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1. Define DFA 

A Deterministic Finite Automata(DFA) is defined by five typles (Q,Σ,qo,F,δ) 

where 

Q - finite, non empty set of states 

Σ - an input alphabet 

qo ЄQ - the start state 

F⊆Q - a set of final states 

δ - a transition function 

2. Define NFA 

The Non-deterministic Finite Automata (NFA) is defined by a five tuple 

(Q,Σ,δ,qo,F) where 

Q - finite, non empty set of states 

Σ - an input alphabet 

qo ЄQ - the start state 

F⊆Q - a set of final states 

δ - a transition function 

3. Give the applications of Theory of computation. 

a. Compiler Design 

b. Robotics 

c. Artificial Intelligence 

d. Knowledge Engineering 

4. Give any four applications of Finite Automata  

a. It is an useful tool in the design of Lexical analyzer 

b. Compiler design 

c. Pattern matching 



d. File Searching Program 

5. Differentiate DFA with NFA 

A DFA is a deterministic Finite Automata where as NFA is a nondeterministic 

finite automata. In DFA, for a given state on a given input we reach to a deterministic 

and unique state. On the other hand, in NFA we may lead to more than one states for 

given input. The DFA is a subset of NFA. 

6. Define star closure and positive closure. Star closure –zero or more. Occurrence 

positive closure – one or more occurance 

(eg)  a* = {ε,a,aa,….}   

a+ = {a,aa,….} 

L
+
 = L* - {ε} 

 

7. Define NFA with ε-transition. Is the NFA’s with ε-transitions are more powerful than 

the NFA’s without ε-transition? 

The NFA with ε moves defined by 5tuple or quintyple as similarly as NFA, 

except δ (Q,Σ,δ,qo,F) with all components as before and δ: Qx(ΣU{ε}) = 2
Q
 

No, NFA with ε transition and NFA without ε-transition have the same power. 

8. Define Finite State Systems 

The finite automaton is a mathematical model of a system, with disrete inputs and 

outputs and a finite number of memory configuration called states. 

9. Find the ε-closure of the states 1, 3 

ε -closure(1) = {1,2,3,6,7,4} 

ε -closure(3) = {3,6,7,1,4,2} 
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10. Find the language accepted by the following automata 

 

 

 

 

 

 

 

 

Some of the accepted strings are baba,baab,abab,….. 

L={ω: ωЄ{a,b}*, strings contains even number of a's and even number of b's} 

11. Describe the following sets by regular expressions. 

(a) L1=the set of all strings of o's and 1's ending in 00. 

(b)L2=the set of all strings of o's and 1's beginning with o and ending with1, 

L1=(0+1)*00 

L2=0(0+1)*1 

 

12. Show that (r*)*=r* for a regular expressionr. (r*)*={ε,r,rr,….}=r* 

13. Describe in the English language, the sets represented by the following r.e. 

a(a+b)*ab 

The set of all strings over {a,b} starting with ‘a’ and ending with’ab’. 

14. Is it true the language accepted by NFA is different from the regular language? Justify 

your answer. 

No, it is false. For every regular expression r there exists a NFA with ε-transition 

that accepts L(r). 

15. From the given automata, M, Check whether the string ababba is accepted or not. 

The string is not accepted by given automata. 

16. Define Context-free Grammar. 

A CFG is a way of describing languages by recursive rules (or) substitution rules 

called productions. 
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A CFG is defined as G=(V,T,P,S) where 

V-Set of Non-terminals 

T-Set of terminals 

P-Production rule 

S-Start symbol 

17. Give the context free grammar for generating the ;amgiage 

L={a
n
b

2n
;n≥1}       

S→Sbb 

S→abbξ  

18. What is a ambiguous grammar? 

A context free grammar G is said to be ambiguous if it has more than one parse 

tree 

e.g E⇒id+id*id. 

