NE-856Seat No.____First Year B. Sc. (Fire Technology)ExaminationApril / May - 2003Applied Physics

Time : Hours] [Total Marks : 70 **Instructions** : (1) All questions are **compulsory**. Figures to the right indicate full marks of the (2) question. Non-programmable scientific calculators are (3) permitted. Assume suitable additional data that may be (4) necessary. 1 How should a unit be ? (a) 4 (b) Give dimensional formulae for : 3 (i) Linear momentum (ii) Stress (iii) Surface energy. If the velocity of water waves depends on the (c) 3 wavelength \mathbf{D} , density of water \mathbf{D} and acceleration due to gravity **X**. Then using dimensional analysis, prove that $v \alpha \sqrt{\lambda g}$. (d) Answer the following in brief : 4 Can a body have zero mass and zero weight ? (1) (2) Explain the meaning of giga, micro and famto. (3) Write dimensional formula of angle. (4) Convert 10 m/s velocity into km/hr. OR

1

NE-856]

[Contd....

1	(a)	Give statement of Newton's law of viscosity. Explain variation of viscosity with temperature.	5
	(b)	Define : Kinematic viscosity and obtain its unit in MKS system.	2
	(c)	Define : any two :	4
		(i) Density	
		(ii) Specific weight	
		(iii) Specific volume.	
	(d)	A plate placed at 0.025 mm distant from a fixed plate moves with a velocity of 60 cm/s and to maintain this velocity a force of 2 N/m ² is required. Determine the fluid viscosity between the plates.	3
2	(a)	Define : 'Gravitational potential' and prove that	4
		$V = -\frac{GM}{R}$ where $M =$ mass of earth and $R =$ radius	
	(L)	of earth.	
	(b)	Radius of the earth is 6400 kms. Its mean density is 6×10^3 kg/m ³ . Calculate earth's gravitational potential.	4
	(c)	Write a brief note on satellites. Derive expressions for orbital velocity and time period of a satellite.	4
	(d)	Mention different sources of error in the measurement of g .	2
		OR	
2	(a)	What do you understand by the term stress ? Explain briefly different types of stress.	6
	(b)	Define : any two	4
		(i) Deforming force	
		(ii) Perfectly elastic body	
		(iii) Elasticity.	
	(c)	Explain : Different types of solids. Give three characteristics of each.	4

NE-856]

[Contd....

3	(a)	Give statement of Stoke's law and derive express for the terminal velocity of a small spherical bo moving through a viscous medium.				
	(b)	Calculate the height (h) upto which water will in a capillary tube of diameter 2 mm. Angle of contact for water is zero and surface tension of water (T) is 0.072 N/m.	rise 4			
	(c)	Prove that Reynold's number is dimensionless.	2			
	(d)	Explain in brief : Equation of continuity.	2			
OR						
3	(a)	Explain Jaeger's method for the determination of surface tension of a liquid.	of 6			
	(b)	Explain : Surface tension and surface energy of a liquid.	4			
	(c)	For a liquid drop prove that $P_i - P_o = \frac{2T}{R}$	4			
		(symbols have their usual meanings)				
4	(a)	Derive Bernoullie's equation.	6			
	(b)	Explain the physical quantity : Discharge (Q) of a fluid.	f 4			
	(c)	Explain : Stream lines and laminar fluid.	2			
	(d)	Explain : Buoyanacy.	2			
OR						
4	(a)	Derive : Euler's equation of motion.	7			
	(b)	Explain : Metacentre.	3			
	(c)	Explain : Stable, unstable and neutral equilibriu for a submerged body.	um 4			
5	(a)	Explain : Radioactivity.	4			
	(b)	Write properties of β -rays.	4			
	(c)	Explain : radioactive constant 🕅	4			
	(d)	Write definition of (1) curie (2) Bequerral.	2			
OR						
NE-856]		3	[Contd			

- 5 (a) Explain any two of the following :
 - (i) Symbol : Z^{X^A}
 - (ii) Isotopes
 - (iii) Isomers.
 - (b) Explain : construction, principle and working of a 6Coolidge tube.
 - (c) If a X-ray tube is operated at 50,000 volts, then **4** calculate the shortest wavelength of the X-rays provided by this tube. (Take $h = 6.6 \times 10^{-34}$ J.second, $C = 3 \times 10^8$ m/sec, $e = 1.6 \times 10^{-19}$ Coloumb)

NE-856]

4