Digiital Principles and System Design

PART-A Questions

1. Convert (10101100$)_{2}$ into octal.
2. What is the important property of $\mathrm{XS3}$ code?
3. What is the drawback of a senial adder compared to parallel adder?
4. Represent $(-10)_{10}$ in sign-2's complement form.
5. Mention any two applic ations of multiplexers.
6. Draw the logic diagram of a 2×4 decoder using NAND gates.
7. Define set-up time for a negative edge triggered FF.
8. Write the excitation table of a JK FF.
9. What is the basic difference between asynchronous sequential circ uits and synchronous sequential circuits?
10. What is known as fundamental mode of operation of an asynchronous sequential circuit?
11. Convert (196.062) 10 $_{10}$ to octal.
12. State the duality principle.
13. Draw the logic diagram of Half Subtractor.
14. What are the methods available in HDL?
15. Mention the uses of demultiplexer.
16. Draw the Logic Diagram of $4: 1$ multiplexer.
17. What is meant by Edge Triggered Flip Flop?
18. Give the excitation table of a Tflip-flop.
19. What is primitive flow table?
20. What is one hot state assignment?
21. $x+x^{\prime} y=$ \qquad .
22. Convert (BABA) 16 to binary.
23. Represent 3124 in Exc ess-3-code.
24. When two n bit numbers are added and if it resulted in $n+1$ bits then \qquad has occured.
25. How many address lines and input output data are needed for the $8 \mathrm{~K} * 16$ memory unit?
26. A decoder with an enable input can function asa \qquad .
27. The 4-bit shift register is initialized to 1011 . What are the contents of the register after it is shifted six times to the right, with the serial input being 101111?
28. \qquad is a level sensitive, one bit storage element.
29. What is a primitive flow table?
30. How to avoid critical races?
31. State De Morgan'sLaw.
32. Obtain the binary equivalent of hexadecimal number (AC.CB).
33. Name two HDL
34. Draw the circ uit for half adder.
35. What is ROM?
36. Define encoder.
37. What is latch?
38. Draw the truth table forTflip-flop.
39. What is a sync hronous sequential logic?
40. Define hazards.

PART-B Questions

1. Write the absorption law and prove it.
2. Draw the logic diagram of a 4 bit binary to gray code converter using ex-OR gates.
3. Describe a 2×1 multiplexer using a HDL
4. Write the HDL beha vioral description of 4-bit universal shift register.
5. With an example explain static -1- hazard and its removal.
6. Define the laws of Absorption and Involution.
7. Design a combination circuit with three input variables that will produce a logic 1 outpı when more than one input variables are logic 1.
8. Compare PROM, PLA and PAL
9. What is the difference between Moore and Mealy Circuit Models?
10. Expla in the Hazards in combinational circ uits?
11. Prove that $A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}+A B C^{\prime}=C^{\prime}$
12. Design a 3 bit odd parity generator circuit.
13. Differentiate PLA and PAL.
14. Expla in the operation of J K latch.
15. What is a flow table? Give an example.
16. State any three Boolean laws.
17. Draw the truth table and circ uit for full adder.
18. Differentiate encoder and multiplexer.
19. Draw the circ uit and truth table for D flip-flop.
20. What is race in asynchronous sequential logic circuits?

PART-C Questions

1. Simplify the following Boolean function using Kamaugh map and realize the simplified function using only NAND gates.
$F(a, b, c, d, e)=\sum m(1,3,4,5,11,14,15,16,17,19,20,24,26,28,30)$
2. a. Convert the following Boolean function into product of maxterms form.

$$
\mathrm{F}(\mathrm{a}, \mathrm{~b}, \mathrm{c})=(a+\bar{c})(\bar{a}+b+\bar{c})(\bar{a}+\bar{b})
$$

b. Show that the dual of exclusive -OR is also its complement.
3. Design a single stage $B C D$ adder and draw its block diagram.
4. Design a 4-bit camy-look-ahead adder a nd draw its block diagram.
5. Design an octal to binary prionity encoder and draw its logic diagram using gates.
6. Draw the logic diagram of the realization of the following functions using a PAL device

$$
\begin{aligned}
& \mathrm{F}_{1}(\mathrm{a}, \mathrm{~b}, \mathrm{c})=\sum \mathrm{m}(1,2,4,6,7) \\
& \mathrm{F}_{2}(\mathrm{a}, \mathrm{~b}, \mathrm{c})=\sum \mathrm{m}(2,4,5,6) \\
& \mathrm{F}_{3}(\mathrm{a}, \mathrm{~b}, \mathrm{c})=\sum \mathrm{m}(1,4,6)
\end{aligned}
$$

