M.Sc. DEGREE (PGCSS) EXAMINATION

Faculty of Science

First Semester

Applied Physics

APH1C03 – Solid State Physics

[For 2012 admission Students]

Time: Three Hours Maximum Weight: 30

Part A

(Answer any SIX questions. Each question carries a weightage of ONE)

- 1. Define geometrical structure factor and atomic form factor.
- 2. Distinguish between acoustical and optical phonons.
- 3. What is Hall Effect?
- 4. Distinguish between metals, semiconductors and insulators on the basis of band theory.
- 5. What is antiferromagnetism?
- 6. Explain the concept of depolarization field.
- 7. What are the important predictions of BCS theory?
- 8. Explain London penetration depth.
- 9. Explain Wiedmann Franz law.
- 10. What is an umklapp process?

 $(6 \times 1 = 6 \text{ weights})$

Part B

(Answer any **FOUR** questions. Each question carries a weightage of **TWO**)

- 11. Show that the reciprocal lattice of a body centered lattice is a face centered lattice.
- 12. X-ray of wavelength 1.1 Å is found to be Bragg reflected from the (100) and (110) planes of a simple cubic structure. If the lattice parameter of the crystal is 3 Å, find the angles for first order diffraction from these planes.
- 13. Based on the concept of free electron gas, show that the electrical conductivity of a metal is $Ne^2\tau/m$.
- 14. A superconducting sample has a critical temperature of 4.1 K in zero magnetic field and critical field of 0. 0505 T at 0 K. Find the critical field at 2 K.
- 15. For a dielectric, prove that $\frac{\mathcal{E}_r 1}{\mathcal{E}_r + 2} = \frac{P}{3\mathcal{E}_0} \sum_i N_i \alpha_i$.
- 16. The magnetic field in silicon is 1.2×10^5 Am⁻¹. Calculate the magnetization and flux density in silicon, if its magnetic susceptibility is -4.2×10^{-6} . Also calculate the value of relative permeability of the material.

Part C

(Answer any ALL questions. Each question carries a weightage of FOUR)

17. (a) Explain the Ewald construction. Discuss reciprocal lattice concept is useful in X-ray diffraction studies.

OR

- (b) Obtain an expression of specific heat capacity of a solid using Debye model.
- 18. (a) Discuss the Kronig Penny model for the motion of an electron in a periodic potential

OR

- (b) What is meant by free electron Fermi gas? Derive an expression for heat capacity of metals based on this concept.
- 19. (a) Explain the difference between diamagnetism and paramagnetism. Briefly explain the quantum theory of paramagnetism

OR

- (b) Discuss Landau theory of ferroelectric phase transitions
- 20. (a) Give an account of superconductivity. Explain type I and type II superconductors. Write a note Meissner effect.

OR

(b) What are d.c. and a.c. Joephson effect? Give the theory of a. c. Joephson effect

 $(4 \times 4 = 16 \text{ weights})$