19. Find the language generated by a CFG. G=({S},{0,1},{S→01ε, S→0S01S1S)   

S⇒0S0 S⇒1S1 

⇒01S10 ⇒10S01 

⇒0I0I0 ⇒10001 

L= { ω;ω is a palindrome} 

20. Consider G whose productions are S→aASa, A→SbASSba. Show that S⇒aabbaa 

S⇒Aas s→aAS 

⇒aSbAS A→SbA 

⇒aabAS S→a 

⇒aabbaS A→ba 

⇒aabbaa S→a           

21. Optimize the CFG given below by reducing the grammar. 

S→A0C1,A→B0110, C→ ε CD. Unit productions and useless symbols are 

A→B 

C→CD 

So we can remove this productions. Eliminate ε for C in S.   

S→A/01 



Since A → 01/10 

S → 01/10/01 

So, S→ 10/01 

22.    Define Pushdown Automata 

A. Pushdown Automata M is defined by (Q, ∑, Γ, δ, q0, z0, F) Where 

Q is a finite set of states 

∑ is an alphabet called input alphabet 

Γ is an alphabet called stack alphabet  

q0 ЄQ is the start state 

Z0 in Γ is the start symbol on stack 

F ⊆ Q is the set of final state 

δ is the transition relation 

(ie) δ is a subset of (Q x (∑∪{e} x Π 

23. Explain the following transition of PDA. 

δ (P,a, β) = (q,γ) 

((P, a, β), (q, γ) Єδ 

It means that we 

a. Read ‘a’ from the tape 

b. Pop the string β from the stack 

c. More from state p to state q. 

d. Push string γ on to stack 

24. Define the Instantaneous Description of PDA. 

A PDA goes from configuration to configuration when consuming input. 

Let P be a PDA P=(Q,∑,Γ,δ, q0,z0,F). 

The instantaneous descriptions of pushdown automata is such that (q1,aw,bx,) 

├(q2,w,yx) is possible if and only if (q2,y)€ δ(q,a,b)  

(ie) (q1,a1,a2,……an, zm,…..z2z1) ├(q2,a2,…..an,β,zm,…..z2) is possible if and only 

if δ(q1,a1,z1) contains (q2,β). 

25. What are the different types of language acceptances by PDA and define them,  

Two types 



1. Acceptance by final state 

2. Acceptance by empty stack 

 

1. Acceptance by final state. 

Let M=(Q,∑,Γ,δ, q0 ,z0,F) be a PDA. Then, the language accepted by M is the set 

of strings such that  

L(M)=(ω(q0,ω,z0) ├*(p, ε,γ),PЄF,γЄΓ*) 

2. Acceptance by empty stack 

Let N(M) be the language accepted by M is given by N(M)={ωq0,ω,z0) ├*(p, ε, 

ε) fsor some PEQ} 

26. Is it true that the language accepted by a PDA by empty stock or that of final states 

are different in language? 

No, because the languages accepted by PDA’s by final state are exactly the 

languages accepted by PDA’s by empty stack. 

27. What is the additional feature of PDA has when compared with NFA? Is PDA 

superior over NFA? Is PDA superior over NFA in the sense of language acceptance? 

Justify your answer: 

Additional features of PDA: 

a) PDA is eventually a FA with a stack. 

b) PDA can accept context free languages. 

c) PDA can recognize the context free languages which are not regular. 

Yes, PDA is superior over NFA in the sense of languages. 

28. A=({s0,p,q}, {a,b}, {a,b,e},δ,s0,e,{q}) where δ is δ(s0,a,e)={(p,a)},δ(p,a,a)={(p,aa)} 

δ(p,a,e)={(p,a)},δ(p,b,a)={(P,E),(Q,E)} process string aaabbb. 

(So, aaabbb,e) ├(P,aabbb,ae) ├(P,abbb,aae) ├(p,bbb,aaae) ├(p,bb,aae) ├(p,b,ae) 

├(p,e,e) 

Since q is a final state and stack is also become empty, given string is accepted by 

PDA. 

29. Is it true the nondeterministic PDA is more powerful than that of deterministic PDA? 

justify your answer. 



Yes, ww
R
 is accepted by NPDA but not any DPDA in the sense of language 

acceptance. 

30. Regular Language: 

A Language can be described by DFA or NFA. 

Context free language cannot be described by DFA (or) NFA – since there is no 

memory. 

Pushdown Automata has a memory, which can be used to count the number. 

Pushdown Automata can accept context free languages. It is essentially an NFA with 

a stack. 

