OCET 2011

Qı	lestion	Boo	kle	t S	er	ies	5 .	A													
Imn	ortant : Ple	ase cons	ult vo	ur A	dmit	Car	d / R	oll N	Jo. S	lin be	fore	filliı	ng ve	our	Roll	l Nu	mbe	r on f	he Te	est Bo	oklet
-	Answer She		<u>un jo</u>			<u> </u>	<u>u / 1</u>			<u></u>	1010		-5 /	0.01		1110	11100				<u>vonie</u>
				~								1	ττ	V.							
K0	ll No.	1	n Fi	gur	es							1	n V	VOI	ras						
O. I	M.R. Ans	wer S	heet	Ser	ial	No															
						Sign	atur	e of	the (Candi	date										
Sul	bject : M	. E . ((Cher	nic		Sign	latui	01		Junu	uute	• _									
	e : 90 minu	-	<i>//////</i>		-	Num	nhai	· of (D 1106	tions	. 75					I	Mov	imu	m M	arks	• 75
1 1111		NOT (DEN						-				NITT		CL					.ai K5	. 15
INS	TRUCTIO		JFEN		ĿŊ	LAI			IL D	UUI		IU			191	ED	10	DO	30		
1.	Write your		0 01	tha (tion	Roc	klat	and	مادم	on th	<u>م</u>	МΡ	An	- WA	r Sh	oot i	n tha	0.000	o pro	wided
1.	and nowhe		J. 011		Zues	uon	DUU	KICt	anu	a150	on ui	CO	IVIIX	Alli	SWC	1 511		n uic	, spa	ce pre	Jviucu
2.	Enter the		and	Seri	es (Code	of	Oue	estio	ı Bo	oklet	on	the	0	MR	An	swer	· She	et l	Darke	en the
2.	correspond	•						-						01		1 111		one		Juin	
3.	Do not mal	0									-		stio	n Bo	ookl	et.					
4.	To open the	•										_					so.				
5.	Please che	-						* *										crepa	ancy,	infor	m the
	Assistant S	uperinte	ndent	with	nin 1	0 mi	inute	s of	the s	tart o	f test	•				·		-	÷		
6.	Each quest	ion has	four a	altern	ativ	e an	swer	s (A	, B,	C, D)) of v	vhic	h or	nly (one	is co	orrec	t. Fo	or eac	ch que	estion,
	darken only							, whi	ichev	ver yo	ou thi	nk i	s the	coi	rect	t ans	wer,	on tl	he Aı	nswer	Sheet
	with Black																				
7.	If you do r										ıbble	s co	orres	pon	ding	g to	that	quest	tion l	olank	in the
	Answer Sh												~		_						
8.	Darken the		s in th	ne O	MR	Ans	wer	Shee	et acc	cordi	ng to	the	Ser	ial I	No.	of t	he q	uesti	ons g	given	in the
0	Question B		.11 1	1		1.0		1		. 1/	4.1	6.4		1	C	41		•	•11 1	. 1	1 1
9.	Negative n for each wr																			be dec	nucted
10.	For calcula																			terial	is not
10.	allowed.	10115, us		mpr	0 108	5 140	105 1	s per	muc	u. D(110 W	шş	OI IC	<i>15</i> u		5 an	a any	oun		ucitai	15 1100
11.	For rough	work on!	ly the	shee	ts m	arke	d " <u>R</u>	ough	n Wo	<u>rk</u> " a	t the	end	of th	ne Ç)ues	tion	Boo	klet l	be us	ed.	
12.	The Answe	r Sheet	is des	signe	d fo	r co	mpu	ter e	evalu	ation	i . The	eref	ore,	if y	ou	do n	ot fo	ollow	the	instru	
	given on th																				
	candidate		abov	ve ac	cou	nt, i	i.e.,	not	follo	owing	g the	ins	stru	ctio	ns	com	plet	ely,	shall	l be o	of the
12	candidate			h o		I	Deel	-1-+	ير ما داء			Cha	at ta	th a	1	inter	-+ C		t and	ant of	distant
13. 14.	After the te In no case																				
17.	Booklet is																				
	the examin												100		~0111	0 00	, ,, ,, 0	L		renet	- 110111
15.	A candidat	e who c																			
	paper poss	ibly of a	any as	sista	nce	or fo	ound	l givi	ing c	r rec	eivin	g as	ssista	ance	or	four	nd us	sing	any o	other	unfair
	means duri					l be e	expe	lled f	from	the e	xami	natio	on b	y th	e Ce	entre	Sup	erint	ende	nt/Ob	server
1.0	whose deci	sion sha	II be f	inal.												-					

