[KM 143]

Sub. Code: 2040

M.D. DEGREE EXAMINATION.

Branch VIII - Radiodiagnosis

Part II - Preliminary

MEDICAL RADIATION PHYSICS AS APPLIED TO RADIO DIAGNOSIS

Time: Three hours

Maximum: 100 marks

Theory: Two hours and

Theory: 80 marks

forty minutes

M.C.Q.: Twenty minutes

M.C.Q.: 20 marks

Answer ALL questions.

Draw suitable diagrams whenever necessary.

I. Essay questions :

 $(2 \times 15 = 30)$

- Discuss in detail on interaction of X-rays with matter.
- (2) Discuss the basic principles of localisation of foreign bodies and tomography.
- II. Short note questions:

 $(10 \times 5 = 50)$

- (a) Natural and artificial radioactivity
- (b) Full wave rectification
- (c) Tube rating

- (d) Protective barriers
- (e) Filters in Radiology
- (f) Quality of X-rays
- (g) Cones and grids
- (h) Conductors and insulators
- (i) Transformers
- (j) Timers.

[KO 143]

Sub. Code: 2040

M.D. DEGREE EXAMINATION.

Branch VIII - Radiodiagnosis

MEDICAL RADIATION PHYSICS AS APPLIED TO RADIODIAGNOSIS

Time: Three hours

Maximum: 100 marks

Theory: Two hours and

Theory: 80 marks

forty minutes

M.C.Q.: Twenty minutes

M.C.Q.: 20 marks

Answer ALL questions.

Draw suitable diagrams wherever necessary.

I. Essay questions :

 $(2 \times 15 = 30)$

- Describe the various interactions of X-rays with matter.
- (2) Describe the various methods of radiation protection and Radiation personnel monitoring available.
- II. Short notes questions:

 $(10 \times 5 = 50)$

- (a) Characteristic X-Radiation
- (b) Rotating anode
- (c) Linear Accelerator

- (d) I-131 Therapy
- (e) Spin lattice relaxation time
- (f) CT numbers
- (g) Piezo electric effect
- (h) Image intensifier
- (i) X-ray film processing
- (j) Filters.

[KP 143]

Sub. Code: 2040

M.D. DEGREE EXAMINATION.

Branch VIII - Radiodiagnosis

MEDICAL RADIATION PHYSICS AS APPLIED TO RADIODIAGNOSIS

Time: Three hours Maximum: 100 marks

Theory: Two hours and Theory: 80 marks

forty minutes

M.C.Q.: Twenty minutes M.C.Q.: 20 marks

Answer ALL questions.

Draw suitable diagrams wherever necessary.

I. Essay questions :

- (1) (a) Explain the importance of Quality Assurance tests in Diagnostic radiology.
- (b) Discuss various quality assurance tests and test stools required in Diagnostic Radiology. (20)
- (2) (a) Explain the functions of each layer of Medical X-ray film.
- (b) Discuss principles and functions of intensifying screen.
- (c) What are the various steps in film processing? (15)

(3) Outline the process by which X-rays are produced in an X-ray tube? What are the various factors which influence the X-ray omission spectrum? (15)

Short notes :

 $(6 \times 5 = 30)$

- (a) Grids and Grid ratio
- (b) Characteristic curve
- (c) Latent image formation
- (d) Gamma camera
- (e) Line focus principle
- (f) Grinacher X-ray Circute

[KQ 133]

Sub. Code: 2040

M.D. DEGREE EXAMINATION.

Branch VIII - Radio Diagnosis

MEDICAL RADIATION PHYSICS AS APPLIED TO RADIO DIAGNOSIS

Common to

Part II — (Preliminary/New/Revised Regulations)

(Candidates admitted from 1988-89 onwards)

and

Paper I (for candidates admitted from 2004-2005 onwards)

Time: Three hours Maximum: 100 marks

Theory: Two hours and Theory: 80 marks

forty minutes

M.C.Q.: Twenty minutes M.C.Q.: 20 marks

Answer ALL questions.

Draw suitable diagrams wherever necessary.

- I. Essay:
- 1. Explain the physical principle of Computerised Tomography (CT) and describe its technological evolution to the present status. What are the clinical advantages of the new generation scanner? (20)

- 2. What is Doppler Effect? Describe its major medical applications based on the spectral waveform. What are the factors that affect Doppler signal? (15)
- What are the different factors that influence the quality of a radiograph? Describe the different contrast enhancement techniques. (15)

II. Short notes :

 $(6 \times 5 = 30)$

- (a) Vignetting and pincushion effect.
- (b) Magnetic Resonance Spectroscopy.
- (c) Renogram.
- (d) Molybdenum target X ray tube.
- (e) Effective half life.
- Contrast media in ultrasound imaging.

MARCH 2008

[KS 136] Sub. Code: 2031

M.D. DEGREE EXAMINATION.

Branch VIII — Radio Diagnosis

MEDICAL RADIATION PHYSICS AS APPLIED TO RADIO DIAGNOSIS

(Common to all Regulations)

Q.P. Code: 202031

Time: Three hours Maximum: 100 marks

Answer ALL questions.

Draw suitable diagrams wherever necessary.

I. Essay: $(2 \times 20 = 40)$

- 1. Write the principle of colour doppler. What are the causes of deep vein thrombosis? Discuss merits and demerits of various imaging modalities used in evaluation of DVT? (20)
- 2. What are scattered radiations? What is its significance in radiography? What are the methods to reduce scattered radiations?
 (20)

II. Short notes: $(10 \times 6 = 60)$

- 1. Principle digital substraction angiography DSA.
- 2. Replenisher.
- 3. Three phase generators.
- 4. Inverse square law.
- 5. Comptons effect.
- 6. Phase transformer.
- 7. Capacitors.
- 8. Factors on which quality of X rays depend.
- 9. Rotating anode.
- 10. Grid.