31. Definition of Deterministic Pushdown Automata(DPDA)  

A pushdown automata Γ=(Q,∑,Γ,δ,q0,z,F) is said to be deterministic if 

1. δ(q,a,b)contains almost one element. 

2. If δ(q,λ,b) is not empty, then δ(q,c,b) must be empty for overy cЄ∑, qЄQ, bЄΓ 

The first condition says that for any given input symbol and any stack top, at most 

one move can be made. 

The second condition say that when a λ move is possible for some configuration, no 

input consuming alternative is available. 

32. Definition 

A language L is said to be deterministic context free language, if and only if there 

exists a deterministic pushdown automata (dpda) M such that L = L (M) 

33. Definition of Turing Machine 

Turning Machine T(M) is defined as M = (Q,∑,Γ,δ,q0,B,F) where 

Q is the finite set of states 

Π is the finite set of allowable tape symbols 

B is a symbol of Γ, is the Blank 

∑ a subset of Γ not including B, is the set of input symbols 

δ is the next more function, a mapping from 

δ Q x Γ → Q x Γx {L,R} 

Q0 Є Q is the initial state 

F ⊆Q is the set of final states 



34. What are the actions takes place in Turning Machine 

In one move the turning machine, depending upon the symbol scanned by the tape 

head and the state of finite control, 

1. Changes state 

2. Prints a symbol on the tape cell scanned, replacing what was written there 

Moves its head left (or) right one cell. 

35. Representation of turning machines 

We can describe Turing machine using  

a. Instantaneous Descriptions 

b. Transition table 

c. Transition diagram 

36. Describe Instantaneous descriptions and more of Turing machine 

An Instantaneous Description (ID) of a Turing Machine (M) is denoted by αqα2. 

Here qЄQ is the current state of M. α1, α2 is the string in Π* that is the contents of the 

tape upto the right most nonblank symbol (or) the symbol to the left of the head 

whichever is rightmost. 

Move of a Turing Machine 

We define a more of M as follows  

Let x1x2……..xi-1 qxi…………xn be an ID 

Let i-1 = n, then take xi as B 

If i=1, the there is no next ID 

If i>1, then we write 

x1 x2………xi-1qxi………..xn ├x1x2……………..xi-2 p xi-1yxi+1…………..xn 

If δ (q,xi) = (p,y,R), then change of ID is x1,x2…………..xi-

1qxi…………….xn├x1x2….xi-1ypxi+1……………xn 

37. Explain the Basic Turning machine model 
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Fig. Turning machine model 

The Turing machine can be thought of as a finite state automation connected to a 

R/W (Read/Write) head. It has an infinite tape which is divided into number of cells 

Each cell stores one symbol. 

38. Definition 

The language accepted by M denoted by L(M), is L(M) = {ω:ωЄ* and qoω├*α1pα2, 

for some pЄF, α1, α2 Є Γ*} 

When a Turing machine processes on input string x, there are three possibilities. 

a. Turing machine can accept the string by entering the accepting state 

b. It can reject the string by entering non-accepting state 

c. It can enter an infinite loop so that it never halts. 

39. Explain the following more transition in TM,  

δ(q0,a) = (q1,d,R) 

δ (q0,a) denotes the current state of control unit q0 and the current tape symbol being 

processed or read is ‘a’ 

(q1, d,R) denotes the result of new state q1, in control unit, a new tape symbol which 

replace the old one, and a move symbol to the right. 

40. Is it possible that a Turing machine could be considered as a computer of functions 

from intergers to integer? Is yes justify your answer. 

Yes, the turning machine may be viewed as a computer of functions from positive 

intergers to positive integers. Each integer will be represented in an unary fashion. 

That is , the integer i≥0 is represented by the sting O
i
 If a function has R arguments 

Finite state 

automation 



i1,i2……..ik then these integers are initially placed on the tape separated by 1 has 

O
i1

1O
i2

1O
i3

………1O
ik 

 

41. Explain Two-way infinite tape 

A turning machine with two way infinite tape is denoted by M = (Q, ∑, Γ, δ, qo, B, F) 

as in the original model. The tape is infinite to the left as well as to the right. 

