

M.M		TIME
M.M	,	I IIVI∟

Father Name:

Mobile No. : O

Subject: Physics, Chemistry, Biology/Math, Mental Aptitude

IMPORTANT INSTRUCTIONS

- 1. This booklet contains 100 Questions.
- 2. All questions are compulsory and carry mark,
- 3. There will be no negative marking.
- 4. Immediately fill in the particulars on this page of the Test Booklet with Blue/Black Ball Point Pen. Use of pencil is strictly prohibited.
- You will not be supplied the Answer-Sheet separetely by the invigilator. You must complete the details of Name, Father Name and Mobile Number on the Answer-Sheet carefully, as per detailed instructions supplied by Academy, before you actually start answering the questions, failing which your Answer-Sheet will not be evaluated and you will be awarded 'ZERO' mark.
- No candidate is allowed to carry any textual material, printed or written, bits of papers, mobile phone, any electronic device, etc., except the I - Card, inside the examination hall/room.
- 7. Rough work is to be done on the space provided for this purpose in the Test Booklet only. Use of white fluid for correction is not permissible on the Answer Sheet. No rough work is to be done on the Answer-Sheet.
 - On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator on duty in the Room/ Hall; however, the candidates are allowed to take away this Test Booklet with them.

VIGYAN DHARA

IIT-JEE/NEET/AIIMS

The Temple of Education

PHYSICS

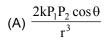
Four charges q, 2q, – 4q and 2q are placed in order at the four corners of a square of side b. The net field at the centre of the square is –

(A)
$$\frac{q}{2\pi\epsilon_0 b^2}$$
 from + q to – 4q

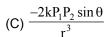
(B)
$$\frac{5q}{2\pi\epsilon_0 b^2}$$
 from + q to – 4q

(C)
$$\frac{10q}{2\pi\epsilon_0 b^2}$$
 from + q to – 4q

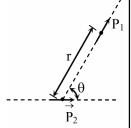
(D)
$$\frac{20q}{2\pi\epsilon_0 b^2}$$
 from – 4q to + q


A half ring of radius R has a charge of λ per unit length. The potential at the centre of the half ring is -

(A)
$$k \frac{\lambda}{R}$$


(B)
$$k \frac{\lambda}{\pi R}$$

(C)
$$k \frac{\lambda}{R}$$


- (D) kπλ
- 3 Two short electric dipoles are placed as shown. The energy of electric interaction between these dipoles will be -

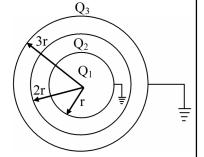
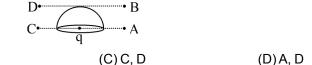
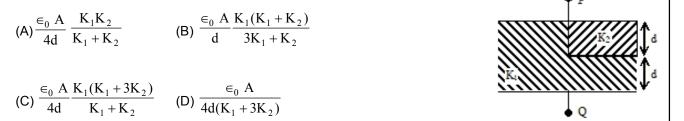
(B)
$$\frac{-2kP_1P_2\cos\theta}{r^3}$$

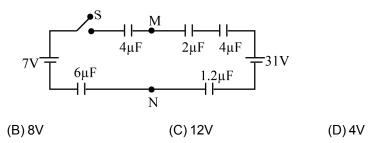
(D)
$$\frac{-4kP_1P_2\cos\theta}{r^3}$$

- 4 Electric charges are distributed in a small volume. The flux of the electric field through a spherical surface of radius 10 cm surrounding the total charge is 25 V-m. The flux over a concentric sphere of radius 20 cm will be -
 - (A) 25 V-m
- (B) 50 V-m
- (C) 100 V-m
- (D) 200 V-m
- Three concentric conducting spherical shells have radius r, 2r and 3r and Q_1 , Q_2 and Q_3 are final charges respectively. Innermost and outermost shells are already earthed as shown in figure. Choose the wrong statement.
 - (A) $Q_1 + Q_3 = -Q_2$

(C)
$$\frac{Q_3}{Q_1} = 3$$

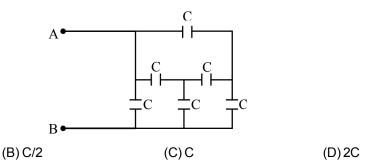
(D) $\frac{Q_3}{Q_2} = \frac{-1}{3}$


Figure shows a charge q placed at the centre of a hemisphere. Another charge Q can be put on the positions A, B, C and D. In which position(s) of this another charge, the flux of the electric field through the hemisphere remains unchanged -

