Test Paper Code: BT Time: 3 Hours Maximum Marks: 100 #### INSTRUCTIONS #### A. General: - 1. This Booklet is your Question Paper. It contains 20 pages and has 100 questions. - 2. The Question Booklet **Code** is printed on the right-hand top corner of this page. - 3. The Question Booklet contains blank spaces for your rough work. No additional sheets will be provided for rough work. - 4. Non-Programmable Calculator is <u>ALLOWED</u>. But clip board, log tables, slide rule, cellular phone and other electronic gadgets are NOT ALLOWED. - 5. Write your Name and Registration Number in the space provided at the bottom. - 6. All answers are to be marked only on the machine gradable Objective Response Sheet **(ORS)** provided along with this booklet, as per the instructions therein. - 7. The Question Booklet along with the Objective Response Sheet **(ORS)** must be handed over to the Invigilator before leaving the examination hall. ## B. Filling-in the ORS: - 8. Write your Registration Number in the boxes provided on the **ORS** and darken the appropriate bubble under each digit of your Registration Number using a **black ink ball point pen**. - 9. Ensure that the **code** on the **Question Booklet** and the **code** on the **ORS** are the same. If the codes do not match, report to the Invigilator immediately. - 10. On the **ORS**, write your Name, Name of the Test Centre and put your signature in the appropriate box with ball-point pen. Do not write these anywhere else. #### C. Marking of Answers on the ORS: - 11. Each question has **4 choices** for its answer: (A), (B), (C) and (D). Only **ONE** of them is the correct answer. - 12. On the left-hand-side of **ORS**, for each question number, darken ONLY one bubble corresponding to what you consider to be the most appropriate answer, from among the four choices. - 13. There will be **negative marking** for wrong answers. Please see the Marking Scheme. ### **MARKING SCHEME:** - (a) For each correct answer, you will be awarded 1 (One) mark. - (b) For each wrong answer, you will be awarded -1/3 (Negative 1/3) mark. - (c) Multiple answers to a question will be treated as a wrong answer. - (d) For each un-attempted question, you will be awarded **0** (**Zero**) mark. | Name | | | | | |------------------------|--|--|--|--| | Registration
Number | | | | | DO NOT WRITE ON THIS PACE. | Q.1 | Match the proteins listed in column I with their major cellular function in Column II: | | | | | | | | |--|--|--|--------------------------|---|--|--|--|--| | | | I | | | II | | | | | | (i)
(ii)
(iii)
(iv) | TATA binding protein DNA primase Aminoacyl tRNA synthetase RecA | | (p)
(q)
(r)
(s) | Replication Recombination Transcription Translation | | | | | | (A)
(C) | (i)-(p), (ii)-(r), (iii)-(s), (iv)-(q)
(i)-(r), (ii)-(p), (iii)-(s), (iv)-(q) | | (B)
(D) | (i)-(q), (ii)-(r), (iii)-(p), (iv)-(s)
(i)-(q), (ii)-(p), (iii)-(s), (iv)-(r) | | | | | Q.2 | Amo | ongst the following, the elongated, fibro | ous pr | otein i | S | | | | | | (A) | Myoglobin (B) Keratin | | (C) | Albumin (D) Calmodulin | | | | | Q.3 | The | mutation likely to cause the least pertu | rbatio | n in the tertiary structure of a protein is | | | | | | | (A)
(C) | Lysine to Aspartate Aspartate to Glutamate | | (B)
(D) | Lysine to Valine Aspartate to Isoleucine | | | | | Q.4 Match the techniques in column I with their primary applications in Column II: | | | | | | | | | | | I | | | | II | | | | | | (i)
(ii)
(iii)
(iv) | Circular Dichroism Ion exchange chromatography Immunoprecipitation X-ray crystallography | (p)
(q)
(r)
(s) | Ident
Seco | nic resolution structure of proteins
tifying protein-protein interaction
ndary structure of proteins
ration of protein mixtures | | | | | | (A)
(C) | (i)-(q), (ii)-(s), (iii)-(p), (iv)-(r)
(i)-(r), (ii)-(p), (iii)-(s), (iv)-(q) | | (B)
(D) | (i)-(q), (ii)-(s), (iii)-(r), (iv)-(p)
(i)-(r), (ii)-(s), (iii)-(q), (iv)-(p) | | | | | Q.5 | Amo | ongst the following statements about b | iologi | cal me | embranes, the INCORRECT one is that | | | | | | (A)
(B)
(C)
(D) | are covalent assemblies of lipids and
form selectively permeable barriers
may have channels and pumps
show fluid-like behaviour | protei | ns | | | | | | Q.6 | | introduction of a new fish species into