Sr. No. :

16. Telecommunication equipment such as pager, cellular phone, wireless, scanner, etc., is not permitted inside the examination hall. Use of calculators is not allowed.

M.E. (Chemical)/A/OEC-22652

1.	10 kg of 70% aqueous NaOH solution is mixe Na_2SO_4 . The percent excess is approximately	ed with 16 kg of 80% aqueous H_2SO_4 solution to produce y equal to :	uce
	(A) 39	(B) 49	
	(C) 59	(D) 69	
2.	Density of dry air at 100°C and 1.5 bar is ap	proximately equal to :	
	(A) 1.4 kg/m^3	(B) 2.4 kg/m^3	
	(C) 3.4 kg/m^3	(D) 4.4 kg/m^3	
3.	Molarity of a 20% by weight aqueous solution will be :	on of NaOH at 30°C having density equal to 1120 kg/	m ³
	(A) 4.6	(B) 7.6	
	(C) 9.6	(D) 5.6	
4.	The vapour pressure in mmHg of water at 25 mol) using Clausius-Clapeyron equation will	5°C (average molar latent heat of vaporization 9720 c ll be :	cal/
	(A) 27.69	(B) 63.76	
	(C) 12.02	(D) 121.52	
5.	200 kg of NH_4NO_3 charged to a reactor gave $NH_4NO_3 \rightarrow N_2O + 2H_2O$ The percent conversion is :	e 70 kg of N ₂ O	
	(A) 43.6	(B) 63.6	
	(C) 53.6	(D) 73.6	
6.	The total pressure of vapours at equilibrium 25 mol% benzene and 75 mol% toluene will	m at 30°C in contact with a liquid mixture contain	ing
	(Take $P_{C_6H_6}^0 = 119 \text{ mm Hg}, P_{C_7H_8}^0 = 36.7 \text{ mm H}$		
	(A) 158 mm Hg	(B) 57.27 mm Hg	
	(C) 760 mm Hg	(D) 48 mm Hg	
7.	For estimation of heat capacity of a solid con	mpound, one can use :	
	(A) Clapeyron's equation	(B) Gibb's equation	
	(C) Kopp's rule	(D) Trouton's rule	
8.		m ($\mathbf{\hat{H}} = 117 \mathbf{kcal/kg}$) to 10 atm ($\mathbf{\hat{H}} = 122 \mathbf{kcal/kg}$). The esuming adiabatic condition, what is the hp required	
	(A) 1.54	(B) 3.84	
	(C) 0.76	(D) 10.36	
M.E	. (Chemical)/A/OEC-22652	3 [Turn o	over

9. The Reynolds number of a solid particle falling in a fluid is 1500. Drag coefficient will be :

(A) 0.016	(B) 0.0107
-----------	------------

(C) 0.44 (D) 0.064

10. The sphericity shape factor for a cylinder having diameter is length :

- (A) 1.0 (B) 0.874
- (C) 0.806 (D) 0.60

11. An oil having density of 878 kg/m³ is flowing through a pipe having 0.1541 m diameter in which a sharp edged orifice is installed. The pressure difference across the orifice is 93.2 kN/m². The velocity of the oil in m/s corresponding to an orifice coefficient 0.61 is :

