In Figures

In Words

Signature of the Candidate:

Subject : M.E. (Chemical)

Time : 90 minutes
 Number of Questions: 75
 Maximum Marks : 75
 DO NOT OPEN THE SEAL ON THE BOOKLET UNTIL ASKED TO DO SO
 INSTRUCTIONS

1. Write your Roll No. on the Question Booklet and also on the OMR Answer Sheet in the space provided and nowhere else.
2. Enter the Subject and Series Code of Question Booklet on the OMR Answer Sheet. Darken the corresponding bubbles with Black Ball Point / Black Gel pen.
3. Do not make any identification mark on the Answer Sheet or Question Booklet.
4. To open the Question Booklet remove the paper seal (s) gently when asked to do so.
5. Please check that this Question Booklet contains $\mathbf{7 5}$ questions. In case of any discrepancy, inform the Assistant Superintendent within 10 minutes of the start of test.
6. Each question has four alternative answers (A, B , C , D) of which only one is correct. For each question, darken only one bubble (A or B or C or D), whichever you think is the correct answer, on the Answer Sheet with Black Ball Point / Black Gel pen.
7. If you do not want to answer a question, leave all the bubbles corresponding to that question blank in the Answer Sheet. No marks will be deducted in such cases.
8. Darken the bubbles in the OMR Answer Sheet according to the Serial No. of the questions given in the Question Booklet.
9. Negative marking will be adopted for evaluation i.e., $1 / 4$ th of the marks of the question will be deducted for each wrong answer. A wrong answer means incorrect answer or wrong filling of bubble.
10. For calculations, use of simple log tables is permitted. Borrowing of log tables and any other material is not allowed.
11. For rough work only the sheets marked "Rough Work" at the end of the Question Booklet be used.
12. The Answer Sheet is designed for computer evaluation. Therefore, if you do not follow the instructions given on the Answer Sheet, it may make evaluation by the computer difficult. Any resultant loss to the candidate on the above account, i.e., not following the instructions completely, shall be of the candidate only.
13. After the test, hand over the Question Booklet and the Answer Sheet to the Assistant Superintendent on duty.
14. In no case the Answer Sheet, the Question Booklet, or its part or any material copied/noted from this Booklet is to be taken out of the examination hall. Any candidate found doing so, would be expelled from the examination.
15. A candidate who creates disturbance of any kind or changes his/her seat or is found in possession of any paper possibly of any assistance or found giving or receiving assistance or found using any other unfair means during the examination will be expelled from the examination by the Centre Superintendent/Observer whose decision shall be final.
16. Telecommunication equipment such as pager, cellular phone, wireless, scanner, etc., is not permitted inside the examination hall. Use of calculators is not allowed.
17. 10 kg of 70% aqueous NaOH solution is mixed with 16 kg of 80% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution to produce $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The percent excess is approximately equal to :
(A) 39
(B) 49
(C) 59
(D) 69
18. Density of dry air at $100^{\circ} \mathrm{C}$ and 1.5 bar is approximately equal to :
(A) $1.4 \mathrm{~kg} / \mathrm{m}^{3}$
(B) $2.4 \mathrm{~kg} / \mathrm{m}^{3}$
(C) $3.4 \mathrm{~kg} / \mathrm{m}^{3}$
(D) $4.4 \mathrm{~kg} / \mathrm{m}^{3}$
19. Molarity of a 20% by weight aqueous solution of NaOH at $30^{\circ} \mathrm{C}$ having density equal to $1120 \mathrm{~kg} / \mathrm{m}^{3}$ will be :
(A) 4.6
(B) 7.6
(C) 9.6
(D) 5.6
20. The vapour pressure in mmHg of water at $25^{\circ} \mathrm{C}$ (average molar latent heat of vaporization $9720 \mathrm{cal} /$ mol) using Clausius-Clapeyron equation will be :
(A) 27.69
(B) 63.76
(C) 12.02
(D) 121.52
21. 200 kg of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ charged to a reactor gave 70 kg of $\mathrm{N}_{2} \mathrm{O}$