species from the lake is an example of | a lak | te resu | alting in the extinction of several native | | | | | | ` ' | Co-extinction Over-exploitation | | (B) | Alien species invasion | | | | | Q.7 | The taxonomic hierarchy in descending order of size is | | | | | | | | | | | | |------|--|--|-------------------|---|------------|--|---|--|--|--|--|--| | | (A)
(C) | Family, Class, P. Class, Phylum, F | | | (B)
(D) | Phylum, Class, Order, Family
Order, Family, Class, Phylum | | | | | | | | Q.8 | If th | ne recessive diseas
a frequency of 1 i | se phe | enylketonuria (PKU)
00, the frequency of | occu | ars in a genetically constant population | n | | | | | | | | (A) | 0.99% | (B) | 19.9% | (C) | 1.99% (D) 9.9% | | | | | | | | Q.9 | Amp
an aş | olification of a DN
garose gel. For suc | NA fra
ch a sa | gment by PCR yield
mple, the best way to | s only | y one faint band of the expected size or ease the yield of the PCR product is to | n | | | | | | | | (A) | decrease magnes | | | | | | | | | | | | | (B) | (B) decrease annealing temperature(C) use shorter primers | | | | | | | | | | | | | (D) | increase extension | | 2 | Q.10 | The | The cellular organelle which function(s) as a store for Ca ²⁺ ions is | | | | | | | | | | | | | (A) | Endoplasmic reti | iculum | i . | (B) | Golgi bodies | | | | | | | | | (C) | Endosomes | | | (D) | Nucleus | | | | | | | | Q.11 | If the N-terminal 21 amino acids were missing from a mitochondrial protein, its cellular location after synthesis would be | | | | | | | | | | | | | | (A) | Mitochondria | | | (B) | Cytosol | | | | | | | | | (C) | Nucleus | | | (D) | Plasma membrane | | | | | | | | Q.12 | Pack | aged biomaterials | are di | spatched to intracell | ular ar | nd extracellular locations from the | | | | | | | | | (A) | cis-compartment | of the | golgi complex | | | | | | | | | | | (B) | medial-compartn | nent o | f the golgi complex | | | | | | | | | | | (C) | trans-compartme | ent of t | the golgi complex | | | | | | | | | | | (D) | apical-compartm | nent of | the golgi complex | | | | | | | | | | Q.13 | The | preferred ligand fo | or SH2 | domain is | | | | | | | | | | | (A) | serine-phosphory | lated ; | peptide | (B) | tyrosine-phosphorylated peptide | | | | | | | | | (C) | glucose-6-Phosp | hate | | (D) | cyclic AMP | Q.14 | The binding of a hormone to its receptor activates adenylyl cyclase through a stimulatory G protein. If, due to a mutation, the G-protein binds but does NOT hydrolyze GTP, the consequence will be | | | | | | | | | | |------|---|---|-----------------------|---------------------------------------|--|--|--|--|--|--| | | | Adenylyl cyclase will be continuously activ | rated | | | | | | | | | | (B) | Adenylyl cyclase will never be activated | otod | | | | | | | | | | (C)
(D) | Adenylyl cyclase will be occasionally activ
Adenylyl cyclase will be degraded | ated | | | | | | | | | Q.15 | | exin which causes accumulation of twice smallan cell, most likely blocks the cell cycle | | normal amount of DNA in a dividing | | | | | | | | | (A) | during G ₀ phase | (B) after G_1 phase | | | | | | | | | | (C) | after M phase | (D) | during G ₂ phase | | | | | | | | Q.16 | Bt toxin, produced by <i>Bacillus thuringiensis</i> , does NOT kill the bacteria itself because the toxin is | | | | | | | | | | | | (A) | | | | | | | | | | | | (B) in an inactive form inside the bacterial cell (C) active only against enlarvatic ribosomes | | | | | | | | | | | | (C)
(D) | active only against eukaryotic ribosomes produced in very small quantities | | | | | | | | | | Q.17 | The inactivation of an mRNA due to its binding to a complementary RNA molecule is called | | | | | | | | | | | | (A) | RNA interference | (B) | RNA splicing | | | | | | | | | (C) | RNA translation | (D) | RNA looping | | | | | | | | Q.18 | Given are the sequences of one strand of double-stranded DNA. The one with the highest melting point (Tm) is | | | | | | | | | | | | (A) | GAGATCTCGAGATCTC | (B) | GAGATCTTGATATCTC | | | | | | | | | (C) | GAGATATCGATATCTC | (D) | GAGATATCTATATCTC | | | | | | | | Q.19 | | standard pregnancy kit, used to detect Hum sed on | an Ch | orionic Gonadotrophin (HCG) in urine, | | | | | | | | | (A) | gene amplification through