- (A) 8.97 (B) 89.7
- (C) 0.897 (D) 897

12. Water at 50°C (density = 988 kg/m³, vapour pressure = 12.35 kPa) is in an open tank. The pump is 3.0 m above the open tank. The velocity in the pipe is 0.9 m/s. The available NPSH will be approximately :

(A)	5.14 m	(B)	10.28 m
(C)	7.14 m	(D)	3.14 m

13. Pump efficiency of a typical centrifugal pump having 1000 gal/min capacity is :

(A)	20%	(B)	30%
(C)	50%	(D)	85%

14. The Fanning friction factor for a flowing fluid having Reynolds number 1000 is :

(A) 0.024	(B) 0.016
(C) 0.064	(D) 0.048

15. Heat loss per m² of surface area for an insulating wall composed of 25.4 mm thick fiber insulating board (k = 0.048 W/(m)(k)), where the inside temperature is 352.7 k and the outside temperature is 297.1 k is approximately :

(A)	105 W	(B)	210 W
(C)	315 W	(D)	420 W

16. Range of heat transfer coefficient in $W/(m^2)(k)$ for condensing steam is :

(A)	6000-25000	(B)	300-500
(C)	50-200	(D)	10–50

M.E. (Chemical)/A/OEC-22652

17. In a shell and tube heat exchanger the tube side coefficient is 500 W/(m²)(k) and the shell side coefficient is 2000 W/(m²)(k). Neglecting all other resistances, the overall heat transfer coefficient will be :

- (A) 1500 (B) 2500
- (C) 400 (D) 800

18. A 1–1 pass shell and tube heat exchanger is converted to a 1–2 pass, by how many times the tube side pressure drop will increase ?

- (A) 16 (B) 32
- (C) 8 (D) 2
- 19. Grashoff number in natural convection heat transfer is :

(A)	$\frac{L^3 \rho g \beta \Delta T}{\mu^2}$	(B)	$\frac{L^3\rho^2g\beta\Delta T}{\mu^2}$
(C)	$\frac{L^3 \rho^2 g \beta \Delta T}{\mu^3}$	(D)	$\frac{L^3 \rho^2 g \beta \Delta T}{\mu}$

- 20. Water is being pumped to an overhead tank, the range of discharge velocity in m/s should be :
 - (A) 3-4
 (B) 5-10
 (C) 1-1.2
 (D) 0.1-0.5

21. Total emissivity of polished aluminium surface is :

(A) 0.04(B) 0.75(C) 0.95(D) 0.01

22. Diffusion coefficient in m²/s for dilute liquid solution of ethyl alcohol in water is :

(A) 1.2×10^{-9} (B) 1.2×10^{-4} (C) 1.2(D) 1.2×10^{4}

23. Latent heat of saturated steam :

(A) Increases with the increase in pressure

(C) Is independent of pressure

24. Steam economy in evaporators is :

(A)
$$\frac{\text{kg steam used}}{\text{kg water evaporated}}$$

(C)
$$\frac{\text{kg steam used}}{\text{hr}}$$

M.E. (Chemical)/A/OEC-22652

- (B) Decreases with the increase in pressure
- (D) Increases with the increase in temperature

(B)
$$\frac{\text{kg water evaporated}}{\text{hr}}$$
(D)
$$\frac{\text{kg water evaporated}}{\text{kg steam used}}$$

[Turn over

- 25. The dry bulb temperature of air-water vapour system is 40°C. The partial pressure of water vapour is 23.8 mm Hg. Vapour pressure of water at 25°C is 23.8 mm Hg. The Dew point temperature of the system is :
 - (A) $< 25^{\circ}C$ (B) $> 25^{\circ}C < 40^{\circ}C$
 - (C) 25° C (D) > 40^{\circ}C
- 26. The relative volatility (α_{AB}) for an ideal binary liquid mixture of A and B at a given temperature is :

