II B.Tech II Semester Supplimentary Examinations, Aug/Sep 2008 PRINCIPLES OF COMMUNICATIONS

(Common to Computer Science \& Engineering, Bio-Medical Engineering, Information Technology, Computer Science \& Systems Engineering and Electronics \& Computer Engineering)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) What are the limitations of Fourier Transform?
(b) State and explain the Dirichlet conditions, in Fourier series.
2. In a collector-modulated class C amplifier, the collector dissipation is 60 watts. The amplifier efficiency is 80%. Find the unmodulated carrier power if the depth of modulation is 70%.
3. A carrier is frequency-modulated by a sinusoidal modulating signal of frequency 2 kHz , resulting in a frequency deviation of 5 kHz . What is the bandwidth occupied by the modulated waveform? The amplitude of the modulating sinusoid is increased by a factor of 3 and its frequency lowered to 1 kHz . What is the new bandwidth?
4. Explain the signal recovery through holding.
5. (a) Discuss the performance of adaptive delta modulation compared to that of PCM.
(b) Discuss the limitations of delta-modulation due to fixed step size. $[10+6]$
6. (a) Differentiate BPSK \& QPSK
(b) Define
i. Baud Rate
ii. Matched Filter
iii. Band width efficiency.
iv. SNR.
7. (a) Show that for a two dimensional discrete finite probability scheme the joint conditional and marginal entropies are related as

$$
\begin{gathered}
\\
\\
\\
\\
\text { Also } \quad \\
I(x, y)=H(x / y)+H(y) \\
+H(y / x)+H(x) \\
\\
I(x, y)-H(y / x) .
\end{gathered}
$$

(b) An analog signal is band limited to B Hz , sampled at the Niquist rate into 4 levels. The quantization levels Q_{1}, Q_{2}, Q_{2} and Q_{4} (messages) are assumed independent and occur with probabilities $P_{1}=P_{4}=1 / 8$ and $P_{2}=P_{3}=3 / 8$.. Find the information rate of the source.
$[10+6]$
8. (a) Construct the standard array for a $(6,3)$ linear block code whose generator matrix is given below. $G=\left|\begin{array}{cccccc}1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1\end{array}\right|$
(b) Write the advantages of table lookup decoding scheme in linear block codes.

II B.Tech II Semester Supplimentary Examinations, Aug/Sep 2008 PRINCIPLES OF COMMUNICATIONS
 (Common to Computer Science \& Engineering, Bio-Medical Engineering, Information Technology, Computer Science \& Systems Engineering and Electronics \& Computer Engineering)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Find the highest value of auto correlation of a function $f(t)$, where $f(t)=2 \operatorname{cost}+$ $3 \cos 3 \mathrm{t}+4 \sin 4 \mathrm{t}$.
2. Define amplitude modulation. The rms value of a radio frequency voltage is 200 volts before modulation. When it is modulated by a sinusoidal audio frequency voltage, its rms voltage becomes 242 volts. Calculate the modulation index. [16]
3. A bandwidth rule sometimes used for space communication systems is $\beta=(2 \beta$ $+1) f_{m}$. What fraction of the signal power is included in that frequency band. Consider $\beta=1$ and 10 .
4. A function $f(t)=\sin \omega_{c} t$ is sampled at Nyquist rate. If the sampling starts from a zero crossing; can we recover $f(t)$ from its samples?
5. (a) What do you understand by PCM? How quantizing and coding are done?
(b) What is aliasing effect and aperture effect. How these effects can be overcome.
6. (a) Differentiate BPSK \& QPSK
(b) Define
i. Baud Rate
ii. Matched Filter
iii. Band width efficiency.
iv. SNR.
7. (a) What is the significance of coding? Explain the principles of any one type of source code.
(b) Derive expression for channel capacity for infinite bandwidth.
(c) A source is delivering 3 messages with probabilities $1 / 2,1 / 4,1 / 4$ What is the entropy of second order source. $[6+6+4]$
8. (a) Construct the standard array for a $(6,3)$ linear block code whose generator matrix is given below. $G=\left|\begin{array}{cccccc}1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1\end{array}\right|$
(b) Write the advantages of table lookup decoding scheme in linear block codes.

