Seat No. _____

First Year B. Sc. (Fire) Examination April/May – 2003 Applied Chemistry

NA-852

Time : 3 Hours]

[Total Marks : 100

Instructions : (1) All questions are **compulsory**.

- (2) Figures on the **right** indicate **full** marks.
- (3) Draw neat figures, wherever required Non-programmable scientific calculators are allowed.
- **1** (a) State the Carnot's theorem and explain Carnot's cycle **14** for the efficiency of the reversible cycle.
 - (b) Discuss the first law of thermochemistry.
 - (c) Give the IUPAC names of the following compounds :

(1)
$$CH_3 - CH - CH_2 - COOH$$

(2)
$$CH_3 - CH_3 = CH_3 - CH_3$$

 $| CH_3 - C - CH_2 - C - CH_3$
 $| CH_3 - CH_3$

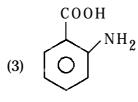
NA-852]

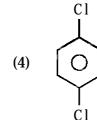
[Contd....

(d) The standard heat of formation of NH₃, H₂O and NO in gaseous state are 11, 57.8 and 21.6 k cal/mole respectively. Calculate the heat of reaction i.e. Δ H^o.

$$4\mathrm{NH}_{3(\mathrm{g})} + 5\mathrm{O}_{2(\mathrm{g})} \longrightarrow 6\mathrm{H}_2\mathrm{O}_{(\mathrm{g})} + 4\mathrm{NO}_{(\mathrm{g})}$$

OR


- (a) Derive the Krichhoff's equation to study the effect of 14 temperature on heat of reaction.
 - (b) What is heat capacity ? Give mathematical expression for heat capacity relationship at constant pressure i.e.


$$\mathbf{C}_{\mathbf{P}} - \mathbf{C}_{\mathbf{V}} = \left[\mathbf{P} + \left(\frac{\mathbf{d}\mathbf{E}}{\mathbf{d}\mathbf{V}}\right)_{\mathbf{T}}\right] \left(\frac{\mathbf{d}\mathbf{V}}{\mathbf{d}\mathbf{T}}\right)_{\mathbf{P}}.$$

(c) Give the IUPAC names of the following compounds :

(1)
$$CH_3 - CH - CH_2 - CHO$$

 $| NO_2$

(2)
$$CH_3 = C = C - CH_3$$

 $\begin{vmatrix} & & \\ & & \\ CH_3 & CH_3 \end{vmatrix}$

[Contd....

(d) Calculate the change in entropy ΔS per mole for the following reaction at 25° C.

$$H_{2(g)} + \frac{1}{2}O_{2(g)} → H_2O_{(g)}$$

ΔH = -57.82 k. cal.
ΔG = -54.56 k. cal.

- 2 (a) Define ignition. What is spontaneous ignition
 14 temperature ? Give procedure of spontaneous chain reaction between KMnO₄ and glycerin.
 - (b) Describe : How does combustion spread ?
 - (c) Give dangerous properties and fire fighting of aniline and oxygen.

OR

2 (a) Discuss : Maximum flame temperature.

14

(b) Discuss flash point and fire point of organic solvents.

- (c) Give dangerous properties and fire fighting of toluene and hydrogen.
- **3** (a) Discuss the chemical mechanism of combustion of **14** hydrogen.
 - (b) Give main characteristics and uses of any three common high explosives.
 - (c) Write a short note on ambient conditions in of combustibility hazards.
 - (d) Write a short note on titanium fire and its preventive action.

OR

- **3** (a) Write a note on the size and density of smoke particles. **14**
 - (b) Derive the equation for the half life period of a second order reaction.
 - (c) Define : Explosion. Explosive limit, Explosive range.
 - (d) Write a short note on magnesium fire and its preventive action.

NA-852]

[Contd....

- **4** Answer any **four** of the following :
 - (a) Define and explain the term free energy.
 - (b) Write a short note on smouldering.
 - (c) Discuss Laminar versus Turbulent flames.
 - (d) Write a short note on fire retardance and give any two examples of it.
 - (e) Derive an equation for the rate constant of "nth" order reaction.
 - (f) Discuss flange fire.
- 5 (a) Write a short note on Boiling Liquid Expanding 14Vapour Explosion (BLEVE).
 - (b) Write an experiment to determine the specific heat of a substance (Copper).
 - (c) Define calorific value.

A sample of coal has the following composition on mass basis :

C = 85.5%, H = 12.5%, O = 2%.

Calculate the calorific value of the coal by using Dulong's formula.

OR

- **5** (a) Explain with a neat diagram the principle, construction **14** and working of Junker's calorimeter.
 - (b) Write a note on hazards and risks associated with industry.
 - (c) A Bomb calorimeter having water equivalent 300 gm is filled with 3 kg of water. The combustion of 2 gm of glucose $[C_6H_{12}O_6]$ raised the temperature of water by 5° C; calculate the heat of combustion per mole of glucose.