(A)
$$\frac{P_{B}^{O}}{P_{A}^{O}}$$
 (B) $\frac{P_{A}^{O}}{P_{B}^{O}}$
(C) $\frac{P_{A}^{O}}{(1-P_{B}^{O})}$ (D) $\frac{(1-P_{A}^{O})}{P_{B}^{O}}$

Where P_A^O and P_B^O are vapour pressures

- 27. Entropy change of a system is zero in :
 - (A) Reversible process
 - (C) Reversible adiabatic process (D) Isothermal process
- 28. The equation of state for a certain gas is given by P(V b) = RT, where b is positive constant. The Joule-Thomson coefficient is :

(B) Adiabatic process

	(A) Positive	(B)	Negative
	(C) Zero	(D)	Positive within the inversion points
29 .	Which one of the following is incorrect ?		
	(A) $dU = TdS - PdV$	(B)	dH = TdS - VdP

- (C) dA = -SdT PdV (D) dG = -SdT + VdP
- **30**. Fugacity has the same dimensions as that of :
 - (A) Gibbs free energy (B) Pressure
 - (C) Temperature (D) Fugacity is dimensionless
- 31. The volume coefficient of expansion β of an ideal gas equals :

(A)	1/T	(B)	1/P
(C)	Т	(D)	Р

- 32. The net change in a state function is zero for :
- (A) A reversible process
 (B) An irreversible process
 (C) Cyclic process
 (D) Non-cyclic process

