 11) What do you mean by essential amino acid? Add a note on biosynthesis of any one amino acid.
- 12) Explain biosynthesis of Proline?
- 13) Give the regulatory role of enzyme in Gluconeogenesis.
- 14) Explain transamination reaction on protein.

Question for 6 Marks

- 1) Give the classification of the enzymes with suitable examples
- 2) Explain the enzyme-substrate complex reaction.
- 3) What is optical specificity and the substrate specificity?
- 4) Explain feed back inhibition?
- 5) Discuss in detail β -oxidation of fatty acid .
- 6) Give the reaction in which oxaloacetic acid is converted in to citric acid
- 7) Discuss in detail Gluconeogenesis.
- 8) Explain protein degradation in details.

Unit IV: Metabolic Pathway

*	Q.1 Question for 2 Marks (Objective).				
1)	Glyce	colysis, Glycogenolysis is the example of			
	a)	Catabolism	c)	Anabolism	
	b)	β-oxidation	d)	Deamination	
2)	Emb	eden-Mayerhoff path	iway m	ieans	
	a)	Glycogenolysis	c)	TCA cycle	
	b)	Glycolysis	d)	Gluconeogenesis	
3)	Tran	samination is the pro	ocess o	of combination of&	
	a)	Transmethylation	and Me	ethylation	
	b)	Deamination and A	Aminati	ion	
	c)	Decarboxylation a	nd Car	boxylation	
	d)	β -oxidation and a	lpha-o>	kidation	
4)	Malli	c acid is converted to	o oxalo	acetic acid, in this stepnumber	
	of AT	P molecules are for	med.		
	a)	5	c)	12	
	b)	3	d)	4	
5)	TCA cycle involveno of enzymes.				
	a)	11	c)	7	
	b)	8	d)	15	
6)	Gluta	amate Pyruvate trans	samina	se is used in	
	a)	Decarboxylation	c)	Transmethylation	
	b)	Transamination	d)	Deamination	
7)	In De	ecarboxylation reaction	on, CO	2 is removed fromgroup.	
	a)	-COOH	c)	–CH3	
	b)	-SH	d)	–NH2	
8)	Valin	e is present in	ami	no acid.	
	a)	essential	c)	vitamins	
	b)	non-essential	d)	both a&b	
9)	Glyc	olysis is a pr	ocess.		
	a)	Anabolic	c)	Metabolic	
	b)	Catabolic	d)	Both b & d	
10)	Alph	a katadutaria D budi	ogono	as complex is formed in	

10) Alpha ketoglutaric D hydrogenase complex is formed in-----.

a) Glycolysis c) Decarboxylation

- b) Transmethylation d) Kreb Cycle
- 11) -----of the ATP is synthesized in Kreb cycle
 - a) 80-90% b) 65-70%
 - c) 40-55% d) 50-60%
- 12) Homocystein condenses with serine to form------.
 - a) glutamate- 5-semialdehyde. b) pyroline-5-carboxylate
 - c) Cystathionine d) none of these

Question for 2 Marks (Short Answer)

- 1) Give an Importance of Essential amino acids.
- 2) Mention the function of S-Adenosyl methionine.
- 3) Give the pathway of Gluconeogenesis.
- 4) Explain the role of Glucokinase
- 5) Explain-Cori Cycle.
- 6) Give the importance of Glycolysis cycle.
- 7) What is Transamination?
- 8) Diagramatically represent the TCA Cycle.
- 9) Enlist the stages where ATP formation takes place in TCA Cycle.
- 10) What is Oxidative Deamination?

✤ Question for 3Marks.

- 1) Give the features of Transamination.
- 2) Give the role of Glutamate dehydrogenase.
- 3) Give the list of enzymes involved in TCA Cycle.
- 4) What are Essential & Non essential amino acids?
- 5) Give the importance of catabolic pathway.

✤ Question for 4 Marks.

- 1) Give the biosynthesis of Glycine.
- 2.) What is Decarboxylation?
- 3) Give the features of Transmethylation.
- 4) Importance of ED Pathway.
- 5) Give the biosynthesis of Proline.

- 6) Give the mechanism of Transamination.
- 7) What is the Non Oxidative Deamination?
- 8) Give the significance of Transmethylation.
- 9) Give the importance of Gluconeogenesis.
- 10) In which location Gluconeogenesis occurs and give the importance of Gluconeogenesis.

✤ Question for 6 Marks.

- 1) Give the Energetics of TCA Cycle.
- 2) Give the Energetics of Glycolysis Cycle.
- 3) Explain the sequence of β -Oxidation.
- 4) Explain the synthesis of S-Adenosyl methionine.
- 5) What is Catabolism? Explain an account of Glycolysis.