PCR | (B) | antigen-antibody interaction | | | | | | | | | (C) | biotin-streptavidin interaction | (D) | nickel affinity chromatography | | | | | | | | Q.20 | The | preferred system for large-scale production of | f influ | uenza virus for vaccination is | | | | | | | | | (A) | genetically modified bacteria | (B) | transgenic plant | | | | | | | | | (C) | chick embryo | (D) | yeast culture | | | | | | | | Q.21 | A monoclonal antibody produced against a small peptide derived from protein X, is unable to bind X in an ELISA. This is because | | | | | | | | | |------|---|---|-------------------------------|--|---------------|---|--------------------|-------------------|--| | | (A)
(B)
(C)
(D) | the peptide epito
monoclonal antil | pe is obodies | NOT bind to immobile exposed in X CANNOT be used in the interior | n ELI | ELISA | | | | | Q.22 | The | lac repressor is pro | oduce | d from a stretch of D | NA ca | illed the | | | | | | (A) | regulator | (B) | operator | (C) | promoter | (D) | inducer | | | Q.23 | The | repeating units in | chitin | are | | | | | | | | . , | (α 1-4 GlcNAc)
(α 1-4 GalNAc) | | * , * . | | (β 1-4 GlcNAc)
(β 1-4 GalNAc) | | | | | Q.24 | | correct ascending (P) and stearic acid | | r of melting points is | of ole | ic acid (O), lino | leic ac | eid (L), palmitic | | | | (A) | L, O, P, S | (B) | O, L, P, S | (C) | L, O, S, P | (D) | O, L, S, P | | | Q.25 | A peptide Glu-His-Trp-Ser-Gly-Leu-Arg-Pro-Gly , having an isoelectric point of 7.8 placed in an electric field at pH 3.0. It will migrate towards | | | | | point of 7.8, is | | | | | | (A)
(C) | anode both anode and o | cathod | e | (B)
(D) | cathode neither anode no | or cath | ode | | | Q.26 | X-ray diffraction of wool shows repeated structural units spaced at 5.2 Å, which is changed to 7.0 Å on steaming. This is due to the conversion of secondary structure from | | | | | | | | | | | , | β-sheet to random $β$ -sheet to $α$ -heli | | | . / | α -helix to rando α -helix to β - she | | | | | Q.27 | At E | $c_t = 20 \text{ nm and subs}$
$a_t M \text{ s}^{-1}$. Assuming | ostrate
g k _{cat} | e concentration = 40
to be 600 s^{-1} , the K_{Λ} | μM, t
will | he reaction veloc | ity V ₀ | of an enzyme is | | | | (A) | 0.1 μΜ | (B) | 1 μΜ | (C) | 10 μΜ | (D) | 100 μΜ | | | Q.28 | | | _ | ements is NOT true f | | enzyme catalyzed | reaction | on? | | | | (A)
(B) | Reaction rate an Activation energy | | llibrium both are alte ecreased | red | | | | | | | (C) | Enzyme-substra | te con | plex is formed | | | | | | | | (D) | Enzymes underg | go ind | uced fit on substrate | bindin | g | | | | | Q.29 | Which of the following is NOT an allosteric regulatory enzyme in glycolysis? | | | | | | | | | | | |------|--|--|----------|---|--|--|--|--|--|--|--| | | (A) | Hexokinase | (B) | Phospho-fructokinase I | | | | | | | | | | (C) | Phosphoglycerate kinase | (D) | Pyruvate kinase | Q.30 | Mate | ch the enzymes of TCA cycle in Group I w | ith that | t of their products listed in Group II. | | | | | | | | | | | Group I | Grou | ıp II | | | | | | | | | | P. | Isocitrate dehydrogenase | 1. | α-Ketoglutarate | | | | | | | | | | Q. | Succinate dehydrogenase | 2. | Succinyl CoA | | | | | | | | | | R. | Fumarase | 3. | Fumarate | | | | | | | | | | S. | α-Ketoglutarate dehydrogenase | 4. | Malate | | | | | | | | | | (A) | P-1, Q-2, R-4, S-3 | (B) | P-3, Q-1, R-2, S-4 | | | | | | | | | | . , | P-2, Q-4, R-3, S-1 | (D) | P-1, Q-3, R-4, S-2 | Q.31 | Addition of the uncoupler 2,4- Dinitrophenol to actively respiring mitochondria causes | | | | | | | | | | | | | (A) | (A) decrease in ATP production and increased rate of O ₂ consumption | | | | | | | | | | | | (B) | | | | | | | | | | | | | , | (C) increase in ATP production and increased rate of O ₂ consumption | | | | | | | | | | | | (D) increase in ATP production and decreased rate of O ₂ consumption | Q.32 | C ₄ p | C ₄ plants overcome photorespiration activity of Rubisco by fixing CO ₂ , firstly as | | | | | | | | | | | | (A) | oxaloacetate | (B) | 3-phosphoglycerate | | | | | | | | | | (C) | 2-phosphoglycerate | (D) | ribulose 1,5-bisphosphate | Q.33 | Whi | ich of the following is a non-symbiotic nitro | gen fix | ing bacteria? | | | | | | | | | | (A) | Rhizobium leguminosarum | (B) | Nitrosomonas nitrosus | | | | | | | | | | (C) | Azotobacter chrococcum | (D) | Alcaligenes faecalis | Q.34 | | opressin, an antidiuretic hormone, respons