33.	As pressure approaches zero, the fugacity of	coefficie	it value tends to :
	(A) Pressure	(B)	Zero
	(C) Unity	(D)	Infinity
34.	A Carnot cycle consists of the following step	ps :	
	(A) Two isothermals and two isentropics	(B)	Two isobaric and two isothermals
	(C) Two isochorics and two isobarics	(D)	Two isothermals and two isochorics
35.	The value of activity coefficient for an idea	l solutio	n is :
	(A) One	(B)	Zero
	(C) Equal to Henry's Law constant	(D)	Equal to vapour pressure
36.	Which one of the following statements is tr	ue with	reference to the minimum boiling azeotropes ?
	(A) There is a minimum on the vapour press	ure curve	
	(B) The solution exhibits positive deviation f	from idea	lity
	(C) The dew point is greater than the bubble	point	
	(D) The activity coefficients are less than uni	ity	
37.	For a highly favourable chemical reaction,	the stan	dard free energy change is :
	(A) Zero	(B)	Unity
	(C) Positive	(D)	Negative
38.	A mixture of benzene and water is agitated.	The nor	mal boiling point of benzene is 80°C and that of
		hoiling r	oint of the mixture is •
	water is 100°C. At a pressure of 1 atm, the	sound b	
	(A) 80°C	-	100°C
	-	(B)	
39 .	 (A) 80°C (C) < 80°C 	(B) (D)	100°C > 80°C < 100°C
39 .	 (A) 80°C (C) < 80°C 	(B) (D) mn resul	100°C > 80°C < 100°C
39 .	 (A) 80°C (C) < 80°C Minimum reflux ratio in a distillation columnation 	(B) (D) mn resul (B)	100°C > 80°C < 100°C ts in :
	 (A) 80°C (C) < 80°C Minimum reflux ratio in a distillation colum (A) Optimum number of trays 	(B) (D) mn resul (B) (D)	100°C > 80°C < 100°C ts in : Minimum size of reboiler Minimum number of trays
	 (A) 80°C (C) < 80°C Minimum reflux ratio in a distillation colum (A) Optimum number of trays (C) Maximum condenser size 	(B) (D) mn resul (B) (D) consists	100°C > 80°C < 100°C ts in : Minimum size of reboiler Minimum number of trays
	 (A) 80°C (C) < 80°C Minimum reflux ratio in a distillation colum (A) Optimum number of trays (C) Maximum condenser size Direct costs component of the fixed capital 	(B) (D) mn resul (B) (D) consists (B)	100°C > 80°C < 100°C ts in : Minimum size of reboiler Minimum number of trays of :
	 (A) 80°C (C) < 80°C Minimum reflux ratio in a distillation colum (A) Optimum number of trays (C) Maximum condenser size Direct costs component of the fixed capital (A) Contingency (C) Labour costs 	(B) (D) mn resul (B) (D) consists (B) (D)	100°C > 80°C < 100°C ts in : Minimum size of reboiler Minimum number of trays of : Onsite and offsite costs
40 .	 (A) 80°C (C) < 80°C Minimum reflux ratio in a distillation colum (A) Optimum number of trays (C) Maximum condenser size Direct costs component of the fixed capital (A) Contingency (C) Labour costs The variables required to be known in correlation compressor and hence its cost are : 	(B) (D) mn resul (B) (D) consists (B) (D)	100°C > 80°C < 100°C ts in : Minimum size of reboiler Minimum number of trays of : Onsite and offsite costs Raw material costs sed for estimating the horsepower of a centrifugal
40 .	 (A) 80°C (C) < 80°C Minimum reflux ratio in a distillation colum (A) Optimum number of trays (C) Maximum condenser size Direct costs component of the fixed capital (A) Contingency (C) Labour costs The variables required to be known in correlation 	(B) (D) mn resul (B) (D) consists (B) (D)	100°C > 80°C < 100°C ts in : Minimum size of reboiler Minimum number of trays of : Onsite and offsite costs Raw material costs ted for estimating the horsepower of a centrifugal Compressor RPM
40 .	 (A) 80°C (C) < 80°C Minimum reflux ratio in a distillation colum (A) Optimum number of trays (C) Maximum condenser size Direct costs component of the fixed capital (A) Contingency (C) Labour costs The variables required to be known in correlation compressor and hence its cost are : P inlet pressure R Delivery pressure 	(B) (D) mn resul (B) (D) consists (B) (D) ations us Q S	100°C > 80°C < 100°C ts in : Minimum size of reboiler Minimum number of trays of : Onsite and offsite costs Raw material costs ted for estimating the horsepower of a centrifugal Compressor RPM Volumetric flow rate at inlet
40 .	 (A) 80°C (C) < 80°C Minimum reflux ratio in a distillation colum (A) Optimum number of trays (C) Maximum condenser size Direct costs component of the fixed capital (A) Contingency (C) Labour costs The variables required to be known in correls compressor and hence its cost are : P inlet pressure R Delivery pressure (A) P, Q and R 	(B) (D) mn resul (B) (D) consists (B) (D) ations us Q S (B)	100°C > 80°C < 100°C ts in : Minimum size of reboiler Minimum number of trays of : Onsite and offsite costs Raw material costs ed for estimating the horsepower of a centrifugal Compressor RPM Volumetric flow rate at inlet P and R
40 .	 (A) 80°C (C) < 80°C Minimum reflux ratio in a distillation colum (A) Optimum number of trays (C) Maximum condenser size Direct costs component of the fixed capital (A) Contingency (C) Labour costs The variables required to be known in correlation compressor and hence its cost are : P inlet pressure R Delivery pressure 	(B) (D) mn resul (B) (D) consists (B) (D) ations us Q S (B)	100°C > 80°C < 100°C ts in : Minimum size of reboiler Minimum number of trays of : Onsite and offsite costs Raw material costs ted for estimating the horsepower of a centrifugal Compressor RPM Volumetric flow rate at inlet

42. A pure drug is administered as a sphere and as a cube. The amount of drug is the same in two tablets. Assuming that the shape and size do not influence the mass transfer, the ratio of rate of dissolution in water at t = 0 for the cubic and the spherical tablet is :

- (A) 0.54 (B) 1.04
- (C) 1.94 (D) 1.24

43. The number of degrees of freedom for an azeotropic mixture in a two component vapour liquid equilibria is/are :

- (A) Zero (B) One
- (C) Two (D) Three

44. The depreciable fixed cost is Rs. 100 lakhs. The average profit per year is Rs. 15 lakhs. The average depreciation cost per year is Rs. 10 lakhs. What is the payment period in years, if there is no interest charge?