What is the capacitance of the capacitor of square plates of area A, Shown in figure –

(B) B, D



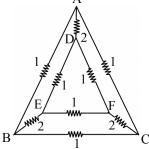
9 The equivalent capacitance between point A and B is –

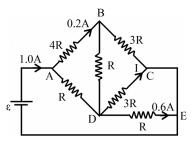
(A) A, C

(A) 6 V

(A) C/4

Space for Rough Work


A network of nine conductors connects six points A, B, C, D, E and F as shown below. The digits denote resistances in Ω . Find the equivalent resistance between B and C -


(B) $\frac{7}{12} \Omega$

 $(C)\frac{5}{12}\Omega$

(D) $\frac{11}{12} \Omega$

11 The current I in the circuit shown in the figure is -


(A)0

(B) 0.1 A

(C) 0.4 A

(D) 0.2 A

In the electric circuit shown in figure, the reading of voltmeter V_1 is 26 volt, and the reading of ammeter A_1 is 2 ampere. The value of resistance x is – (all instruments are ideal)

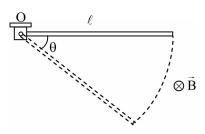
(A) 2 Ω

(B) 4 Ω

 $(C) 6 \Omega$

 $(D) 8 \Omega$

A uniform magnetic field exists in region given by $\vec{B} = 3\hat{i} + 4\hat{j} + 5\hat{k}$. A rod of length 5 m is placed along y-axis is moved along x-axis with constant speed 1 m/sec. Then induced e.m.f. in the rod will be-


(A) zero

- (B) 25 volt
- (C) 20 volt
- (D) 15 volt

14 Consider the situation shown in figure. If the switch is closed and after some time it is opened again, the closed loop will show-

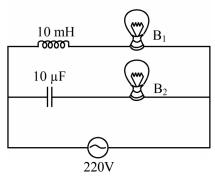
- (A) an anticlockwise current-pulse
- (B) a clockwise current-pulse
- (C) an anticlockwise current-pulse and then a clockwise current-pulse
- (D) a clockwise current-pulse and then an anticlockwise current-pulse
- 15 A conducting rod of length ℓ is hinged at point O. It is free to rotate in a vertical plane. The rod is released from the position shown. The potential difference between the two ends of the rod is proportional to-

(A) ℓ^2

(B) ℓ

- (C) $\sin \theta$
- (D) $(\sin \theta)^{1/2}$

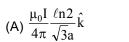
16 RMS value of ac i = $i_1 \cos \omega t + i_2 \sin \omega t$ will be—

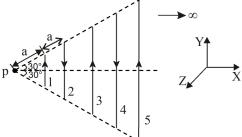

(A)
$$\frac{1}{\sqrt{2}}$$
 (i₁ + i₂)

(B)
$$\frac{1}{\sqrt{2}} (i_1 + i_2)^2$$

(B)
$$\frac{1}{\sqrt{2}} (i_1 + i_2)^2$$
 (C) $\frac{1}{\sqrt{2}} (i_1^2 + i_2^2)^{1/2}$ (D) $\frac{1}{2} (i_1^2 + i_2^2)^{1/2}$

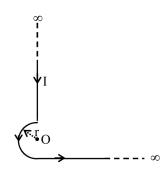
$$(D)\frac{1}{2}(i_1^2+i_2^2)^{1/2}$$


17 Two identical bulbs B₁ and B₂ are connected to an ac source. B₁ is connected in series with a coil of 100 mH and B_2 with a capacitor of 10 μF as shown in the figure. The brightness of B_1 and B_2 will be-


(A) Same in both

- (B) More in B₁
- (C) Depending on the frequency of the source
- (D) More in B₂

18 Infinite number of straight wires each carrying current I are equally placed as shown in the figure. Adjacent wires have current in opposite direction. Net magnetic field at point P is-


