Ref. No. Ex/PG/PE/T/129A/225/2010)

MASTER OF POWER ENGINEERING EXAMINATION, 2ND SEMESTER 2010 SUBJECT: Advanced Power Cycles and Economics PAPER:

Time: Three Hours

(Full Marks 100)

Answer Q1, and three from Section A and one from Section B

1.

- a. How does the efficiency of a simple, ideal GT cycle depend on the maximum turbine inlet temperature? Justify.

 3 marks
- b. What do you mean by incremental heat rate of a cycle? Show that the plant heat rate is minimum when the heat rate is equal to its incremental rate. 4 marks
- Describe with a neat sketch why dual pressure cycles are used in GTCC plants.
 6 marks
- d. Why in a vapor power plant, it is detrimental to have a continuous SH spray for main steam temperature control? Why is it even more detrimental to have RH spray?
- e. How does a poorly maintained cooling tower affect the heat rate of a thermal power plant?

 3 marks

Section A (Answer any three)

2.

- a. What do you mean by an EFGT cycle? What are its advantages? Draw a neat sketch of an EFGT cycle and show the process on T-s diagram.
- b. Derive the expression of cycle efficiency η and the work ratio δ of a simple gas turbine cycle in terms of the temperature ratio t, compression ratio r, and the isentropic efficiencies of the turbine (η_T) and the compressor (η_C) . Neglect any pressure drop in the lines, mass of the added fuel, change of specific heats of the working medium, and assume complete combustion.
- c. Find the cycle efficiency and work ratio for the above mentioned simple gas turbine cycle, where the air temperatures at the inlet to the compressor and the turbine are 300 K and 700 K, respectively. The cycle pressure ratio is 4, while the adiabatic index for the working fluid is 1.4.

8+8+4 = 20 marks

- 3. The full-load rating of a TG Set of a vapor power plant with other cycle parameters are given below:
 - TG output = 525.02 MW,

Ref. No. Ex/PG/PE/T/129A/225/2010)

MASTER OF POWER ENGINEERING EXAMINATION, 2ND SEMESTER 2010 SUBJECT: Advanced Power Cycles and Economics PAPER:

Time: Three Hours

(Full Marks 100)

- Steam/ water parameters: MS at TSV: 540°C and 160 bar; CRH: 320°C and 40 bar; HRH: 540°C and 36.6 bar; Final feed water temperature = 230°C, Superheater Spray water pressure 170 bar, and temperature 170°C.
- Flow Rates: MS at TSV: 454 kg/s, CRH: 411 kg/s; S/H spray flow rate = 0.8 kg/s; R/H spray flow rate = 0 kg/s, continuous blow-down from the drum = 0.2 kg/s (assume saturated water blow down). Cycle make-up water temperature 35°C.
- Power Consumed by: BFP motor: 12.2 MW; CEP motor = 0.6 MW,

Calculate:

- i. GHR and NHR of the turbine cycle as per ASME PTC 6
- ii. Specific steam consumption
- iii. Heat rejected to CW at the condenser
- iv. Contribution of boiler blow-down towards the GHR.
- v. Work ratio of the cycle
- vi. Exergy input rate to the HP turbine
- vii. Exergy destruction ratedue to water spray in the superheater.

20 marks

4.

- a. What is a combined cycle? Discuss the salient classifications of Combined Cycle Power Plant.
- b. What do you mean by STIG? Why is it used?
- c. In a supplementary fired GTCC plant, 15% of the total heat is added to the HRSG in terms of direct firing of vacuum residue fuels. The open cycle GT operates at an efficiency of 30% while the steam cycle has a net heat rate of 2560 kCal/kWh. The efficiency of HRSG is 87%. Draw a neat schematic of the cycle and derive an expression for the overall plant efficiency and calculate its value.

4+3+13=20 marks

5.

- a. What do you mean by a Heat Balance Diagram? What are the utilities of HBD during the following phases of power project: (i) conceptual engineering, (ii) equipment selection, (iii) detailed engineering, and (iv) commissioning?
- b. In a direct contact type feedwater heater, water at 200 kPa and 20°C is heated by mixing it with turbine bled steam at 200 kPa and 300°C. Liquid water enters the mixing chamber at a rate of 4 kg/s. If the mixture leaves the chamber at 200 kPa and 100°C, determine (a) the mass flow rate of the bled steam, (b) the exergy destruction in the heater, and (c) the exergy efficiency of the heater.

6+14 = 20 marks

Ref. No. Ex/PG/PE/T/129A/225/2010) MASTER OF POWER ENGINEERING EXAMINATION, 2ND SEMESTER 2010 SUBJECT: Advanced Power Cycles and Economics PAPER:

Time: Three Hours

(Full Marks 100)

Section B (Answer any one)

6.

The following three models of turbine generator sets (including the TG auxiliaries) are

proposed for a 500 MW (net) steam power plant:

TG Model	TG Model A	TG Model B	TG Model C
GHR (Kcal/ kWh)	2150	2050	1950
% Auxiliary power consumption	9.5	9.0	9.0
Quoted price of TG set (Including taxes) (Rs. Millions)	4000	5800	10000
Incremental cost of interfacing equipment (assuming model B as the base case) (Rs. Millions)	50	0	450

Other relevant data:

- 1. Boiler efficiency = 87%
- 2. landed cost of coal = Rs. 1 per MJ
- 3. Annual insurance to be paid on the cost of equipment @0.5%
- Discounting rate applicable = 11%
- 5. Accounting period = 20 years.
- 6. Predicted plant load factor = 85%

Select the best model for the power plant.

20 marks

7.

The input-output expressions for three coal-fired generating stations connected to the same grid are as follows:

Unit	Capacity (MW)	I/L curves (MW/ MW)
Α	20	$I_A = 12.0 + 0.5 L_A + 0.15 L_A^2$
В	10	$I_B = 18.5 + 1.5 L_B + 0.1 L_B^2$
C	15	$I_C = 9.8 + 1.0 L_C + 0.08 L_C^2$

The daily load demand on the grid is as follows:

For 8 hours: 10 MW For 10 hours: 25 MW For 6 hours: 45 MW

What will be the daily plant load factors of the units A, B, and C if the total operating cost is to be minimized?

20 marks