- (A) 8 (B) 4
- (C) 10 (D) 20
- 45. Match the variation of mass transfer coefficient given by the theory in Group I with the appropriate variation in Group II :

			Group I		Group I	Ι
	I	Р	Film theory	1.	$\propto D_{AB}$	
	(Q	Penetration theory	2.	$\propto D_{AB}^{2/3}$	
	I	R	Boundary layer theory	3.	$\propto D_{AB}^{~1/2}$	
	(A) I	P-1,	Q-2, R-3		(B)	P-2, Q-1, R-3
	(C) l	P-1,	Q-3, R-2		(D)	P-3, Q-2, R-1
46.	Whic	ch of	f the following not employed	in tl	he comme	rcial production of linear polyvinyl chloride ?
	(A) I	Emu	llsion Polymerization		(B)	Suspension Polymerization
	(C) <i>I</i>	Add	itional Polymerization		(D)	Condensation Polymerization
47.	Whic	ch of	f the following is a detergent	?		
	(A) I	Benz	zene hexachloride		(B)	Cellulose nitrate
	(C) I	Poly	vvinyl chloride		(D)	Alkyl benzene sulphonate
48.	The c	chie	f raw material for the comm	ercia	al product	ion of methanol is :
	(A) S	Synt	thesis gas		(B)	Formaldehyde
	(C) <i>I</i>	Ace	tic acid		(D)	Ethanol
49 .	For tl	he li	iquid phase reaction $A \rightarrow P$, in	n a se	eries of exp	periments in a batch reactor, the half-life t _{1/2} was
						ot of the initial concentration of A. The order of
	the re	eact	ion is :			
	(A) 3	3/2			(B)	1
	(C) -	+1/2)		(D)	-1/2

(A) 3/2	(B) 1
(C) +1/2	(D) -1/2
M.E. (Chemical)/A/OEC-22652	8

51.	Baffles are used in heat exchangers in order	er to :		
	(A) Increase the tube side fluid heat transfer	coefficient		
	(B) Promote vibration in the heat exchange			
	(C) Promote cross flow and turbulence in the shell side fluid			
	(D) To prevent shell expansion due to therm	al effects		
52.	2. For the case of a fuel gas undergoing combustion with air, if the air/fuel ratio is increase adiabatic flame temperature will :			
	(A) Increase			
	(B) Decrease			
	(C) Increase or decrease depending on the fu	uel type		
	(D) Not change			
53.	In petroleum refining, the process used for	r conversion of hydrocarbons to aromatics is :		
	(A) Catalytic cracking	(B) Catalytic reforming		
	(C) Hydrotreating	(D) Alkylation		
54.	Styrene is produced from ethylbenzene by	the process of :		
	(A) Dehydrogenation	(B) Oxidation		
	(C) Alkylation	(D) Dehydration		
55.	The operation of a rotameter is based on :			
	(A) Variable flow area	(B) Rotation of a turbine		
	(C) Pressure drop across a nozzle	(D) Pressure at a stagnation point		
56.	The absorption factor is defined as :			
	(A) L/mG	(B) G/mL		
	(C) mL/G	(D) LG/m		
	Where $L = liquid$ flow rate, $G = gas$ flow rate	e and $m =$ slope of equilibrium line.		