ney, is secreted from | sible fo | or increased absorption of water by the | | | | | | | | | | | adrenal gland | (B) | thyroid gland | | | | | | | | | | (C) | nituitary aland | | narathyroid gland | | | | | | | | | Q.55 | whatch the vitamins in Group I with their deficiency disorders listed in Group II. | | | | | | | | | | | | |------|--|------------|---|--|--|--|--|--|--|--|--|--| | | Group I | | Group II | | | | | | | | | | | | P. Thiamin | 1. | Pernicious anemia | | | | | | | | | | | | Q. Cholecalciferol | 2. | Pellagra | | | | | | | | | | | | R. Niacin | 3. | Rickets | | | | | | | | | | | | S. Cyanocobalamin | 4. | Beri-beri | | | | | | | | | | | | (A) P-1, Q-2, R-3, S-4 | | (B) P-4, Q-3, R-2, S-1 | | | | | | | | | | | | (C) P-2, Q-4, R-1, S-3 | | (D) P-3, Q-1, R-4, S-2 | | | | | | | | | | | Q.36 | Which of the following enzymes are see | creted by | pancreas? | | | | | | | | | | | | P. Pepsin | | | | | | | | | | | | | | Q. Aminopeptidase | | | | | | | | | | | | | | R. Trypsin | | | | | | | | | | | | | | S. Carboxypeptidase | | | | | | | | | | | | | | T. Chymotrypsin | | | | | | | | | | | | | | $(A) P, Q, R \qquad \qquad (B) Q, R, T$ | | $(C) R, S, T \qquad \qquad (D) P, R, T$ | | | | | | | | | | | Q.37 | Which part of the human brain controls | mperature? | | | | | | | | | | | | | (A) Cerebrum | | (B) Medulla | | | | | | | | | | | | (C) Cerebellum | | (D) Hypothalamus | | | | | | | | | | | Q.38 | The action potential for initiating and maintaining the rhythmic contraction of heart generated by | | | | | | | | | | | | | | (A) sino-atrial node | | (B) atrio-ventricular node | | | | | | | | | | | | (C) bundle of His | | (D) atrio-ventricular bundle | | | | | | | | | | | Q.39 | The antigen binding sites in immunoglobulin IgG are present at | | | | | | | | | | | | | | (A) variable region of heavy chains | | | | | | | | | | | | | | (B) variable region of light chains | | | | | | | | | | | | | | (C) constant region of heavy chains | | | | | | | | | | | | | | (D) variable region of heavy and light | chains | | | | | | | | | | | | Q.40 | Fertilization of human sperm and ovum | takes pla | ace in the | | | | | | | | | | | | (A) ovary | | (B) uterine cavity | | | | | | | | | | | | (C) fimbriae-infundibulum | | (D) isthamus-ampulla junction | | | | | | | | | | | | * | | | | | | | | | | | | | Q.41 | 1 | ogeme microc | organisms in Group | 1 WILLI | | cu iii Gi | Toup II. | | | | |------|--|-----------------|---|---------|---------------------------------|-------------------------------|--|--|--|--| | | Group I | | | | Group, II | | | | | | | | P. Treponer | na pallidum | | 1. | Whooping cou | gh | | | | | | | Q. Bordetell | la pertussis | | 2. | Yellow fever | | | | | | | | R. Flaviviru | ises | | 3. | Kala azar | | | | | | | | S. Leishman | nia donovani | | 4. | Syphilis | | | | | | | | (A) P-1, Q-4 | , R-3, S-2 | | (B) | P-4, Q-1, R-2, | S-3 | | | | | | | (C) P-4, Q-2 | , R-3, S-1 | | (D) | P-1, Q-3, R-2, | S-4 | | | | | | | | | | | | | | | | | | Q.42 | An example having mycelia | | tic chemoorganotro | ph m | icroorganism la | acking | chlorophyll and | | | | | | (A) yeast | (B) | bacteria | (C) | fungi | (D) | protozoa | | | | | | | | | | | | | | | | | Q.43 | A <i>Bacillus</i> sp. divides every 30 min. If a culture is inoculated with 1000 cells, how many cells will be generated after 3 hrs? | | | | | | | | | | | | (A) 30,000 | (B) | 64,000 | (C) | 90,000 | (D) | 128,000 | | | | | | (12) | (-) | | | | 3. 