(B) $\frac{\mu_0 I}{4\pi} \frac{\ell n 4}{\sqrt{3}a} \hat{k}$

(C) $\frac{\mu_0 I}{4\pi} \frac{\ell n 4}{\sqrt{3}a} (-\hat{k})$

(D) zero

19 In the figure, the magnetic induction at point O is -

(A) $\frac{\mu_0 I}{4\pi r}$

(B) $\frac{\mu_0 I}{4r} + \frac{\mu_0 I}{2\pi r}$ (C) $\frac{\mu_0 I}{4r} + \frac{\mu_0 I}{4\pi r}$ (D) $\frac{\mu_0 I}{4r} - \frac{\mu_0 I}{4\pi r}$

A charge q is moving with a velocity $\overrightarrow{v_1} = \overrightarrow{i}$ m/s at a point in a magnetic field and experiences a force 20 $\overrightarrow{F_1}$ = q (-1 \hat{j} + 1 \hat{k})N. If the charge is moving with a velocity $\overrightarrow{v_2}$ = 1 \hat{j} m/s at the same point, it experiences and a force $\overrightarrow{F_2}$ = q [$_1$ $_1^{\wedge}$ -1 $_k^{\wedge}$] N. The magnetic induction $_B^{\rightarrow}$ at that point is-

(A)
$$(\hat{i} + \hat{j} + \hat{k})$$
 Wb/m²

$$(B)(\hat{i}-\hat{j}+\hat{k})$$
 Wb/m²

$$(C)_{(-\hat{i}+\hat{i}-\hat{k})}$$
 Wb/m²

$$(D)(\hat{i}+\hat{j}-\hat{k})$$
 Wb/m²

CHEMISTRY

21.	Consider a Body Cente	red Cubic(bcc) arrangeme	nt, let d_{e} , d_{fd} , d_{bd} be the dist	ances between successive atoms					
	located along the edge,	the face-diagonal, the bod	y diagonal respectively in a	unit cell.Their order is given by:					
	(A) $d_{e} < d_{fd} < d_{bd}$	(B) $d_{fd} > d_{bd} > d_{e}$	(C) $d_{fd} > d_{e} > d_{bd}$	(D) $d_{bd} > d_{e} > d_{fd}$,					
22.	The shortest distance b	etween Ist and Vth layer of H	CP arrangement is :						
	(A) $8\sqrt{\frac{2}{3}}$ r	$(B) 4 \sqrt{\frac{3}{2}} r$	(C) $16\frac{\sqrt{2}}{3}$ r	(D) $8\sqrt{\frac{3}{2}}$ r					
23.	The maximum percenta	age of available volume tha	t can be filled in a face cent	red cubic system by atoms is-					
	(A) 74%	(B) 68%	(C) 34%	(D) 26%					
24.	The spinal structure (Al	B ₂ O ₄) consists of an fcc arra	ay of O^{2-} ions in which the :						
	(A) A cation occupies or	ne-eighth of the tetrahedral	holes and B cation occupie	s one-half of octahedral holes					
	(B) A cation occupies or	ne-fourth of the tetrahedral	holes and the B cations the	octahedral holes					
	(C) A cation occupies or	ne-eighth of the octahedral	hole and the B cation the te	etrahedral holes					
	(D) A cation occupies or	ne-fourth of the octahedral	holes and the B cations the	tetrahedral holes					
25.	The vapour pressure of	the solution of two liquids A	(p° = 80 mm) and B(p° = 120	0 mm) is found to be 100 mm when					
	$x_A = 0.4$. The result shows that								
	(A) solution exhibits ideal behaviour								
	(B) solution shows posit	tive deviations							
	(C) solution shows nega	ative deviations							
	(D) solution will show po	sitive deviations for lower co	oncentration and negative d	eviations for higher concentrations.					
26.	If M _{normal} is the normal mo		egree of ionization of K ₃ [Fe($\mathrm{CN})_{\!\scriptscriptstyle{6}}$], then the abnormal molecular					
	(A) $M_{normal} (1 + 2\alpha)^{-1}$	(B) $M_{normal} (1 + 3\alpha)^{-1}$	(C) $M_{normal} (1 + \alpha)^{-1}$	(D) equal to M _{normal}					
27.	PtCl ₄ . 6H ₂ O can exist as a hydrated complex 1 molal aq. solution has depression in freezing point of 3.72°.								
	Assume 100% ionisation and $K_f(H_2O) = 1.86^{\circ} \text{ mol}^{-1} \text{ kg}$, then complex is -								
	${\rm (A)~[Pt(H}_2{\rm O)}_6]{\rm CI}_4}$		(B) $[Pt(H_2O)_4CI_2]CI_2$.	2H ₂ O					
	(C) [Pt(H ₂ O) ₃ Cl ₃]Cl . 3H	H ₂ O	(D) $[Pt(H_2O)_2CI_4]$. $4H_2O$						
		Space for	Rough Work						