$$
\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}
$$

The percent conversion is :
(A) 43.6
(B) 63.6
(C) 53.6
(D) 73.6
6. The total pressure of vapours at equilibrium at $30^{\circ} \mathrm{C}$ in contact with a liquid mixture containing $25 \mathrm{~mol} \%$ benzene and $75 \mathrm{~mol} \%$ toluene will be :
(Take $P_{\mathrm{C}_{6} \mathrm{H}_{6}}^{\mathrm{o}}=119 \mathrm{~mm} \mathrm{Hg}, \mathrm{P}_{\mathrm{C}_{7} \mathrm{H}_{8}}^{\mathrm{o}}=\mathbf{3 6 . 7} \mathbf{~ m m ~ H g}$),
(A) 158 mm Hg
(B) 57.27 mm Hg
(C) 760 mm Hg
(D) 48 mm Hg
7. For estimation of heat capacity of a solid compound, one can use :
(A) Clapeyron's equation
(B) Gibb's equation
(C) Kopp's rule
(D) Trouton's rule
8. $\mathbf{9 0} \mathbf{~ k g} / \mathrm{hr}$ of air is being compressed from $\mathbf{1 ~ a t m}(\hat{\mathbf{H}}=\mathbf{1 1 7} \mathbf{~ k c a l} / \mathrm{kg})$ to $\mathbf{1 0} \mathbf{~ a t m}(\hat{\mathbf{H}}=122 \mathrm{kcal} / \mathrm{kg})$. The exit velocity from the compressor is $60 \mathrm{~m} / \mathrm{s}$. Assuming adiabatic condition, what is the hp required for compression?
(A) 1.54
(B) 3.84
(C) 0.76
(D) 10.36
9. The Reynolds number of a solid particle falling in a fluid is $\mathbf{1 5 0 0}$. Drag coefficient will be :
(A) 0.016
(B) 0.0107
(C) 0.44
(D) 0.064
10. The sphericity shape factor for a cylinder having diameter is length :
(A) 1.0
(B) 0.874
(C) 0.806
(D) 0.60
11. An oil having density of $878 \mathrm{~kg} / \mathrm{m}^{3}$ is flowing through a pipe having 0.1541 m diameter in which a sharp edged orifice is installed. The pressure difference across the orifice is $93.2 \mathrm{kN} / \mathrm{m}^{2}$. The velocity of the oil in \mathbf{m} / s corresponding to an orifice coefficient 0.61 is :
(A) 8.97
(B) 89.7
(C) 0.897
(D) 897
12. Water at $50^{\circ} \mathrm{C}$ (density $=988 \mathrm{~kg} / \mathrm{m}^{3}$, vapour pressure $=12.35 \mathrm{kPa}$) is in an open tank. The pump is 3.0 m above the open tank. The velocity in the pipe is $0.9 \mathrm{~m} / \mathrm{s}$. The available NPSH will be approximately :
(A) 5.14 m
(B) 10.28 m
(C) 7.14 m
(D) 3.14 m
13. Pump efficiency of a typical centrifugal pump having $1000 \mathrm{gal} / \mathrm{min}$ capacity is :
(A) 20%
(B) 30%
(C) 50%
(D) 85%
14. The Fanning friction factor for a flowing fluid having Reynolds number 1000 is :
(A) 0.024
(B) 0.016
(C) 0.064
(D) 0.048
15. Heat loss per m^{2} of surface area for an insulating wall composed of 25.4 mm thick fiber insulating board $(\mathrm{k}=0.048 \mathrm{~W} /(\mathrm{m})(\mathrm{k})$), where the inside temperature is 352.7 k and the outside temperature is 297.1 k is approximately :
(A) 105 W
(B) 210 W
(C) 315 W
(D) 420 W
