Reg. No.

\qquad

Karunya University

(Karunya Institute of Technology and Sciences)

(Declared as Deemed to be University under Sec. 3 of the UGC Act, 1956)

Model Question Paper

Subject Title: FLUID MECHANICS AND MACHINERY Time: 3 hours Subject Code: 12CE263 Maximum Marks: 100

$\underline{\text { PART A (} 10 \times 1=10 \text { MARKS })}$

1. The ratio between the weight of a fluid to its volume is called \qquad .
2. Define viscosity.
3. What is a steady flowl?
4. Define vortex flow.
5. Define coefficient of discharge.
6. What is water hammering?
7. Name the main parts of a centrifugal pump.
8. Define slip.
9. What do you mean by gross head of a turbine?
10. Define flow ratio.

PART B (5 X $3=15$ MARKS)

11. Name the different forces present in a fluid flow. For the Euler's equation of motion, which all forces are taken into consideration?
12. What is a manometer? How are they classified?
13. What is a syphon? On what principle it works?
14. What is priming? Why is it necessary?
15. What is cavitation? How can it be avoided in reaction turbine?

$\underline{\text { PART C }(5 \times 15=75 \text { MARKS })}$

16. An oil of Kinematic Viscosity 0.5 stoke is flowing through a pipe of diameter 300 mm at the rate of 320 liters per second. Find the head lost due to friction for a length of 60 m of the pipe.

OR

17. If for a two dimensional potential flow, the velocity potential is given by $\phi=x(2 y-1)$, determine the velocity at the point $P(4,5)$. Determine also the value of stream function at point P.
18. Determine the total pressure on a circular plate of diameter 1.5 m which is placed vertically in water in such a way that the center of plate is 2 m below the free surface of water. Find the position of center of pressure also.

OR

19. A pipe, through which water is flowing is having diameters 40 cm and 20 cm at cross sections 1 and 2 respectively. The velocity of water at section 1 is given $5.0 \mathrm{~m} / \mathrm{s}$. find the velocity head at the sections 1 and 2 and also rate of discharge.
20. A right angled V - notch is used for measuring a discharge of 30 liters/s. An error of 2 mm was made in measuring the head over the notch. Calculate the percentage error in the discharge. Take $\mathrm{C}_{\mathrm{d}}=$ 0.60 .

OR

21. A pipe contains an oil of specific gravity 0.8 . A differential manometer connected at the two points A and B of the pipe shows a difference in mercury level as 20 cm . Find the difference of pressure at the two points.
22. Find the number of pumps required to take water from a deep well under a total head of 156 m . Also the pumps are identical and are running at 1000 rpm . The specific speed of each pump is given as 20 while the rated capacity of each pump is 150 liters/s.

OR

23. A double acting reciprocating pump, running at 50 rpm is discharging 900 liters of water per minute. The pump has a stroke of 400 mm . the diameter of piston is 250 mm . The delivery and suction heads are 25 m and 4 m respectively. Find the slip of the pump and power required to drive the pump.
24. Design a pelton wheel for a head of 80 m and speed 300 rpm . The pelton wheel develops 103 kW shaft power. Take $\mathrm{C}_{\mathrm{v}}=0.98$, speed ratio $=0.45$ and overall efficiency $=0.80$.

OR

25. A Kaplan turbine working under a head of 29 m develops 1287.5 kW shaft power. If the speed ratio is equal to 2.1 , flow ratio $=0.62$, diameter of boss $=0.34$ times the diameter of the runner and overall efficiency of the turbine $=89 \%$, find the diameter of the runner and speed of turbine.