- 28. Osmotic pressure of 30% solution of glucose is 1.20 atm and that of 3.42% solution of cane sugar is 2.5 atm. The osmotic pressure of the mixture containing equal volumes of the two solutions will be
 - (A) 2.5 atm
- (B) 3.7 atm
- (C) 1.85 atm
- (D) 1.3 atm.

29 In the following reaction : $xA \longrightarrow yB$

$$\log \left[-\frac{d[A]}{dt} \right] = \log \left[\frac{d[B]}{dt} \right] + 0.3$$

where –ve sign indicates rate of disappearance of the reactant. Thus, x: y is:

- (A) 1:2

- (D) 3:10
- For a reaction 2A + B \rightarrow product, rate law is $-\frac{d[A]}{dt} = k[A]$. At a time when $t = \frac{1}{k}$, concentration of the reactant is 30
 - : (C₀ = initial concentration)
 - (A) $\frac{C_0}{a}$

- (B) C₀e
- (C) $\frac{C_0}{R^2}$
- (D) $\frac{1}{C_0}$

- 31 Which is not true for a second order reaction?
 - (A) It can have rate constant 1×10^{-2} L mol⁻¹ s⁻¹
 - (B) Its half-life is inversely proportional to its initial concentration
 - (C) Time to complete 75% reaction is twice of half-life
 - (D) $T_{50} = \frac{1}{K \times \text{Initial conc}}$
- 32 At the point of intersection of the two curves shown, the conc. of B is given by......for, $A \rightarrow nB$:
- (B) $\frac{A_0}{n-1}$

- (C) $\frac{nA_0}{n+1}$
- (D) $\left(\frac{n-1}{n+1}\right)A_0$
- $Cu^+ + e^- \longrightarrow Cu$, $E^\circ = x_1$ volt; 33.

 $Cu^{2+} + 2e^{-} \longrightarrow Cu$, $E^{\circ} = x_2$ volt, then for

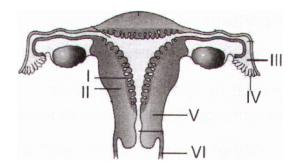
 $Cu^{2+} + e^{-} \longrightarrow Cu^{+}$, E° (volt) will be -

(A) $x_1 - 2x_2$ (B) $x_1 + 2x_2$ (C) $x_1 - x_2$ Space for Rough Work

Page No (10)

34.	$Pt \begin{vmatrix} H_2 & H^+ & H^+ & H^+ \\ (p_1) & (1M) & (1M) \end{vmatrix} $	$\left. \frac{H_2}{p_2} \right ^{\text{Pt}}$ (where p_1 and p_2 are p	ressures) cell reaction will	be spontaneous if :					
	(A) $p_1 = p_2$	(B) $p_1 > p_2$	(C) $p_2 > p_1$	(D) p ₁ = 1 atm					
35.	MnO ₄ - + 8H+ + 5e-	\longrightarrow Mn ²⁺ + 4H ₂ O, If H ⁺ co	oncentration is decreased	from 1 M to 10 ⁻⁴ M at 25°C,	where as				
	concentration of Mn ²⁺ and MnO ₄ ⁻ remain 1 M.								
	(A) the potential de	creases by 0.38 V with decr	ease in oxidising power						
	(B) the potential inc	creases by 0.38 V with incre	ase in oxidising power						
	(C) the potential de	creases by 0.25 V with decr	ease in oxidising power						
	(D) the potential de	creases by 0.38 V without a	ffecting oxidising power						
36.	If 0.224 L of H ₂ gas	is formed at the cathode, the	volume of O ₂ gas formed at	the anode under identical co	nditions, is				
	(A) 0.224 L	(B) 0.448 L	(C) 0.112 L	(D) 1.12 L					
37.	Finely divided catal	yst has greater surface area	and has greater catalytic	activity than the compact soli	d. If a total				
	surface area of 629	91456 cm ² is required for ac	dsorption in a catalysed ga	aseous reaction, then how m	any splits				
		•	gth to achieve required su	rface area. (Given : One split	t of a cube				
	gives eight cubes of	of same size)							
	(A) 60	(B) 80	(C) 20	(D) 22					
38.		in the following statement?							
	(A) A catalyst is sp								
		nount of the catalyst alters th							
		free vacancies on the surfac	-	on sub-division					
	` ,	catalyst in the manufacture							
39.		n of 200 mL of As_2S_3 solution les of solute needed for coar		equired. What is the coagula n) of NaCl.	ting value				
	(A) 200	(B) 100	(C) 50	(D) 25					
40.	Peptisation is :								
	(A) conversion of a	colloidal into precipitate forn	n						
	(B) conversion of p	recipitate into colloidal sol							
	(C) conversion of n	netal into colloidal sol by pas	sage of electric current						
	(D) conversion of c	olloidal sol into macromolecu	ules						
		Space	for Rough Work						