6 | | | | | | Q.44 | The selective i | nedia mannito | ol salt agar is used fo | r the i | solation of | | | | | | | | (A) Lactobac | cillus | | (B) | Enterococcus | | | | | | | | (C) Staphylo | coccus | | (D) | Salmonella | | | | | | | | | | | | | | | | | | | Q.45 | In liver cells, glucose is converted to glucose-6-P which can then be utilized towards glycolysis or glycogen synthesis. If $K_M^{\text{Glycolysis}}$ and K_M^{Glycogen} correspond to the enzymes involved in the first steps of glycolysis and glycogen synthesis, the true statement amongst the following is: | | | | | | | | | | | | (A) Glycoge | n synthesis is | favoured at high glu | cose c | oncentrations if | K_M^{Glycol} | $V_{M}^{\text{Sis}} < K_{M}^{\text{Glycogen}}$ | | | | | | (B) NO glyc | ogen is forme | d at high glucose co | ncentr | ations if K_M^{Glycol} | $ V_{\lambda} > K_{\lambda}$ | A Glycogen | | | | | | (C) NO glyc | olysis occurs | at high glucose conc | entrati | ons if $K_M^{\text{Glycolysi}}$ | $< K_M^{GI}$ | lycogen | | | | | | (D) Glycoly: | sis is favoured | l at low glucose con | centra | tions if K_M^{Glycoly} | $sis > K_M$ | Glycogen | | | | | | | | | | | | | | | | | Q.46 | | in the catalyti | partate (pKa of side c site to be protona be closest to | | | | | | | | | | (A) 90 | (B) | 78 | (C) | 50 | (D) | 10 | | | | | | , | ~ / | | | | | | | | | - Q.47 By weight, 95% of an *E. coli* cell's components are water (\sim 70%), protein (\sim 15%), nucleic acids (DNA \sim 1% + RNA \sim 6%) and polysaccharides (\sim 3%). Given that there is only one chromosome and about 3000 different proteins in an *E. coli* cell lysate, the number of different molecules of DNA and RNA is expected to be - (A) DNA = RNA = 3000 (B) DNA = RNA > 3000 (C) DNA = 1, RNA > 3000 (D) DNA > 3000, RNA = 1 - Q.48 Determine the correctness or otherwise of the following Assertion [a] and the Reason [r]. Assertion: The general trend across a period is an increase of the ionization energy. Reason: The potential energy of attraction between the electron and nucleus increases with the nuclear charge. - (A) Both [a] and [r] are true and [r] is the correct reason for [a] - (B) [a] is false but [r] is true - (C) Both [a] and [r] are true but [r] is NOT the correct reason for [a] - (D) Both [a] and [r] are false - Q.49 The monomer which leads to a conducting polymer is - (A) but-2-yne (B) E-but-2-ene (C) Z-but-2-ene - (D) buta-1,3-diene - Q.50 The pH at the equivalence point when 50 mL of 0.1 M acetic acid is titrated against 0.1 M NaOH is closest to - (A) 6.0 - (B) 7.0 - (C) 8.0 - (D) 9.0 - Q.51 The mass (in g) of glycine, NH_2CH_2COOH , required to make 250 mL of a 0.015 M solution is (Atomic weights in amu: H = 1, C = 12, N = 14, O = 6) - (A) 1.13 - (B) 0.84 - (C) 0.56 - (D) 0.28 - Q.52 The arrangement of ligands in ascending order of the crystal field splitting is - (A) $\Gamma < H_2O < OH^- < CN^-$ (B) $\Gamma < OH^- < H_2O < CN^-$ (C) $H_2O < OH^- < CN^- < \Gamma$ - (D) $H_2O < CN^- < I^- < OH^-$ - Q.53 Determine the correctness or otherwise of the following Assertion [a] and the Reason [r]. Assertion: The boiling points of the group VIA (16) hydrides increase with size without exception. Reason: London dispersion forces increase with molecular weight. - (A) Both [a] and [r] are true and [r] is the correct reason for [a] - (B) [a] is false but [r] is true - (C) Both [a] and [r] are true but [r] is NOT the correct reason for [a] - (D) Both [a] and [r] are false Q.54 Determine the correctness or otherwise of the following Assertion [a] and the Reason [r]. Assertion: Boiling points of aldehydes and ketones are higher than the boiling points of the corresponding ethers and lower than alcohols. Reason: The carbonyl group is polar but does not undergo intermolecular hydrogen bonding. - (A) Both [a] and [r] are true and [r] is the correct reason for [a] - (B) [a] is false but [r] is true - (C) Both [a] and [r] are true but [r] is NOT the correct reason for [a] - (D) Both [a] and [r] are false - Q.55 In the reaction sequence below, X, Y, and Z, respectively, are - (A) Br₂, FeBr₃; MgCl₂; CH₂O, H⁺ - (B) HBr; HgCl₂; CH₃CHO, H⁺ - (C) Br₂, hv; MgCl₂; CH₂O, H⁺ - (D) Br_2 , $FeBr_3$; Mg, THF; $\bigcirc \circ$, H^+ Q.56 On completion of the reaction the Br atom is attached to carbon atom - (A) w - (B) x - (C) y - (D) z - Q.57 An aqueous solution is a mixture of a carboxylic acid ($pK_a = 4.0$) and an amine (pK_a of protonated amine = 10.0). To separate the components, the solution at a pH of 2.0 is shaken with diethyl ether. On standing, the - (A) top water layer would contain the amine - (B) top ether layer would contain the amine - (C) top water layer would contain the acid - (D) top ether layer would contain the acid # Q.58 The major product, Z, obtained in the reaction (A) $$OH$$ (B) OH (C) OH (C) OH (D) OH (D) OH (D) OH (D) OH (D) OH (D) OH (EXECUTE: A STATE OF THE OCH 3 OCH 3 OF THE OCH 3 - Q.59 The compound that shows a line in the ${}^{1}H$ NMR spectrum at the lowest δ value is - (A) CH₂Cl₂ - (B) CHCl₃ - (C) CH₃Cl - (D) CH₃I - Q.60 Water is injected into a balloon filled with ammonia gas. The balloon shrinks and it is hot to touch. According to the convention $\Delta U = q + w$, for this process - (A) q > 0, w > 0 - (B) q > 0, w < 0 - (C) q < 0, w > 0 - (D) q < 0, w < 0 - Q.61 A process CANNOT occur spontaneously at constant T and P when - (A) $\Delta H < 0, \Delta S < 0$ (B) $\Delta H < 0, \Delta S > 0$ (C) $\Delta H > 0, \Delta S < 0$ - (D) $\Delta H > 0, \Delta S > 0$ - Q.62 If an atomic orbital has 2 radial nodes and 1 angular node, it is a - (A) 2p orbital - (B) 3*d* orbital - (C) 3p orbital - (D) 4p orbital Q.63 Determine the correctness or otherwise of the following Assertion [a] and the Reason [r]. Assertion: Water at 100 °C and 1 atm is acidic with a pH less than 7. Reason: The ionic product of water, K_w , decreases when T increases because the enthalpy of the dissociation of water is endothermic. - (A) Both [a] and [r] are true and [r] is the correct reason for [a] - (B) [a] is false but [r] is true - (C) Both [a] and [r] are true but [r] is NOT the correct reason for [a] - (D) Both [a] and [r] are false - Q.64 A mixture initially containing 2 mol of CO and 2 mol of H_2 comes to equilibrium with methanol, CH_3OH , as the product of the reaction CO (g) + $2H_2$ (g) \rightarrow CH_3OH (g). At equilibrium the mixture will contain - (A) 2 mol of methanol - (B) more than 1 mol but less than 2 mol of methanol - (C) 1 mol of methanol - (D) less than 1 mol of methanol - Q.65 Given that the standard electrode potentials E° ($Cu^{2+}|Cu$) = +0.340 V and E° ($Cu^{+}|Cu$) = +0.522 V, the E° ($Cu^{2+}|Cu^{+}$) is - (A) +0.862 - (B) +0.182 - (C) +0.158 - (D) -0.158 - Q.66 The number of water molecules required to balance the chemical reaction when MnO₄ is converted to MnO₂ in basic solution is - (A) 1 - (B) 2 - (C) 3 - (D) 4 - Q.67 For a reaction $a A + b B \rightarrow c C + d D$, the relation that holds is - (A) $a\frac{d[A]}{dt} = b\frac{d[B]}{dt} = c\frac{d[C]}{dt} = d\frac{d[D]}{dt}$ - (B) $a\frac{d[A]}{dt} = b\frac{d[B]}{dt} = -c\frac{d[C]}{dt} = -d\frac{d[D]}{dt}$ - (C) $\frac{1}{a} \frac{d[A]}{dt} = \frac{1}{b} \frac{d[B]}{dt} = \frac{1}{c} \frac{d[C]}{dt} = \frac{1}{d} \frac{d[D]}{dt}$ - (D) $\frac{1}{a} \frac{d[A]}{dt} = \frac{1}{b} \frac{d[B]}{dt} = -\frac{1}{c} \frac{d[C]}{dt} = -\frac{1}{d} \frac{d[D]}{dt}$ | | BT-12/20 | | | | | | | | | | |------|---|---|---------------------|-----------------------|----------|--------|--|----------|--------------------|--| | | (A) | C/m ² N | (B) | Cm^2/N | | (C) | Nm ² /C | (D) | N/m ² C | | | Q.73 | In S. are | I. units, electric f | lux, w | which is the dot | prod | uct of | electric field in | tensity | and area vector, | | | | (A) | $M^0L^1T^{-2}$ | (B) | $M^1L^1T^{-2}$ | | (C) | $M^0L^1T^0$ | (D) | $M^0L^0T^0$ | | | Q.72 | The | dimensions of she | ar stra | in are | | | | | | | | | (A) | 1/ <i>n</i> | (B) | n | | (C) | 1/2 <i>n</i> | (D) | 2 <i>n</i> | | | Q.71 | | llyfish appearing t
d X. If the refracti | | | | | | | aquarium having | | | | (A)
(B)
(C)
(D) | Both [a] and [r] a [a] is false but [r] Both [a] and [r] a Both [a] and [r] a |] is tru
are tru | ue
e but [r] is NO | | | | | | | | | Assertion: Blood pressure in humans is greater at the brain than at the feet.
Reason: Human heart is farther from the feet than the brain. | | | | | | | | | | | Q.70 | Dete | rmine the correctr | ness or | otherwise of the | ne foll | lowing | g Assertion [a] ar | nd the l | Reason [r]. | | | | (A) | I, II, III, and IV | | | | (C) | I, II, and III | (D) | I, II, and IV | | | | (I) Electrons move in stable circular orbits around the nucleus (II) Electrons may absorb light of specific energy and be excited to higher energy states (III) Angular momentum of electrons in stable orbits is quantized (IV) Angular momentum of electrons in stable orbits is uncertain | | | | | | | | | | | Q.69 | The | postulates of Bohr | | | | | | | | | | | (A)
(C) | I-P, II-Q, III-R, I
I-R, II-S, III-P, I | | | | | I-S, II-P, III-R,
I-R, II-P, III-S, | | | | | | III.