57. Pore diffusion resistance in a catalyst particle is considered negligible if Thiele Modulus is :

9

[Turn over

(A) > 1	(B) $< 1 > 0.5$
(C) < 0.5	(D) 1.0

50. Match the items in Group I with those in Group II :

Group I

(A) P-3, Q-1, R-4, S-2

(C) P-1, Q-4, R-2, S-3

Р

Q

R

S

Porous catalyst

Parallel reactions

Non-ideal tubular reactor

Gas-solid non-catalytic reaction

M.E. (Chemical)/A/OEC-22652

Group II

- 1. Selectivity
- 2. Shrinking core model
- 3. Thiele modulus
- 4. Dispersion number
- (B) P-1, Q-3, R-2, S-4

(D) P-3, Q-4, R-1, S-2

58.	Manipulated variable in water heater is :			
	(A) Flow rate of water	(B)	Temperature of outlet water	
	(C) Heat input	(D)	Inlet temperature of water	
59 .	When a PI controller is used for controlling a process, the effect is :			
	(A) Large	(B)	Small	
	(C) Very very small	(D)	Zero	
60 .	When the damping coefficient is unity, the sys	tem i	s :	
	(A) Over damped	(B)	Critically damped	
	(C) Under damped	(D)	Highly fluctuating	
61 .	If the response of a control system is to be free	of of	fset and oscillation, the most suitable controller	
	is :			
	(A) P	(B)		
	(C) PI	(D)	PID	
62 .	In the case of absorption, if the resistance is in	the	gas and/or liquid film, then we require :	
	(A) Large interfacial area	(B)	Small interfacial area	
	(C) Large volume of liquid	(D)	Small volume of liquid	
63.	• <i>•</i>		porized under column conditions, the feed line	
	slope in the McCabe-Thiele method for distilla		_	
	(A) $-1/4$	· /	+1/4	
	(C) +4	(D)	_4	
64.	Hole diameters for Sieye trays are of the order			
	(A) $2 \text{ mm} - 8 \text{ mm}$. ,	3 mm – 12.5 mm	
	(C) $5 \text{ mm} - 15 \text{ mm}$	(D)	10 mm – 25 mm	
65.	The solution of $\frac{\partial^2 z}{\partial y^2} = \sin(xy)$ is :			
	(A) $z = -x^2 \sin(xy) + y f(x) + \phi(x)$	(B)	$z = -1/x^{2} \sin(xy) + y f(x) + \phi(x)$	
	(C) $z = x^2 \sin(xy) + y f(x) + \phi(x)$	(D)	$z = 1/x^2 \sin(xy) + y f(x) + \phi(x)$	
66.			cient is obtained from Dittus-Boelter correlation. ed, then the heat transfer coefficient will change	

(A) 1	(B) 1.74
(C) 6.1	(D) 37

M.E. (Chemical)/A/OEC-22652

67	The thickness of the shell as given by 'thin walled equation' is :			
07.	(A) Pd/2f		Pd/4fE	
	(C) $Pd/4f$, í	Pd/4fE + C	
		~ /		
68.	What is the range of BOD (mg/lit) of waste wa	ter f	rom phenol plant ?	
	(A) 1000 – 5000	(B)	100 - 1000	
	(C) $50 - 100$	(D)	1200 - 10000	
69 .	Phase rule is defined as :			
	(A) $P + F = C + 2$	(B)	P - F = C - 2	
	(C) $P + F = C - 2$	(D)	P - F = C + 2	
70 .	For a cylindrical container the minimum surfa	ace a	rea to enclose a given volume is obtained when	
	length to diameter ratio is :			
	(A) 1.0	(B)	1.5	
	(C) 2.0	(D)	3.0	
71 .	Every equation of odd degree has :			
	(A) At least one real root	(B)	At least two real roots	
	(C) One pair of complex roots	(D)	No complex roots	
72.	Hydrochloric acid absorber is made of :			
	(A) Stainless steel	(B)	Mild steel	
	(C) Carbate	(D)	Monel	
73.	If the DOW Fire and Explosion index range is	40 -	60 then the degree of hazard is :	
	(A) mild	(B)	heavy	
	(C) moderate	(D)	extreme	
74.	Octane number is an important test for :			
	(A) Lube oil	(B)	Diesel oil	
	(C) Fuel oil	(D)	Gasoline	
75.	The fractional conversion is independent of in	itial	concentration, the order of reaction will be :	
	(A) Zero	(B)	1	
			1 /0	

(C) 2 (D) 1/2

ROUGH WORK