VIGYAN DHARA: #197-C, Lajpat Nagar, Near Lazeez Hotel, Hisar. M. 9812073815,16


Page No (11)

		віс	DLOGY							
41.	The coconut water fr	om tender coconut represent	3							
	(A) Free nuclear end	osperm	(B) Endocarp							
	(C) Fleshy mesocarp)	(D) Free nuclear pro	embryo						
42.	Seed formation with	out fertilization in flowering pla	ints involves the process o	f						
	(A) Apomixis	(B) Sporulation	(C) Budding	(D) Somatic hybridization						
43.	Filiform apparatus is	a characteristic feature of:								
	(A) Zygote	(B) Suspensor	(C) Egg	(D) Synergid						
44.	A human female with	n Turner's syndrome:								
	(A) Has 45 chromoso	omes with XO								
	(B) Has one addition	al X chromosome								
	(C) Exhibits male characters									
	(D) Is able to produc	e children with normal husbar	nd							
45.	ABO blood grouping is controlled by gene I which has three alleles and show co-dominance. There are six									
	genotypes. How many phenotypes in all are possible?									
	(A) Six	(B) Three	(C) Four	(D) Five						
46.	If a colourblind woma	an marries a normal visioned	man, their sons will be							
	(A) All normal visione	ed								
	(B) One-half colourbl	lind and one-half normal								
	(C) Three-fourths col	ourblind and one-fourth norma	al							
	(D) All colourblind									
47.	Synthesis of leading	and lagging strand require								
	(A) Single primer									
	(B) Single and many	primers respectively								
	(C) Many and single	(C) Many and single primers respectively								
	(D) Many primers									
48.	Identification and bir	nding of RNA polymerase to th	ne promoter sequence is a	function of						
	(A) Rho factor	(B) Sigma factor	(C) Beta factor	(D) Omega factor						
		Space fo	r Rough Work							

VIGYAN DHARA: #197-C, Lajpat Nagar, Near Lazeez Hotel, Hisar. M. 9812073815,16

Page No (12)

- 49. Removal of RNA polymerase III from nucleoplasm will affect the synthesis of
 (A) mRNA
 (B) rRNA
 (C) tRNA
 (D) hnRNA
 50. Removal of introns and joining of exons in a defined order during transcription is called
 (A) Slicing
 (B) Splicing
 (C) Looping
 (D) Inducing
 51. Which of the following depicts the correct pathway of transport of sperms?
 (A) Rete testis → Vasa efferentia → Epididymis → Vas deferens
 - (D) Data testing a Childiduming a Mana efforcation a Mana deforcation
 - (B) Rete testis \rightarrow Epididymis \rightarrow Vasa efferentia \rightarrow Vas deferens
 - (C) Rete testis \rightarrow Vas deferens \rightarrow Vasa efferentia \rightarrow Epididymis
 - (D) Vasa efferentia \rightarrow Rete testis \rightarrow Vas deferens \rightarrow Epididymis
- 52. The mammary glands are paired structures that contain the glandular tissue and variable amount of fat. The correct sequence of tissues involved in synthesis and flow of milk are
 - (A) Mammary lobes → Mammary alveoli → Mammary ampulla → Mammary duct → Lactiferous duct
 - (B) Mammary lobes \rightarrow Mammary alveoli \rightarrow Mammary duct \rightarrow Mammary ampulla \rightarrow Lactiferous duct
 - (C) Mammary lobes → Mammary alveoli → Lactiferous duct → Mammary ampulla → Mammary duct
 - (D) Mammary alveoli → Mammary lobes → Lactiferous duct → Mammary duct
- 53. The figure given below depicts a diagrammatic sectional view of the female reproductive system of humans. Which one set of three parts out of I VI have been correctly identified?