 

 

42. Define Multitape Turing Machine 

A multitape TM consists of a finite content with k tapes heads and k tapes, each tape 

is infinite in both directions. On a single move, depending on the state of the finite 

control and the symbol scanned by each of the tape heads. The machine can 

a. Change state 

b. Print a new symbol on each of the cells scanned by its tape head. 

c. Move each of its tape heads, independently, one cell to the right or left or keep 

it stationary. 

43. Is Tm is more powerful than FMs. 

Yes, Turing machine is more powerful than finite state machine because it has the 

capability to remember arbitarary relay long sequences of input symbol. 

44. When a language is said to be recursive or recursively enumerable? 

A language L is Recursive (R) if and only if there is a TM that decides L. L is 

Recursively enumerable (RE) if and only if there is a TM that semi decides L. 

45. When a problem is said to be undesirable? 

Curve an example of a decidable problem. 

A problem is undesirable if there is no algorithm that takes as input an instance of the 

problem and determines whether the answer to that instance, is yes or no. 

Example for decidable problem 

Curve two DFSM M1 & M2, L (M1) = L (M2) 

46. Show that union of recursive language is recursive. 

Refer the chapter 9-3, Theorem 3. 



47. When a problem is said to be decidable and give an example of an undecidable 

problem? 

A problem whose language is recursive is said to be decidable. 

Example for undesirable 

a. Halting problem 

b. Le = {e(M); M is a TM and L (M) = Q} 

48. Definite of Recursive Languages 

Let M = (Q, ∑, δ, S,H) be a TM such that  

H = {y,n}, where y means yes and n means no 

∑o ⊆ ∑ - {B} is the input alphabet 

L ⊆ ∑* is a language 

(s,w) is the initial configuration 

M decides L if, for all string ωЄ∑0* 

– either ωЄL, in which case M accepts ω (M halts in state y) 

--or ωЄL, then M rejects ω (M halt in state n) 

49. Definition of Recursively Enumerable languages 

Let M = (Q,∑, δ, S,H) be a TM 

H = {y,n} 

∑0 ⊆ ∑ - {B} 

L ⊆ ∑0 

We say M semidecides L if, for all strings ωЄ∑o 

– either ωЄL, in which M halts on Input ω 

–or ωЄL, in which case M does not halt 

  (of course it may stop or loop) 

Theorems 

50. The union of two recursive languages is recursive 

51. The union of two recursively enumerable language is RE. 

52. If a language L and its complement I are both recursively enumerable, the L is 

recursive 

53. Is the complements of an RE language always RE? No 

54. If L is recursive, then L is RE 



55. If L is Re, then is L always recursive? No 

56. Explain the modified Post’s correspondents problem. 

Given lists A and B of k strings each from ∑*, A = w1,w2 …….wk and B = 

x1,x2……….xk does there exist a sequence of integers i1,i2……….ik such that w1, 

wi1,wi2,……………wir = x, xi……..xir 

The difference between the MPLP and PCP is that in the MPCP a solution is required 

to start with the first string on each list. 

57. When a recursively enumerable language is said to be recursive. Is it true that the 

language accepted by a nondeterministic Turing machine is different from recursively 

enumerable language? 

A language L is recursively enumerable if there is a TM that accepts L, and recursive 

if there is a TM that recognizes L. 

No, the language accepted by non determinist Turing machine is same as secursievley 

enumerable language. 

58. Give tow properties of recursively enumerable sets which are undesirable. 

a. Emptiness 

b. Finiteness 

c. Regularity 

d. Context freedom 

59. What do you mean by universal Turing machine  

Universal Turing machine is TM, that can be programmed to solved any problem that 

can be solved by any TM. 

60. What is universal languages 

The universal Lu (of the UTM u) consist of the set of binary strings in the form of 

pairs (M, ω), where M is a TM encoded in binary and ω is its binary input string, such 

that wЄ L (M) ie Lu = L (u) where (M, ω) Є L (u). 

61. An FSM (Finite State Machine) can be considered to be a TM (Turning machine) of 

finite tapa length, without rewinding capability and unidirectional tape movement. 

62. Define NP-Complete Problem 

The language L is said to be NP-Complete if L⊆ NP and L is NP-hard. 

63. NP- hard problem: 



A language L is said to be NP-hard if L1⊆PL fsor every L, ⊆ NP. 

