BACHELOR OF POWER ENGG. EXAMINATION, 2010

(2nd Year, 2nd Semester)
THEORY OF MACHINES \& MACHINE DESIGN

Time : Three hours.
Full Marks : 100

Answer question no. 1 and any two each from following two sections.

Section 1.

1. a) Write the steps to be followed by a designer in Machine Design.
b) Define Degrees of Freedom and explain Gruebler's Equation
c) What are preferred numbers? 3
d) Define a gear train with sketch. Write the relation between velocity ratio and gear ratio.

Sction 2.

Answer any two questions :
2. a) Illustrate with sketches one higher pair and one lower pair.
b) What are the similarities and one difference between a machine and a mechanism.
c) Draw an inclined plane and mention the Mechanical
[TURN OVER]
advantage and Efficiency.
d) What are the advantages of a belt drive? 3
e) Name some of the common flat belt materials. 2
f) What is meant by A 3012/118. In case of a V - belt? 2
3. a) Define the following terms Crank, Rocker, Crank - rocker mechanism, Double-crank mechanism, Double-rocker mechanism.

$$
2+2+3+3+3
$$

b) In the table below for a four bar linkage mechanism, replace * with $=,<,>$ or their combination,

Here $s=$ length of shortest bar, $l=$ length of longest bar, p, q = lengths of intermediate bar

Case	$I+s$ vers, $\mathrm{p}+\mathrm{q}$	Shortest Bar	Type
1	*	Frame	Double-crank
2	*	Side	Rocker-crank
3	*	Coupler	Double rocker
4	*	Any	Change point
5	*	Any	Double-rocker

4. a) As shown in following figure, the displacement diagram of the follower is given, $s=s(\phi)$. Construct the plate cam profile using a reciprocating knife-edge follower. 14
b) What is the curvature effect in a helical spring? How does it vary with spring index?5
c) What do you understand by shaft, axle and spindle? 3
d) Write the following sections of V -belts in descending order of strength - A, E,C
e) Two plates of 7 mm thickness are connected by a double riveted lap joint of zigzag pattern. Calculate rivet diameter, rivet pitch and distance between rows of rivets for the joint. Assume ultimate tensile stress $=90 \mathrm{MPa}$, ultimate shear $=60 \mathrm{MPa}$ and ultimate bearing stress $=120 \mathrm{MPa}$.
5. a) Derive the equation for Braking Torque in an internal expanding shoe brake.
b) What is the recommended center distance and belt speed for a flat belt drive?
c) Draw Welding Symbol with proper labels. 5
6. a) Two plates 200 mm wide and 10 mm thick are to be welded by means of transverse welds at the ends,. If the plates are subjected to a load of kN , find the size of the weld assuming the allowable tensile stress 70 MPa . 10
b) Why the slack side of the belt of a horizontal belt drive is preferable to place on the top side?
c) Label different terms of the bearing shown below. 5

(4)
7. a) Define all labeled terms and their relations.

b) Explain Geneva wheel mechanism with a neat sketch. 8

Section 3

Answer any two questions
6. a) In a steam engine the steam pressure is 2 MPa and the cylinder diameter is 250 mm . The contact surfaces of the head and cylinder are ground and no packing is required. Choose a suitable bolt so that the joint is leak proof. Assume number of bolts to be used is 12 .
b) A single square thread power screw is to raise a load of 50 KN .

A screw thread of major diameter of 34 mm and a pitch of 6 mm is used. The coefficient of friction at the thread and collar are 0.15 and 0.1 respectively. If the collar frictional diameter is 100 mm and the screw turns at a speed of 1 revs ${ }^{-1}$ find
i) the power input to the screw.
ii) the combined efficiency of the screw and collar.
7. a) How are plain carbon steel designated?

b) Name the following mechanism and explain it's working principle.