- (A) (I) Perimetrium, (II) Myometrium, (III) Fallopian tube
- (B) (II) Endometrium, (III) Infundibulum, (IV) Fimbriae
- (C) (III) Infundibulum, (IV) Fimbriae, (V) Cervix
- (D) (IV) Oviducal funnel, (V) Uterus, (VI) Cervix

Page No (13)

	(A) Day 14	(B) Day 18	(C) Day 1	(D) Day 8
	. ,	ng can be included under natu		, , ,
•	(A) Rhythm method	ig oan so moradod andor nata	(B) Coitus interruptus	
	(C) Lactational amer	norrhoea	(D) All of these	
3 .		luman Immunodeficiency Viru	, ,	itted through
	(A) Blood contact	•	(B) Sexual contact	· ·
	(C) Handshake		(D) Both (A) and (B)	
	MTPs are considere	ed relatively safe up to		
	(A) 12	(B) 20	(C) 25	(D) 18
١.	The two key concep	ts of Darwinian theory of evolu	ution are	
	(A) Fitness		(B) Branching descen	t .
	(C) Natural selection	1	(D) Both (B) and (C)	
).	The dinosaurs desc	ended from ancestors,	which are extinct	
	(A) Therapsids	(B) Pelycosaurs	(C) Synapsids	(D) Thecodonts
).	The chronological or	rder of human evolution from e	early to the recent is	
	(A) Australopithecus	$s \rightarrow Ramapithecus \rightarrow Homoh$	nabilis → Homo erectus	
	(B) Ramapithecus –	→ Australopithecus → Homo h	nabilis → Homo erectus	
	(C) Ramapithecus –	→ Homo habilis → Australopitl	hecus → Homo erectus	
	(D) Australopithecus	s → Homo habilis → Ramapitl	hecus → Homo erectus	
		Space fo	or Rough Work	
		Space fo	or Rough Work	

MATHEMATICS

61. The number of solution(s) of the equation, $\sin^{-1}x + \cos^{-1}(1-x) = \sin^{-1}(-x)$, is/are

(A)0

(B) 1

(C)2

(D) more than 2

62. If $a = \frac{1}{4} + i \frac{\sqrt{3}}{4}$ and z = x + iy, then $\sin^{-1} |z|^2 + \cos^{-1} (a \overline{z} + \overline{a} z - 2)$ equals to :

(A) 0

(B) $\frac{\pi}{4}$

(C) $\frac{\pi}{2}$

(D) $\frac{3\pi}{2}$

63. Let $f(x) = \begin{cases} (-1)^{[x^2]} & \text{if } x < 0 \\ \lim_{n \to \infty} \frac{1}{1 + x^n} & \text{if } x \ge 0 \end{cases}$. Then $\lim_{x \to 0} f(x)$ equals (where [.] represents greatest integer function)

(A) - 1

(B) 1

(C)0

(D) does not exist

- **64.** If $f(x) = [x^2] + \sqrt{\{x\}^2}$, where [.] and {.} denote the greatest integer and fractional part functions respectively, then-
 - (A) f(x) is continuous at all integral points except 0
 - (B) f(x) is continuous and differentiable at x = 0
 - (C) f(x) is discontinuous for all $x \in I \{1\}$
 - (D) f(x) is not differentiable for all $x \in I$.
- **65.** If $f(x) = \lim_{n \to \infty} \frac{\{e^x\}^n 1}{\{e^x\}^n + 1}$, where $\{.\}$ represents fractional part function, then -
 - (A) f(x) is a discontinuous function
 - (B) f(x) is an even function
 - (C) f(x) is continuous but non-differentiable function
 - (D) f(x) is not defined for all real numbers.
- 66. The value of f(0), so that the function $f(x) = \frac{\sqrt{a^2 ax + x^2} \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} \sqrt{a x}}$ (a > 0) becomes continuous for all x, is