64. Example for NP-complete problems 

The directed Hamilton circuit problem. 

The Vertex cover problem. 

65. Example for NP-hard problem 

Integer linear programming 

66. Abstract machines 

The computer which performs computation are not actual computers they are abstract 

machine 

67. Examples of abstract machine 

Turing machine, Finite automata. 

68. Limitation of Finite automata. 

It can recognize only simple languages 

69. Transition deagram of DFA. 

Transition diagram associated with DFA is a directed graph whose vertices 

corresponds to states of DFA. The edges are the transitions from one state to another. 

70. The language accepted by finite automata’s are called regular language. 

71. Equivalence of DFA and NFA 

As every DFA is an NFA, the class of languages accepted by NFA’s includes the 

class of languages accepted by DFA’s. 

DFA can simulate NFA. 

For every NFA, there exists an equivalent DFA. 

72. Some identities for Regular expressions 

Φ+R=R 

φR=Rφ=φ 

λR=Rλ=R 

λ*=λ and φ*=λ 

R*R*=R* 

73. Leftmost derivation: 

A derivation A⇒*ω is called a leftmost derivation if we apply a production only to 

the leftmost variable at every step. 



74. Rightmost derivation. 

A derivation A⇒*ω is called a rightmost derivation if we apply a production only to 

the right most variable at every step. 

75. Simplification of context free grammar. 

Variables are eliminated if it does not derive any terminal string. 

Elimination of null production. 

Elimination of unit production. 
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1. Let M=({q0, q1},{0,1},{x,z0},A,q0,z0,Ф). 

Where δ is given by 

δ (q0,0,z0)={(q0,xz0)} 

δ (q0,0,x)={(q0,xx)} 

δ (q0,1,x)={ (q1, ε )} 

δ (q1,1,x)={ (q1,ε)} 

δ (q1, ε, x)={ (q1,ε)} 

δ (q1, ε, z0)={(q1,ε)} 

 Construct the CFG equivalent to this PDA. 

          Solution 

δ (q0,0,z0)={(q0,xz0)} 

 This is in the form of  

 δ (qi, a, A)={(qj, BC)} 

The CFG for this transition is 

 (qi,A,qk)   → a((qj,B,ql)   (ql,C,qk)    

So CFG for our transition is 

k =0  

l =0 (q0,z0,q0)   → 0((q0,x,q0)   (q0,z0,q0)    

l =1(q0,z0,q0)   → 0((q0,x,q1)   (q1,z0,q0)    

 

k =1 

l =0(q0,z0,q1)   → 0((q0,x,q0)   (q0,z0,q0)    

 l=1(q0,z0,q1)   → 0((q0,x,q1)   (q1,z0,q0)   

 

δ (q0,1,x)={ (q1, ε )} 

This is in the form of 

δ (qi, a, A)={(qj, ε)} 



The corresponding CFG is 

(qi,A,qj)   → a  

So CFG for our transition is 

(qo,x,q1)   → 1 

 

2. Construct a PDA accepting  L= {a
n
b

m
c

n
;  m, n >=1 }by empty store 

Solution 

The language consist of a set of a’s followed by any number of b’s and followed 

by same set of c’s. 

Steps: 

1. store all a’s in the string until symbol ‘b’ is read in input string. 

2. on seeing ‘b’ in the i/p string, there is a change in state and there is no change 

in stack. 

3. once all the b’s is in the i/p string is exhausted, the remaining c’s in the i/p 

string in matching with the a’s present in the stack. 

 

3.  Construct  a PDA equivalent to the following grammar 

S → aAA  ,  A → aS / bS / a 
Solution 

 To solve this problem you should remember the following points 

1. Insert a start symbol on the stack. 

2. Read  λ with the non terminal. 

3. Read input symbol 

4. Both input and top of stack are same. 

5. Read  λ with empty stack.(i.e) enter into final state 

 

4. Show that the language L={a
n
 b

n+1
c

n+2
 ; n >=1} is not CFL 

Solution 

 Given L={a
n
 b

n+1
c

n+2} 

 
Let Z = a

m
 b

m+1
c

m+2   є  
L 

 By pumping lemma, Z can be written as 

 uvwxy such that 

 u=a
m

 

vwx=b
m+1   

where | vwx| <=n 

vx = b
1
           where |vx|>=1 

y = c
m+2

 

then    uv
i
wx

i
y  =  uvwx(vx)

i-1
 y 

=a
m

b
m+1

b
1(i-1)

c
m+2 

= a
m

b
m+1+i-1

c
m+2

 

= a
m

b
m+1

c
m+2   є L   for all values of i 

           Hence language L is not CFL. 