16. Range of heat transfer coefficient in $\mathrm{W} /\left(\mathrm{m}^{2}\right)(\mathrm{k})$ for condensing steam is :
(A) 6000-25000
(B) 300-500
(C) 50-200
(D) 10-50
17. In a shell and tube heat exchanger the tube side coefficient is $500 \mathrm{~W} /\left(\mathrm{m}^{2}\right)(\mathrm{k})$ and the shell side coefficient is $2000 \mathrm{~W} /\left(\mathrm{m}^{2}\right)(\mathrm{k})$. Neglecting all other resistances, the overall heat transfer coefficient will be :
(A) 1500
(B) 2500
(C) 400
(D) 800
18. A 1-1 pass shell and tube heat exchanger is converted to a $1 \mathbf{- 2}$ pass, by how many times the tube side pressure drop will increase ?
(A) 16
(B) 32
(C) 8
(D) 2
19. Grashoff number in natural convection heat transfer is :
(A) $\frac{L^{3} \rho g \beta \Delta T}{\mu^{2}}$
(B) $\frac{L^{3} \rho^{2} g \beta \Delta T}{\mu^{2}}$
(C) $\frac{L^{3} \rho^{2} g \beta \Delta T}{\mu^{3}}$
(D) $\frac{L^{3} \rho^{2} g \beta \Delta T}{\mu}$
20. Water is being pumped to an overhead tank, the range of discharge velocity in m / s should be :
(A) 3-4
(B) $5-10$
(C) 1-1.2
(D) $0.1-0.5$
21. Total emissivity of polished aluminium surface is :
(A) 0.04
(B) 0.75
(C) 0.95
(D) 0.01
22. Diffusion coefficient in $\mathrm{m}^{2} / \mathrm{s}$ for dilute liquid solution of ethyl alcohol in water is :
(A) 1.2×10^{-9}
(B) 1.2×10^{-4}
(C) 1.2
(D) 1.2×10^{4}
23. Latent heat of saturated steam :
(A) Increases with the increase in pressure
(B) Decreases with the increase in pressure
(C) Is independent of pressure
(D) Increases with the increase in temperature
24. Steam economy in evaporators is :
(A) $\frac{\mathrm{kg} \text { steam used }}{\mathrm{kg} \text { water evaporated }}$
(B) $\frac{\mathrm{kg} \text { water evaporated }}{\mathrm{hr}}$
(C) $\frac{\mathrm{kg} \text { steam used }}{\mathrm{hr}}$
(D) $\frac{\mathrm{kg} \text { water evaporated }}{\mathrm{kg} \text { steam used }}$
25. The dry bulb temperature of air-water vapour system is $40^{\circ} \mathrm{C}$. The partial pressure of water vapour is 23.8 mm Hg . Vapour pressure of water at $25^{\circ} \mathrm{C}$ is 23.8 mm Hg . The Dew point temperature of the system is :
(A) $<25^{\circ} \mathrm{C}$
(B) $>25^{\circ} \mathrm{C}<40^{\circ} \mathrm{C}$
(C) $25^{\circ} \mathrm{C}$
(D) $>40^{\circ} \mathrm{C}$
26. The relative volatility $\left(\alpha_{A B}\right)$ for an ideal binary liquid mixture of A and B at a given temperature is :
(A) $\frac{\mathrm{P}_{\mathrm{B}}^{\mathrm{O}}}{\mathrm{P}_{\mathrm{A}}^{\mathrm{O}}}$
(B) $\frac{\mathrm{P}_{\mathrm{A}}^{\mathrm{O}}}{\mathrm{P}_{\mathrm{B}}^{\mathrm{O}}}$
(C) $\frac{\mathrm{P}_{\mathrm{A}}^{\mathrm{O}}}{\left(1-\mathrm{P}_{\mathrm{B}}^{\mathrm{O}}\right)}$
(D) $\frac{\left(1-\mathrm{P}_{\mathrm{A}}^{\mathrm{O}}\right)}{\mathrm{P}_{\mathrm{B}}^{\mathrm{O}}}$