NORTH MAHARASHTRA UNIVERSITY, JALGAON

QUESTION BANK OF BIOTECHNOLOGY

CLASS- S.Y.B.Sc SEMESTER-I

PAPER: BT 212- MOLECULAR BIOLOGY

Unit I: Genome Organization

*	Q.1 Que	stion for 2 Marks	s (Objective).				
1)	The n	The most conserved histones are					
	a)	H1 & H2A	b)	H2A & H2B			
	c)	H3 & H4	c)	H1 & H4.			
2)	The E	E- <i>coli</i> circular DN	A packaged into re	egion of cell called			
	a)	Nucleus	b)	Cytoplasm			
	c)	Nucleolus	d)	Nucleoid.			
3)	The p	orokaryotic transla	ation start with	initiation codon.			
	a)	UAG	b)	AUC			
	C)	AUG	d)	GUA.			
4)	The t	riplet of bases pre	esent on specific t	-RNA molecules are			
	a)	anticodon	b)	Synonyms			
	c)	codon	d)	Stop codon.			
5)	The c	The chromatin is more dispersed during					
	a)	Meiosis	b)	Interphase			
	C)	Mitosis	d)	M-Phase			
6)	The n	The nuclear DNA-protein complex is called					
	a)	Chromosome	b)	Nucleoprotein			
	C)	Chromatin	d)	None.			
7)		are non coding	sequence preser	nt in m-RNA molecules.			
	a)	Introns	b)	Stop sequence			
	C)	Exon	d)	None.			
8)		is due to less	stringent pairing	of third base of codon with			
	antico	odon.					
	a)	Degeneracy	b)	Mutation			
	C)	Wobbling	d)	Universality.			

- 9) The sequence of m-RNA transcribed & translated is known as.....
 - a) Non coding sequence b) Exon
 - c) Mid sequence d) Intron
- 10) is the distinct sequence of a DNA molecule forming part of chromosome.
 - a) Gene b) Chromatin.
 - c) Nucleotide d) Genome.
- 11) Nucleosome core particle contains a double stranded DNA fragment ofbase pairs.
 - a) 148 b) 144
 - c) 156 d) 146.

✤ Q.2 Question for 2 Marks (Short answer).

- 1) Define Nucleosomes.
- 2) Explain Histones protein?
- 3) Comment on concept of Gene.
- 4) Define Intron.
- 5) Comment on Exon as an important part of m-RNA.
- 6) Explain role of Non Histone proteins.
- 7) Define a) Chromatin b) Chromosome
- 8) Define Genetic code & Codon.
- 9) Explain degeneracy of genetic code.

✤ Q.3 Question for 3 Marks

- 1) Explain how Histine protein is important in DNA packaging?
- 2) What is Intron? Explain its types.
- 3) Comment on propeties of genetic code.
- 4) Discuss nucleosomes as fundamentle unit of DNA organization.
- 5) Comment on organization of Chromatin.

Q.4Question for 4 Marks

- 1) Distinguish between Histone & Non histone proteins.
- 2) Explain Degeneracy & wobbling of genetic code.

- 3) Explain detail structure of Nucleosome.
- 4) Discuss the importance of chromatin organization.
- 5) What is gene? Explain concept of gene briefly.
- 6) Compare: Chromatin organization in Prokaryote & Eukaryote.

✤ Q.5 Question for 6 Marks.

- 1) Describe nature & properties of genetic code.
- 2) What is splicing? Explain Intron with self splicing activity.
- 3) What is Chromatin? Explain its organizatin.
- 4) Explain the process of nucleosome formation.

Unit II: DNA Replication & Damage

✤ Q.1 Question for 2 Marks (Objective).

1)	enzyme relaxes the supercolling of double stranded DI				double stranded DNA		
	molecule						
	a)	DNA Polymerase		b)	Topoisoemerase		
	c)	DNA helicase		d)	DNA Ligase		
2)	The ag	gents that are responsible f	or bring	ging va	riation in genetic		
	messa	age, known as					
	a)	Unusual bases	b)	Tauto	mers		
	C)	Mutagen		d)	Isomers		
3)	DNA p	oolymerase – I enzyme was	isolate	ed by			
	a)	Beadle		b)	Tatum		
	C)	Kornberg		d)	Edman		
4)		react with bases that	contair	n amino	o group for mutation.		
	a)	Nitrous Acid	b)	Nitric	Acid		
	C)	Acetic Acid	d)	Ammo	onium Nitrate		
5)	DNA	photolyse enzyme absorb	s light	t of w	avelength ranging from		
		. to nm.					
	a)	100 to 300	b)	200 to	300		
	c)	350 to 450	d)	300 to	500		
6)	RNA p	primers are synthesized by	a temp	late inc	lependent enzyme		
	a)	dna B protein	b)	dna G	protein		

