

Third Semester B.E. Degree Examination, Dec.2013/Jan. 2014 Basic Thermodynamics

Time: 3 hrs .
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

1 a. Distinguish between:
i) Microscopic and macroscopic point of view.
ii) Temperature and thermal equilibrium and
iii) Intensive and extensive properties.
(06 Marks)
b. Classify the following into open, closed and isolated system:
i) Evaporator; ii) Thermoflask; iii) Passenger's train when stop at platform; iv) Refrigerant in a refrigerator; v) Pressure cooker; vi) I.C. engine during compression/expansion stroke; vii) Boiler and viii) Throttle valye.
(08 Marks)
c. Define a Quasi-static process. A platinum wire is used as a resistance thermometer. The wire resistance was found to be 10 ohm and 160 hm at ice point and steam point respectively, and 30 ohm at sulphur boiling point of $444.6^{\circ} \mathrm{C}$. Find the resistance of the wire at $750^{\circ} \mathrm{C}$, if the resistance varies with temperature by the relation. $R=R_{0}\left(1+\alpha t+\beta t^{2}\right)$.
(06 Marks)
2 a. Does heat transfer inevitably causes a temperature rise? What is the other cause for rise in temperature?
(02 Marks)
b. With a neat $\mathrm{p}-\mathrm{V}$ diagram, derive an expression for workdone in each case of the following:
i) Isochoric process.
ii) Isobaric process.
iii) Isothermal process and
iv) Polytropic process.
(10 Marks)
c. A piston device contains $0.05 \mathrm{~m}^{3}$ of a gas initially at 200 kPa . At this state, a linear spring having a spring constant of $150 \mathrm{kN} / \mathrm{m}$ is touching the piston but exerting no force on it. Now heat is transferred to the gas, causing the piston to rise and to compress the spring until the volume inside the cylinder doubles. If the cross-sectional area of the piston is $0.25 \mathrm{~m}^{2}$, determine: i) a final pressure inside the cylinder; ii) the total work done by the gas and iii) the fraction of work done against the spring to compress it.
(08 Marks)
3 a. For a non-flow system, show that the heat transferred is equal to the change in enthalpy of a system.
(04 Marks)
b. Aggas undergoes a thermodynamic cycle consisting of the following processes: i) Process 1-2: constant pressure $\mathrm{P}=1.4$ bar, $\mathrm{V}_{1}=0.028 \mathrm{~m}^{3}, \mathrm{~W}_{12}=10.5 \mathrm{~kJ}$; ii) Process 2-3: compression with $\mathrm{pV}=$ constant, $\mathrm{U}_{3}=\mathrm{U}_{2}$ and iii) Process 3-1: constant volume, $\mathrm{U}_{1}-\mathrm{U}_{3}=-26.4 \mathrm{~kJ}$. There are no significance change in KE and PE. i) Calculate the net work for the cycle; ii) Calculate the heat transfer for the process $1-2$; ii) Show that $\sum_{\text {cycle }} \mathrm{Q}=\sum_{\text {cycle }} \mathrm{W}$, and iv) Sketch the cycle on $\mathrm{p}-\mathrm{V}$ diagram.
(08 Marks)
c. In a certain steady flow process, 12 kg of fluid per minute enters at a pressure of 1.4 bar , density $25 \mathrm{~kg} / \mathrm{m}^{3}$, velocity $120 \mathrm{~m} / \mathrm{s}$ and internal energy $920 \mathrm{~kJ} / \mathrm{kg}$. The fluid properties at exit are 5.6 bar, density $5 \mathrm{~kg} / \mathrm{m}^{3}$, velocity $180 \mathrm{~m} / \mathrm{s}$, and internal energy $720 \mathrm{~kJ} / \mathrm{kg}$. During the process, the fluid rejects $60 \mathrm{~kJ} / \mathrm{s}$ of heat and rises through 60 m . Determine work done during the process in kW .
(08 Marks)

4 a. State the limitations of first law of thermodynamics. Illustrate with examples.
(04 Marks)
b. Prove that Kelvin-Plank and Clausius statements of second law of thermodynamics are equivalent.
(06 Marks)
c. A heat pump working on the Carnot cycle takes in heat from a reservoir at $5^{\circ} \mathrm{C}$ and delivers heat to a reservoir at $60^{\circ} \mathrm{C}$. The heat pump is driven by a reversible heat engine which takes in heat from a reservoir at $840^{\circ} \mathrm{C}$ and rejects heat to a reservoir at $60^{\circ} \mathrm{C}$. The reversible heat engine also drives a machine that absorbs 30 kW . If the heat pump extracts $17 \mathrm{~kJ} / \mathrm{s}$ from the $5^{\circ} \mathrm{C}$ reservoir, determine: i) the rate of heat supply from the $840^{\circ} \mathrm{C}$ source and ii) the rate of heat rejection to the $60^{\circ} \mathrm{C}$ sink.
(10. Marks)

PART - B

5 a. Prove that whenever a system executes a compete cyclic process, the quantity $\oint \frac{\mathrm{dQ}}{\mathrm{T}} \leq 0$. Hence prove that entropy is a property of the system.
(08 Marks)
b. Explain principle of increase of entropy.
(06 Marks)
c. In a shell and tube heat exchanger 45 kg of water per minute is heated from $30^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ by hot gases which enter the heat exchanger at $225^{\circ} \mathrm{C}$. If the flow rate of gases is $90 \mathrm{~kg} / \mathrm{min}$, find the net change of entropy of the universe.
(06 Marks)
6 a. Draw the phase equilibrium diagram for a pure substance on T-S plot with relevant constant property lines.
(05 Marks)
b. What is the main objective of quality measurement? With a neat sketch, explain throttling calorimeter.
(07 Marks)
c. What do you understand by degree of superheat? Steam initially at $1.5 \mathrm{MPa}, 300^{\circ} \mathrm{C}$ expands reversibly and adiabatically in a steam turbine to $40^{\circ} \mathrm{C}$. Determine the ideal work output of the turbine per kg of steam.
(08 Marks)
7 a. Derive Clausius Clayperon's equation for evaporation of liquid and explain the significance.
(06 Marks)
b. Distinguish between: 1) Ideal gas and real gas and ii) Perfect gas and semiperfect gas.
(04 Marks)
c. 0.5 kg of air is compressed reversibly and adiabatically from $80 \mathrm{kPa}, 60^{\circ} \mathrm{C}$ to 0.4 MPa and is then expanded atconstant pressure and to the original volume. Sketch these processes on the $\mathrm{p}-\mathrm{V}$ and T -s planes. Compute the heat transfer and work transfer for the whole path.
(10 Marks)
a. Explain the following:
i) Generalized compressibility chart.
ii) Law of corresponding states and
iii) Compressibility factor.
(06 Marks)
b. Derive Vander Waal's constants in terms of critical properties. (08 Marks)
c. Determine the pressure exerted by CO_{2} in a container of $1.5 \mathrm{~m}^{3}$ capacity when it contains 5 kg at $27^{\circ} \mathrm{C}$. i) Using ideal gas equation and ii) Using Vander Waal's equation.
(06 Marks)