7. a. Draw the block diagram of 4 bit universal shift register using FFs and multiplexers and explain its working.
b. Compare a 4 - bit binary counter and a 4-stage ring counter.
8. Design a synchronous modulo -5 up-down counter using JK FFs. Draw the timing diagram and write your inference.
9. a. Stage the three constraints that must be satisfied while designing an asynchronous sequential circ uit to function properly.
b. Explain the two types of race conditions using an example.
10. Obta in the primitive flow table and a minimum row flow table for a fundamental mode asynchronous sequential circ uit with two inputs x and y, with a single output z, meeting the following requirement:

The output z is 1 , only when the values of inputs x and y are same and y was the variable that changed value causing both inputs to become the same.
11. Reduce the following expressions:
a. $\bar{A} B C \bar{D}+B C \bar{D}+B \bar{C} \bar{D}+B \bar{C} D$
b. $A B+\bar{A} \bar{C}+A \bar{B} C(A B+C)$
c. What is the value of b if $\sqrt{44_{b}}=6$?
d. Convert (37.29) ${ }_{10}$ to octal and hexadecimal.
12. Reduce the following functions using K - Map techniques and implement using basic
gates
a. $f(A, B, C, D, E)=\sum m(1,4,8,10,11,20,22,24,25,26)+d(0,12,16,17)$
b. $f(A, B, C, D)=\pi m(4,5,6,7,8,12,13)+d(1,15)$
13. a. Design and explain the operation of binary to BCD converter with K-Map and logic diagram.
b. Write a short note on Hardware Description Languages.
14. Explain the building of a 24 -bit magnitude comparator using 4-bit comparator.
15. a. Explain the logic diagram of 3 to 8 line decoder.
b. How do you construct a 4×16 decoder with two 3×8 decoders.
16. Implement the following function using PAL.
$W(A, B, C, D)=\sum m(2,12,13)$
$X(A, B, C, D)=\sum m(7,8,9,10,11,12,13,14,15)$
$Y(A, B, C, D)=\sum m(0,2,3,4,5,6,7,8,10,11,15)$
$Z(A, B, C, D)=\sum m(1,2,8,12,13)$
17. Design a sequential circuit using JK flip-flop for the following state table [use stat diagram]

Present state	Next state		Outp ut	
AB	X=0	X=1	$\mathrm{X}=0$	$\mathrm{X}=1$
00	00	11	1	0
01	01	11	1	1
10	01	00	1	0
11	11	10	0	0

18. a. Expla in Serial in Serial out Shift Register.
b. Explain Serial in parallel out Shift Register.
19. Explain the classific ation of Race- Free State Algorithm.
20. Design an Asynchronous sequential circ uit using $S R$ latch with two inputs A and B and one output y. B is the control input which, when equal to 1 , transfers the input A to outpı y. When B is 0 , the output does not change, for any change in input.
21. Simplify the following Boolean functions using K map:
a. $\mathrm{F}=\sum(0,5,7,13,15,16,21,23,25,29,31)$.
b. $F=\sum(1,3,5,7,8,9,12,13)$.
22. a. Express the following function using sum of minterms and product of maxterm $F(A, B, C, D)=B^{\prime} D+A^{\prime} D+B D$
b. Find the complement of $x y^{\prime}+x^{\prime} y$
23. What is camy propagation delay in Binary Adder? How can it be avoided using camy loc
ahead generator?
24. a. A majority circuit is a combinational circ uit whose output is equal to 1 if the input variables have more 1's than 0's. The output is 0 otherwise. Design a 3bit majority circuit.
b. Write an HDL fora Half Adder circuit.
25. Design a four bit priority encoder with input D_{3} having the highest priority and D_{0} having lowest priority.
26. Implement the following function using PLA
a. $F_{1}=A B^{\prime}+A C+A^{\prime} B^{\prime}$
b. $F_{2}=(A C+B C)^{\prime}$
27. Explain the Binary ripple counter using J K flip flop and Tflip flop.
28. a. Explain the operation of master slave D-flip flop.
b. Construct a JK flip flop using the following components: D flip flop, 2-to-1 multiplexers and an inverter.
29. Explain the analysis a nd design procedure of an Asynchronous sequential circ uit.
30. Explain in detail about the Race free state a ssignments.
31. Simplify $F=\Sigma m(1,3,7,11,15)+d(0,2,5)$ using K-map.
32. What are universal gates? Design Ex-OR gate using NAND and NOR logic.
33. Design a full subtractor circ uit.
34. Realize a BCD to Gray code conversion circ uit starting from its truth ta ble.
35. Explain with neat diagram a BCD to 7-segment display decoder.
36. Explain about PROM, PLA and PAL in detail.
37. Design and implement a Mod-10 synchronous counter using D flip-flop.
38. Explain about va rious types of shift registers in detail with neat dia grams.
39. Explain the design procedure of asynchronous sequential c irc uit with nec essa ry steps.
40. Design an a synchronous sequential circ uit with two inputs X and Y and with one output Z Whenever Y is 1 , input X is transferred to Z When Y is 0 , the output does not change for any change in X .