IV. | Vibration
Electronic | | | R.
S. | | ofrequency
owave | | | | | | I.
II. | Nuclear Spin Rotation | | | P.
Q. | | violet-visible | | | | | | | ition in the right co | olumn | | | | | | | | Match the type of transition in the left column with the frequency of the electromagnetic | | | DT 12/2/ | | | | | | | |--------------|---|---|--|--|--|--|--|--| | | Assume: Density of atmospheric pressure (A) 99 | water = 1000 kg/m^3 , at the water surface = 1 at: (B) 990 | acceleration due to $m = 10^5 \text{ Pa}$ (C) 9900 | gravity = 10 m/s^2 , and,
(D) 99000 | | | | | | Q.81 | external pressure of 1 | 00 atm, is | | designed to withstand an | | | | | | | Assume: 1 calorie = 4 (A) 13 | 4.2 Joules
(B) 26 | (C) 130 | (D) 260 | | | | | | Q.80 | for a beat, the approxi | imate energy (in kcal) requ | | period "T" of 0.8 seconds to beat in a day is | | | | | | | (B) acceleration of a(C) rate of change o | total momentum of an iso
a body as a result of applying
of momentum as a result of
and direction of forces occur | ng an external force applying an external | force | | | | | | Q.79 | Newton's second law | of motion deals with | | | | | | | | Q.78 | pH 5.0, in order to | t in a spherical endosome denature and hydrolyze to be 6×10^{23} , the number of (B) 3 | he material internali | zed by a cell. Assuming | | | | | | V. 11 | 1 | imen being observed | (B) Size of specia | men stage
of visible light | | | | | | Q.77 | | a light microscope is limite | | (D) 0 | | | | | | | Assume: Faraday's co temperature = 37°C (A) -47 | $s_{mstant} = 9.65 \times 10^4 \text{ C mol}^{-1}$ | 1; Gas constant = 8.31
(C) -27 | $1 \text{ J K}^{-1} \text{ mol}^{-1}$; mammalian (D) 0 | | | | | | Q.76 | $[K^+]_{out} = 4$ mM, and | skeletal muscle, if the the intracellular potassin ion (K ⁺) potential (in m | um ion concentration | sium ion concentration,
n, $[K^+]_{in} = 128$ mM, the | | | | | | Q.75 | If a human heart beats (A) 75 | at an average frequency of (B) 60 | f 1.25 Hz, the numbe
(C) 85 | r of beats per minute is (D) 120 | | | | | | | (C) is a direct consequence of the general law of conservation of energy(D) implies that the co-efficient of performance of a refrigerator can never be infinite | | | | | | | | The zeroth law of thermodynamics (A) gives a fundamental limitation to the efficiency of a heat engine(B) deals with thermal equilibrium leading to the concept of temperature | | (diameter = 2 nm) having 20% (V/V) water is closest to | | | | | | | | | | |------|--|--|----------|---------------------|-------------|--------------------|-------------|-----------------|--|--| | | Assi | ume: density of | water = | 1000 kg/m³, Av | ogadro's nu | $umber = 6 \times$ | 10^{23} . | | | | | | (A) | 224 | (B) | 9 | (C) | 140 | (D) | 28 | | | | Q.83 | sequ | ne four bases, Americe, the appropries | | | | | | | | | | | (A) | 0.06250 | (B) | 0.01563 | (C) | 0.00391 | (D) | 0.00098 | | | | Q.84 | A new life form has DNA with 5 nucleotides instead of 4, 5 naturally occurring amino acids instead of 20, and a codon size of 2 bases instead of 3. Assuming the central dogma of biology applies to the new life form, the degeneracy of its genetic code | | | | | | | | | | | | (A)
(C) | is likely to be | | | (B)
(D) | is likely to | | ours | | | | Q.85 | 20 microbial colonies appear on an agar plate having sucrose and cellulose as the only carbon sources. Of the 20 colonies, microbes in 12 colonies can metabolize sucrose. If microbes in 4 colonies metabolize both sucrose and cellulose, the number of colonies with microbes which can metabolize cellulose is | | | | | | | | | | | | (A) | 4 | (B) | 8 | (C) | 12 | (D) | 20 | | | | Q.86 | A heavy chain of an immunoglobulin is a result of recombination of one DNA segment each from 200 different V segments, 12 D segments and 4 J segments from the corresponding DNA sequence. Further, a light chain results from recombination of one segment each from 200 different V segments with 5 different J segments. If a heavy chain and a light chain form an immunoglobulin, the maximum number of different immunoglobulins that can be synthesized is closest to | | | | | | | | | | | | (A) | 10 ³ | (B) | 10 ⁵ | (C) | 10 ⁷ | (D) | 10 ⁹ | | | | Q.87 | empi | ght of a colony
irical equation V
weighs 10 kg, th | W (in g) | $= (x)^n$, where x | = 1.01 and | 1 n = number | | | | | | | (A)
(B)