5. Design a Turing machine  M to recognize the language L={ 1
n
 2

n
3

n  ;  n>=1
}. 

Solution  

 

Let us evolve the procedure for processing of input string 112233. 



Step1:  q1 is the initial state.  The R/W head scans the leftmost replaces 1 by b, 

and moves to the right .  M enters q2  

Step 2  : On scanning the leftmost 2, the /w head scan replaces 2 by b, and moves 

to the right,  M enters q3. 

Step 3 : On scanning leftmost 3, the r/w header replaces 3 by b, and moves to the 

right m enters q4. 

Step4:  After scanning the rightmost 3 the r/w head moves to the left until it finds 

leftmost 1.  As a result ,  the leftmost 1,2, and 3 replaced by 3. 

Step5 :Steps 1 – 4 are repeated until all 1’s , 2’s, and 3’s are replaced by blanks. 

 

6. Explain Universal Turing Machine 

 

Universal TM’s that can be programmed to solve any problem that can be solved 

by any turing machine 

Input to U : The encoding “M” of a TM M and the encoding “w” of the string w є  
* 
Behavior : U halts on input “M”,”w” if and only if M halts on input w. 

Encoding TM’s and their input strings: 

Generic move 

1.  We call symols 0,1,B by X!,X2,X3 respectively. 

2.  The directions L and R are called by synonyms D1 , D2 respectively. 

3. The generic move  

δ (qi, Xj)=(qk,Xl,Dm) is encoded by the binary string form 

0
i
 1 0

 j
 1 0

 k
 1 0

 l
 1 0

 m 

The binary code of Turing machine M is  

111 code1 11 code2 11……….11 coden 111 

 

7. Explain Halting Problem 

Theorem: 

The halting problem is un decidable that is  

H={“M”,”w”  : TM M halts in string w} is not recursive. 

Proof  Idea: 

• Assume that H is recursive 

• By the definition of recursive languages, there is a TM MH that decides H 

• Design a new TM that uses MH as a submachine to decide H1 

• But this construction contradicts that non recursiveness of H1.  Hence , H is 

not recursive  

• We say H1 is reduced to H. 

8. The Language L is defined as {M1 υ M2  :DFSMs  M1, M2 and L1 ς L2} is 

recursive 

Proof: 

  The following TM ME decides L:  On input “M1” and “M2” where m1 and M2 

are DFSMs 

• Cnstruct DFSM M for the language L(M1∩ L(M2). 

• Apply M φ to the input string “M” 

• If Mφ halts in y, M1 halts in y. 



• If Mφ halts in n, M1 halts in n. 

9.  Construct a TM for successive function? 

F:  N → N, f(x) = x+1 

Solution  : 

Assume that the input is encoded in UNARY form. 

Let M=(Q, E,I  Q0,B,F)  

Where 

Q={q0,q1}q0 =start state q1 = final state 

 = {0} 

= {0.B} 

F={q1} 

The transition function can be defined as 

  

     tape symbol 

 

State 

0 B 

q0 (q0,0,R) (q1,0,R) 

 

q1    -    - 

Let us take the input x=3,  This is encoded as 000 

(q0,000B) = (q0,000B) = (q0,000B)= q0,000B) =(q1,0000B) 

The Machine halts an accepting state q1 computing the success of x. 

 

10.  Consider G whose productions are S →aAS /a, A→ SbA/SS/ba 
For the string w=aabbaa find  left most derivation, rightmost derivation 

Solution 

Leftmost derivation 

S →  aAS 
→aSbAS 

→aabAs 

→aabbaS 

→aabbaa 

 

Right most derivation 

S   →aAS 

→aAa 

→aSbAa 

→aSbbaa 

→aabbaa 

 