II B.Tech II Semester Supplimentary Examinations, Aug/Sep 2008 PRINCIPLES OF COMMUNICATIONS
 (Common to Computer Science \& Engineering, Bio-Medical Engineering, Information Technology, Computer Science \& Systems Engineering and Electronics \& Computer Engineering)
 Time: 3 hours

Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) What are the types of communications? Explain.
(b) Define noise. Where is it most likely to affect the signal?
2. The signal $\mathrm{v}(\mathrm{t})=\left(1+\mathrm{m} \cos \omega_{m} \mathrm{t}\right) \cos \omega_{c} \mathrm{t}$ is detected using a diode envelope detector. Sketch the detector output when $\mathrm{m}=2$.
3. Give the relationship between phase and frequency modulation.
4. State and prove the sampling theorem (frequency domain).
5. (a) What are the applications of PCM systems give in detail any two applications?
(b) Explain why is it necessary to use greater sampling rate for DM than for PCM?
6. (a) Explain DPSK modulator and DPSK demodulator with block diagram and differential encoding and decoding tables.
(b) Distinguish between ASK and PSK modulation systems.
7. (a) Consider a binary memory less source X with two symbols X_{1} and X_{2}. Show that $\mathrm{H}(\mathrm{X})$ is maximum when both X_{1} and X_{2} are equiprobable.
(b) A Channel has the following channel matrix:
$[P(Y \mid X)]=\left[\begin{array}{ccc}1-p & p & 0 \\ 0 & p & 1-p\end{array}\right]$
i. Draw the channel Diagram
ii. If the source has equally lightly outputs compute the probabilities associated with the channel outputs for $\mathrm{p}=0.2$.
8. (a) Write explaining notes on Turbo codes and BCH codes
(b) Design an encoder for a (7,4) binary cyclic code generated by $\mathrm{g}(\mathrm{x})=1+\mathrm{x}+x^{3}$ and verify its operation using the message vector $\mathrm{D}=0101$.
[8+8]

II B.Tech II Semester Supplimentary Examinations, Aug/Sep 2008 PRINCIPLES OF COMMUNICATIONS
 (Common to Computer Science \& Engineering, Bio-Medical Engineering, Information Technology, Computer Science \& Systems Engineering and Electronics \& Computer Engineering)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Compare the Autocorrelation and Cross correlation.
(b) Derive the modulation theorem using FT.
2. Find the various frequency components and their amplitudes in the voltage given below. $\mathrm{e}=50(1+0.7 \cos 5000 \mathrm{t}-0.3 \cos 1000 \mathrm{t}) \sin 5 \times 10^{6} \mathrm{t}$. Draw the single sided-spectrum. Also evaluate the modulated and sideband powers.
3. A carrier voltage $10 \cos 8 \pi 10^{6} \mathrm{t}$ is angle modulated by a modulating signal $5 \cos$ $30 \pi .10^{3} \mathrm{t}$. Determine the bandwidth for frequency modulation assuming $k_{f}=15$ kHz per volt.
4. Give the importance of sampling theorem in communication.
5. (a) Compare the advantages and disadvantages of DM and PCM.
(b) Describe the techniques used for parallel transmission and serial transmission.
6. (a) What is m-ary FSK scheme and derive the average probability of error for coherent m-ary FSK.
(b) Distinguish between QPSK and MSK.
7. (a) Define and discuss
i. Mutual information
ii. Average information.
iii. Channel matrix
(b) What are the characteristic features of Shannon?s theorem and ShannonHartley law?
8. (a) Write a short notes on the following
i. Parity check matrix
ii. code tree in convolutional codes
(b) In a communication channel encoder, every data bit is repeated five times, and at the receiver, a majority vote decides the value of each data bit. If the uncoded bit error probability P is 10^{-3}, calculate the coded bit error probability when using this best-of-five code.