Where $\mathrm{P}_{\mathrm{A}}^{\mathrm{O}}$ and $\mathrm{P}_{\mathrm{B}}^{\mathrm{O}}$ are vapour pressures
27. Entropy change of a system is zero in :
(A) Reversible process
(B) Adiabatic process
(C) Reversible adiabatic process
(D) Isothermal process
28. The equation of state for a certain gas is given by $P(V-b)=R T$, where b is positive constant. The Joule-Thomson coefficient is :
(A) Positive
(B) Negative
(C) Zero
(D) Positive within the inversion points
29. Which one of the following is incorrect?
(A) $\mathrm{dU}=\mathrm{TdS}-\mathrm{PdV}$
(B) $\mathrm{dH}=\mathrm{TdS}-\mathrm{VdP}$
(C) $\mathrm{dA}=-\mathrm{SdT}-\mathrm{PdV}$
(D) $\mathrm{dG}=-\mathrm{SdT}+\mathrm{VdP}$
30. Fugacity has the same dimensions as that of :
(A) Gibbs free energy
(B) Pressure
(C) Temperature
(D) Fugacity is dimensionless
31. The volume coefficient of expansion $\boldsymbol{\beta}$ of an ideal gas equals :
(A) $1 / \mathrm{T}$
(B) $1 / \mathrm{P}$
(C) T
(D) P
32. The net change in a state function is zero for :
(A) A reversible process
(B) An irreversible process
(C) Cyclic process
(D) Non-cyclic process
33. As pressure approaches zero, the fugacity coefficient value tends to :
(A) Pressure
(B) Zero
(C) Unity
(D) Infinity
34. A Carnot cycle consists of the following steps :
(A) Two isothermals and two isentropics
(B) Two isobaric and two isothermals
(C) Two isochorics and two isobarics
(D) Two isothermals and two isochorics
35. The value of activity coefficient for an ideal solution is :
(A) One
(B) Zero
(C) Equal to Henry's Law constant
(D) Equal to vapour pressure
36. Which one of the following statements is true with reference to the minimum boiling azeotropes?
(A) There is a minimum on the vapour pressure curve
(B) The solution exhibits positive deviation from ideality
(C) The dew point is greater than the bubble point
(D) The activity coefficients are less than unity
37. For a highly favourable chemical reaction, the standard free energy change is :
(A) Zero
(B) Unity
(C) Positive
(D) Negative
38. A mixture of benzene and water is agitated. The normal boiling point of benzene is $80^{\circ} \mathrm{C}$ and that of water is $100^{\circ} \mathrm{C}$. At a pressure of 1 atm , the boiling point of the mixture is :
(A) $80^{\circ} \mathrm{C}$
(B) $100^{\circ} \mathrm{C}$
(C) $<80^{\circ} \mathrm{C}$
(D) $>80^{\circ} \mathrm{C}<100^{\circ} \mathrm{C}$
39. Minimum reflux ratio in a distillation column results in :
(A) Optimum number of trays
(B) Minimum size of reboiler
(C) Maximum condenser size
(D) Minimum number of trays
40. Direct costs component of the fixed capital consists of :
(A) Contingency
(B) Onsite and offsite costs
(C) Labour costs
(D) Raw material costs
41. The variables required to be known in correlations used for estimating the horsepower of a centrifugal compressor and hence its cost are :

P inlet pressure
R Delivery pressure
(A) P, Q and R
(B) P and R
(C) R and S
(D) P, R and S
42. A pure drug is administered as a sphere and as a cube. The amount of drug is the same in two tablets. Assuming that the shape and size do not influence the mass transfer, the ratio of rate of dissolution in water at $\mathbf{t}=\mathbf{0}$ for the cubic and the spherical tablet is :
(A) 0.54
(B) 1.04
(C) 1.94
(D) 1.24
43. The number of degrees of freedom for an azeotropic mixture in a two component vapour liquid equilibria is/are :
(A) Zero
(B) One
(C) Two
(D) Three
44. The depreciable fixed cost is Rs. 100 lakhs. The average profit per year is Rs. 15 lakhs. The average depreciation cost per year is Rs. 10 lakhs. What is the payment period in years, if there is no interest charge?
(A) 8
(B) 4
(C) 10
(D) 20
45. Match the variation of mass transfer coefficient given by the theory in Group I with the appropriate variation in Group II :