	C)	DNA polymerase-I	d)	Topoisomerases		
7)	Repl	acement of a purine resi	due by	a pyrimidine residue, the effect		
	termed as					
	a)	Mutation	b)	Substitution mutation		
	C)	Transversion	d)	Transition		
8)	DNA	polymerase – III add abou	ut	nucleotide / sec.		
	a)	1000	b)	100		
	c)	10000	d)	10		
9)		part of D	NA po	lymerase-III enzyme confers		
	proc	essivity				
	a)	core enzyme	b)	clamp loader		
	c)	both a & b	d)	clamp		
10)	In ba	ase excision repair	e	nzyme removes unusual bases.		
	a)	DNA glycolyses	b)	DNA photolyse		
	C)	DNA ligase	d)	AP endonuclease		
11)		protein brings ter	rminatio	n of DNA replication.		
	a)	stop	b)	tus		
	C)	single strand binding	d)	ter		
12)		is known as long	patch r	epair.		
	a)	Mismatch repair	b)	Nucleotide excision repair		
	C)	Direct repair	d)	Base excision repair		
*	Q.2	Question for 2 marks eac	ch			
1)	Defir	ne leading & lagging strand	d.			
2)	Expl	ain role of DNA helicase.				
3)	Comment on action on DNA ligase.					
4)	Expl	ain termination event in DN	VA replic	cation.		
5)	Defir	ne substitution mutation wi	th sub ty	ypes.		
6)	Drav	v a diagram of Okazaki fra	gment fo	ormation.		
7)	Com	ment on role of dnaA & dn	aB prot	ein in DNA replication.		
8)	Expl	ain briefly process of Alkyl	ation.			
9)	Com	ment on direct repair mecl	hanism.			
10)	Give	role of DNA glycolyses &	AP end	onuclease in base excision		
	repa	ir.				

Q.3 Question for 3 marks each

- 1) What is oxidative deamination? Explain it.
- 2) Explain activities of DNA polymerase I
- 3) Describe Okazaki fragment formation.
- 4) Comment on Direct repair mechanism.
- 5) Define Mutation & mutagenic agent
- 6) Compare: Natural & Artificial mutation.
- 7) Write a note on structure of DNA polymerase III
- 8) Explain the initiation event in prokaryotic DNA replication.
- 9) Define Chemical & Physical mutagen.
- 10) Add a note on DNA ligase.
- 11) Comment on alkylation as chemical mutation.
- 12) Explain role of DNA helicase & single strand binding protein in DNA replication.

✤ Q.4 Question for 4 marks.

- 1) Describe formation of Okazaki fragment.
- 2) Comment on formation of pysimidine dimer
- 3) Describe base excision repair
- 4) Write a note on structure & function of DNA polymerase I
- 5) What is mutation? Describe oxidative deamination.
- 6) Explain the role of primer & template in DNA replication.
- 7) Comment on mismatch repair
- 8) Add a note on Nucleotide excision repair.

✤ Q.5 Question for 6 marks.

- 1) Enlist the enzymes involved in prokaryotic DNA replication & comment on their function.
- Comment on initiation, elongation & termination events in prokaryotic DNA replication.
- 3) Describe long patch repair mechanism.
- 4) What is physical mutagen? Comment on pyrimidine dimer formation.

5) Distinguish between DNA polymerase I & DNA polymerase – II.

	U	nit III: Central dogma	a of M	olecular	Biology	
*	Q.1 0	Question for 2 Marks (Obj	ective).			
1)	Whic	Which of the enzyme is involved in Transcription.				
	a)	DNA Polymerase	b)	RNA Polyr	nerase	
	c)	Amino acyl tRNA transfer	ase	d) both	n b and c	
2)		RNA is exist in high ar	nount i	n cell.		
	a)	t-RNA	b)	m RNA		
	C)	r RNA	d)	none.		
3)	Thym	ine in DNA is replaced by .	I	ucleiotide i	n RNA.	
	a)	Guanine	b)	Cytosine		
	c)	Uracil	d)	Adenine.		
4)		is the starting codon	in trans	ation.		
	a)	AUG	b)	UAG		
	C)	UGA	d)	UAA.		
5)		is the first amino acid in p	proteins	of bacteria.		
	a)	N formyl methionine	b)	alanine		
	C)	glycine	d)	Leucine.		
6)	70S r	ibosome of bacteria are ma	de up (ofand	subunits.	
	a)	50s and 30s	b)	60s and 40)s	
	C)	40s and 30s	d)	60s and 10)s	
7)	Activa	ation of amino acid is carrie	d out b	/	enzyme.	
	a)	DNA Polymerase	b)	Amino acy	le tRNA synthatase	
	C)	peptidyl transferase	d)	both band	С.	
8)	EF Ti	and EF Ts complex of pro	teins a	e involved i	nstep of	
	trans	lation.				
	a)	Initiation	b)	Elongation		
	C)	Activation	d)	Terminatio	n.	
9)	IF 15	0 ribonucleotides are pres	sent on	mRNA, he	ncenumber	
	of am	ino acids on the protein.				
	a)	75		b) 50		
	C)	100		d) 150		

- 10) In eukaryotes enzyme involved in synthesis of mRNA in transcription.
 - a) RNA pol 1 b) RNA pol2
 - c) RNA pol 3 d) none.