(C) | (B) A colony of one million cells is heavier than a dog | | | | | | | | | The number of water molecules present in a 300 residue soluble protein of spherical shape Q.82 (D) None of the above | | (A) | (3, 3, 3) | (B) | (3, 1, 3) | (C) | (1, 3, 1) | (D) | (1, 1, 1) | |------|--------------------------|--|-----------------|---|--------------|---|-----------------|--------------------------------------| | Q.89 | Two l | inear and parallel
drogen bonded to | RNA
ogethe | strands, defined by the
er. The distance betw | e equa | ations $3x - 4y + 6 = 6$ e two strands is | = 0 an | d 3x - 4y + 5 = 0 | | | (A) | 0.2 | (B) | 1.0 | (C) | 1.2 | (D) | 2 | | Q.90 | (p, q | +r), $(q, r+p)$, are | id $(r,$ ied by | p+q) are the coord the three atoms is | inates | of 3 co-planar | atoms | in a molecular | | | (A)
(C) | $pq + qr + pr$ $p^2 + q^2 + r^2$ | | | (B)
(D) | pqr None of the above | ve | | | Q.91 | The a | ingle between two | o linea | ar transmembrane do:
$\vec{a} = \hat{i} + \hat{j} - \hat{k}$ $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ | Ì | defined by the fo | llowin | g vectors | | | is | | | | | | | 1 | | | (A) | $\cos^{-1}(-1/3)$ | (B) | $\cos^{-1}(1/3)$ | (C) | $\sin^{-1}(-1/3)$ | (D) | $\sin^{-1}(1/3)$ | | Q.92 | | | | defined by $6\hat{i} + 2\hat{j} -$ e correct statement as | | | | nscription factor | | | (A)
(B)
(C)
(D) | The transcription | n facto | or is parallel to the D or is perpendicular to or is at an angle of 45 | the D | NA segment | nt | | | Q.93 | amin | otein backbone of acids. If area eptide is zero, | ean be | traced by plotting t
e triangle formed b | he coo | ordinates of Cα a
ling the coordina | toms
tes of | of its constituent
Cα atoms of a | | | (A)
(C) | the tri-peptide is
the tri-peptide f | | | (B)
(D) | the tri-peptide is
the tri-peptide f | | | | Q.94 | of P | riyanka's grandm | others | . Her mother's blood
s had blood type AB
athers CANNOT be | type is, and | is B and father's t
assuming NO ch | olood
ild wa | type is A. If both is adopted, blood | | | (A) | Α | (B) | В | (C) | AB | (D) | O | | | | | | BT-15/20 | | | | | | | | * | | | | | | , | Given that a hetero-trimeric protein is formed by 3 proteins with their center of masses at the coordinates (1, 1, 2), (3, -5, 7) and (-1, 7, -6) respectively, the coordinates of the centroid of the triangle formed by joining the three center of masses is | Q.95 | Given that you have 2 parents, 4 grandparents, 8 great grand parents, and so on, the number of your ancestors during ten (10) generations of your family preceding you is | | | | | | | | | |--|---|--|-----|--|-----|------|-------|------------------|--| | | (A) | 510 | (B) | 1022 | (C) | 2046 | (D) | 4090 | | | Q.96 | The intracellular non-enzymatic fractional degradation of a compound X , $f(x)$, is related to its concentration x through | | | | | | | | | | | | | | $f(x) = \lim_{x \to 0} \frac{\sqrt{1+x}}{x}$ | ı | | | | | | | At a negligible concentration of X, its fractional degradation is | | | | | | | | | | | (A) | 0.00 | (B) | 0.25 | (C) | 0.50 | (D) | 0.75 | | | Q.97 The distance x (in μ m) covered by a molecule starting from point A at time at another point B is given by the equation $x = t^2 \left(2 - \frac{t}{3}\right).$ | | | | | | | ime t | = 0 and stopping | | | | | | | $x = t \left(2 - \frac{1}{3}\right)$ |). | | | | | | | The distance between A and B (in µm) is closest to | | | | | | | | | | | (A) | 10.7 | (B) | 20.7 | (C) | 40.7 | (D) | 50.7 | | | Q.98 | Dependence of the weight, y (in kg), of an organism on the number of hours, x , when it is in motion, is given by the differential equation $\frac{dy}{dx} = -4xy^2, \ y \neq 0.$ | | | | | | | | | | | Give | Given that $y = 1$, when $x = 0$, the weight of the organism after moving for one hour is | | | | | | | | | | (A) | 0.11 | (B) | 0.33 | (C) | 0.67 | (D) | 0.75 | | | Q.99 | | A hospital has 35 patients, 24 of which are HIV+ and 16 have TB infection. All patients have at least one of the two infections. The number of patients with both HIV and TB infections is | | | | | | | | | | (A) | 5 | (B) | 8 | (C) | 9 | (D) | 11 | | | Q.100 | | | | kids is 29.6 kg. If t
ght of the fourth kid | | | 29.8 | kg, 28.6 kg and | | | | (A) | 29.3 | (B) | 29.6 | (C) | 30.3 | (D) | 30.6 | | | | | | | | | | | | | DO NOT WRITE ON THIS PACE. DO NOT WRITE ON THIS PACE!