Group I
P Film theory
Q Penetration theory
R Boundary layer theory

Group II

1. $\propto D_{A B}$
2. $\propto D_{A B}^{2 / 3}$
3. $\propto D_{A B}^{1 / 2}$
(A) $\mathrm{P}-1, \mathrm{Q}-2, \mathrm{R}-3$
(B) $\mathrm{P}-2, \mathrm{Q}-1, \mathrm{R}-3$
(C) P-1, Q-3, R-2
(D) P-3, Q-2, R-1
4. Which of the following not employed in the commercial production of linear polyvinyl chloride ?
(A) Emulsion Polymerization
(B) Suspension Polymerization
(C) Additional Polymerization
(D) Condensation Polymerization
5. Which of the following is a detergent ?
(A) Benzene hexachloride
(B) Cellulose nitrate
(C) Polyvinyl chloride
(D) Alkyl benzene sulphonate
6. The chief raw material for the commercial production of methanol is :
(A) Synthesis gas
(B) Formaldehyde
(C) Acetic acid
(D) Ethanol
7. For the liquid phase reaction $A \rightarrow P$, in a series of experiments in a batch reactor, the half-life $t_{1 / 2}$ was found to be inversely proportional to the square root of the initial concentration of A. The order of the reaction is :
(A) $3 / 2$
(B) 1
(C) $+1 / 2$
(D) $-1 / 2$
8. Match the items in Group I with those in Group II :

Group I
P Porous catalyst
Q Parallel reactions
R Non-ideal tubular reactor
S Gas-solid non-catalytic reaction
(A) P-3, Q-1, R-4, S-2
(C) P-1, Q-4, R-2, S-3

Group II

1. Selectivity
2. Shrinking core model
3. Thiele modulus
4. Dispersion number
(B) P-1, Q-3, R-2, S-4
(D) P-3, Q-4, R-1, S-2
5. Baffles are used in heat exchangers in order to :
(A) Increase the tube side fluid heat transfer coefficient
(B) Promote vibration in the heat exchanger
(C) Promote cross flow and turbulence in the shell side fluid
(D) To prevent shell expansion due to thermal effects
6. For the case of a fuel gas undergoing combustion with air, if the air/fuel ratio is increased, the adiabatic flame temperature will :
(A) Increase
(B) Decrease
(C) Increase or decrease depending on the fuel type
(D) Not change
7. In petroleum refining, the process used for conversion of hydrocarbons to aromatics is :
(A) Catalytic cracking
(B) Catalytic reforming
(C) Hydrotreating
(D) Alkylation
8. Styrene is produced from ethylbenzene by the process of :
(A) Dehydrogenation
(B) Oxidation
(C) Alkylation
(D) Dehydration
9. The operation of a rotameter is based on :
(A) Variable flow area
(B) Rotation of a turbine
(C) Pressure drop across a nozzle
(D) Pressure at a stagnation point
10. The absorption factor is defined as :
(A) L / mG
(B) G / mL
(C) mL / G
(D) LG / m