✤ Q.2 Question for 2 Marks (Short answer).

- 1) Define transcription and what is the role of sigma factor.
- 2) Define translation and add a note on initiation and termination codon.
- 3) What is the role of RNA polymerase?
- 4) Draw the structure of mRNA and explain it.
- 5) Explain 80s ribosome of eukaryotes.
- 6) Write a note on initiation of translation.
- 7) Define transcription and translation.
- 8) Write a short note on 70s ribosome.

✤ Q.3 Question for 3 Marks

- 1) Explain the structure of RNA.
- 2) Write a short note on: a)Initiation codon b)termination codon.
- 3) What is the role of t-RNA in translation?
- 4) Write the short note on structure of ribosome.
- 5) Distinguish between 70s and 80s ribosome.

✤ Q.4 Question for 4 Marks

- 1) How protein elongation take place in translation?
- 2) Describe the process of translation termination?
- 3) Write a note on activation of amino acids.
- 4) Explain the difference between transcription and translation.
- 5) Explain the process of transcription.
- 6) Explain the structure of 70s and 80s ribosome.
- 7) Explain the role of a) IF1 b) IF2 c) IF 3 d) EF Tu & EF Ts e) RF
- 8) Distinguish between transcription and translation.

✤ Q.5 Question for 6 Marks

1) Explain the different properties of genetic code.

- 2) Explain the function of tRNA ,mRNA and rRNA.
- 3) Give an account of elongation process of translation.
- 4) Write a note on transcription.

Unit IV: Regulation of Gene Expression

✤ Q.1 Question for 2 Marks (Objective).

- 1) is a DNA sequence that regulates transcription of structural genes. a) Regulatory site b) Promoter site Operator site C) d) Repressor site. 2) Operon consists of cluster. Protein coding genes a) b) Structural genes C) Non coding genes d) none. 3) Regulatory protein is also known as of operon. Activator Inhibitor a) b) C) Repressor d) Controller. 4)is an inducer of the lac operon. cAMP a) Lactose b) C) ATP d) Allolactose. 5) The lac operon is a good example of a) Stringent control b) Negative control Positive control d) C) None. 6) Structural genes of operon encodes for..... a) Repressor molecule b) Inducer proteins C) Regulatory enzymes d) Activator molecule. Is binding site of RNA polymerase on sequence of DNA. 7) a) Operator b) Binding site d) C) Regulator Promoter. 8) type of mRNA transcribed by RNA pol. In Lac operon. Polycistronic Monocitronic a) b) Dicistronic d) Multivalent. C)
- 9) The enzyme.....hydrolyzes lactose to glucose & galactose.
 - a) Galactosidase b) Galactosidase.

- c) Lactose permease d) lac convertase
- 10) Concept of Operon wag given by&.....
 - a) Beadle & Tatum b) Broom & Gillbert
 - c) Jacob & Monad d) Richadr & Philip.

Q.2 Question for 2 Marks

- 1) Give the role of three enzyme of Lac-operon.
- 2) Comment on importance of cAMP in Lac operon.
- 3) What are structural genes? Explain their role.
- 4) Define Promoter & Operator.
- 5) What is operon? Explain its concept briefly.
- 6) Compare positive & negative regulation.
- 7) Give the role of allolactose in lac operon.
- 8) Give the importance of regulatory genes.
- 9) Enlist enzymes of lac operon & comment on their role.
- 10) Define polycistronic mRNA.

✤ Q.3 Question for 3 Marks.

- 1) Comment on concept of operon.
- 2) What is structural gene? Explain in details.
- 3) Describe Regulatory gene?
- 4) Comment on Lac repressor protein.
- 5) Explain promoter & operator of operon.
- 6) Compare Polycistronic & Monocistronic mRNA.
- 7) Give significance of an Inducer in Lac operon.
- 8) Define Operon? Enlist Enzymes of Lac operon with their role.

✤ Q.4 Question for 4 Marks.

- 1) Distinguish between Positive & Negative Regulation.
- 2) Comment on Regulation of operon.
- 3) What is Promoter? Explain its Components.
- 4) Explain Catabolite repression.
- 5) Describe operator & structural gene.

Q.5 Question for 6 Marks

- 1) Describe the detail mechanism of Lac operon.
- 2) Comment on impotrance of Catabolite activator protein in lac operon functioning.
- 3) Explain repression & induction mechanism of Lac operon.
- 4) Describe in detail regulation of Lac operon.