Where $\mathrm{L}=$ liquid flow rate, $\mathrm{G}=$ gas flow rate and $\mathrm{m}=$ slope of equilibrium line.
57. Pore diffusion resistance in a catalyst particle is considered negligible if Thiele Modulus is :
(A) >1
(B) $<1>0.5$
(C) <0.5
(D) 1.0
58. Manipulated variable in water heater is :
(A) Flow rate of water
(B) Temperature of outlet water
(C) Heat input
(D) Inlet temperature of water
59. When a PI controller is used for controlling a process, the effect is :
(A) Large
(B) Small
(C) Very very small
(D) Zero
60. When the damping coefficient is unity, the system is:
(A) Over damped
(B) Critically damped
(C) Under damped
(D) Highly fluctuating
61. If the response of a control system is to be free of offset and oscillation, the most suitable controller is :
(A) P
(B) PD
(C) PI
(D) PID
62. In the case of absorption, if the resistance is in the gas and/or liquid film, then we require :
(A) Large interfacial area
(B) Small interfacial area
(C) Large volume of liquid
(D) Small volume of liquid
63. For a two phase feed, where 80% of the feed is vaporized under column conditions, the feed line slope in the McCabe-Thiele method for distillation column design is :
(A) $-1 / 4$
(B) $+1 / 4$
(C) +4
(D) -4
64. Hole diameters for Sieye trays are of the order of :
(A) $2 \mathrm{~mm}-8 \mathrm{~mm}$
(B) $3 \mathrm{~mm}-12.5 \mathrm{~mm}$
(C) $5 \mathrm{~mm}-15 \mathrm{~mm}$
(D) $10 \mathrm{~mm}-25 \mathrm{~mm}$
65. The solution of $\frac{\partial^{2} z}{\partial y^{2}}=\sin (x y)$ is :
(A) $z=-x^{2} \sin (x y)+y f(x)+\phi(x)$
(B) $\mathrm{z}=-1 / \mathrm{x}^{2} \sin (\mathrm{xy})+\mathrm{yf}(\mathrm{x})+\phi(\mathrm{x})$
(C) $z=x^{2} \sin (x y)+y f(x)+\phi(x)$
(D) $z=1 / x^{2} \sin (x y)+y f(x)+\phi(x)$
66. For turbulent flow in a tube, the heat transfer coefficient is obtained from Dittus-Boelter correlation. If the tube diameter is halved and flow rate is doubled, then the heat transfer coefficient will change by a factor of :
(A) 1
(B) 1.74
(C) 6.1
(D) 37
67. The thickness of the shell as given by 'thin walled equation' is :
(A) $\mathrm{Pd} / 2 \mathrm{f}$
(B) $\mathrm{Pd} / 4 \mathrm{fE}$
(C) $\mathrm{Pd} / 4 \mathrm{f}$
(D) $\mathrm{Pd} / 4 \mathrm{fE}+\mathrm{C}$
68. What is the range of BOD ($\mathrm{mg} / \mathrm{lit}$) of waste water from phenol plant ?
(A) $1000-5000$
(B) $100-1000$
(C) $50-100$
(D) $1200-10000$
69. Phase rule is defined as :
(A) $\mathrm{P}+\mathrm{F}=\mathrm{C}+2$
(B) $\mathrm{P}-\mathrm{F}=\mathrm{C}-2$
(C) $\mathrm{P}+\mathrm{F}=\mathrm{C}-2$
(D) $\mathrm{P}-\mathrm{F}=\mathrm{C}+2$
70. For a cylindrical container the minimum surface area to enclose a given volume is obtained when length to diameter ratio is :
(A) 1.0
(B) 1.5
(C) 2.0
(D) 3.0
71. Every equation of odd degree has :
(A) At least one real root
(B) At least two real roots
(C) One pair of complex roots
(D) No complex roots
72. Hydrochloric acid absorber is made of :
(A) Stainless steel
(B) Mild steel
(C) Carbate
(D) Monel
73. If the DOW Fire and Explosion index range is $\mathbf{4 0} \mathbf{- 6 0}$ then the degree of hazard is :
(A) mild
(B) heavy
(C) moderate
(D) extreme
74. Octane number is an important test for :
(A) Lube oil
(B) Diesel oil
(C) Fuel oil
(D) Gasoline
75. The fractional conversion is independent of initial concentration, the order of reaction will be :
(A) Zero
(B) 1
(C) 2
(D) $1 / 2$

ROUGH WORK