given by -

(A) a√a

(B) √a

 $(C)-\sqrt{a}$

(D) – a \sqrt{a}

		1 0	ige 140 (13)	
67.	The value of $\lim_{x \to \frac{1}{2}}$	$\frac{\cos^{-1}(3x-4x^3)}{x-\frac{1}{2}} \text{ equals}$		
	(A) 2	(B) $2\sqrt{3}$	(C) $-2\sqrt{3}$	(D) does not exist
68.	If $y = \frac{1}{t^2 + t - 2}$ wh	here $t = \frac{1}{x-1}$, then the number	r of points of discontinuiti	es of $y = f(x), x \in R$ is
69.	(A) 1 If f (x) is differentia	(B) 2 able everywhere, then:	(C)3	(D) infinite
	(A) f is differen	ntiable everywhere	(B) $ f ^2$ is different	tiable everywhere
	(C) f f is not dif	ferentiable at some point	(D) f + $ f $ is differ	rentiable everywhere
70.	Let $f(x) = x - x^2$ and	$\text{nd } g(x) = \begin{cases} \max f(t), 0 \le t \le x, 0 \\ \sin \pi x, x > 1 \end{cases}$	$0 \le x \le 1$, then in the inter	rval [0, ∞)
	(A) g(x) is everyw	here continuous except at two	points	
	(B) g(x) is everywl	here differentiable except at tw	o points	
	(C) g(x) is everyw(D) none of these	here differentiable except at x =	= 1	
71.	The curve y – exy	+ x = 0 has a vertical tangent a	t	
	(A) (1, 1)	(B) (0, 1)	(C)(1,0)	(D) no point
72.	The coordinates $x^2 + (y + 6)^2 = 1$ a		a $y^2 = 8x$, which is at	minimum distance from the circle
	(A) (2, -4)	(B) (18, -12)	(C) (2, 4)	(D) none of these
73.	Let $f(x) = (1 + b^2)x$	$x^2 + 2bx + 1$ and let m(b) be the	minimum value of f(x). A	s b varies, the range of m(b) is
	(A) [0, 1]	$(B)\left(0,\frac{1}{2}\right)$	(C) $\left[\frac{1}{2}, 1\right]$	(D) (0. 11

(B) (°, 2] (D)(0,1](6)[2,]

The function $f(x) = x^3 - 6x^2 + ax + b$ satisfy the conditions of Rolle's theorem on [1, 3]. Which of these are correct? 74.

(A) $a = 11, b \in R$ (B) a = 11, b = -6(C) a = -11, b = 6 (D) a = -11, $b \in R$

75. If x = at², y = 2at, then
$$\frac{d^2y}{dx^2}$$
 is equal to

$$(A) - \frac{1}{t^2}$$

(B)
$$\frac{1}{2at^2}$$

(C)
$$-\frac{1}{t^3}$$

(D)
$$-\frac{1}{2at^3}$$

76 How many matrices can be obtained by using one or more numbers from four given numbers-

(D) None

77. If A and B are square matrices of same order and $AA^T = I$ then $(A^TBA)^{10}$ is equal to -

$$(A)AB^{10}A^{T}$$

$$(B)A^TB^{10}A$$

$$(C)A^{10}B^{10}(A^{T})^{10}$$

(D) 10A^TBA

78. If
$$A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}$$
 then let us define a function $f(x) = \det(A^TA^{-1})$ then which of the following is not correct value

of
$$\underbrace{f(f(f(f.....f(x))))}_{n \text{ times}}$$
 (n ³ 2)

$$(A) f^{n}(x)$$

(C)
$$f^{n-1}(x)$$

(D) nf(x)

79. If
$$P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$
, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $Q = PAP^T$ and $x = P^T Q^{2005} P$, then x is equal to -

$$(A)\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 4 + 2005\sqrt{3} & 6015 \\ 2005 & 4 - 2005\sqrt{3} \end{bmatrix}$$

(C)
$$\frac{1}{4}\begin{bmatrix} 2+\sqrt{3} & 1\\ -1 & 2-\sqrt{3} \end{bmatrix}$$

(D)
$$\frac{1}{4} \begin{bmatrix} 2005 & 2 - \sqrt{3} \\ 2 + \sqrt{3} & 2005 \end{bmatrix}$$

Given the relation $R = \{(2, 3), (3,4)\}$ on the set $\{2, 3, 4\}$. The number of minimum number of ordered pairs to be added to R so that R is reflexive and symmetric –

(D)6

Page No (17)

		MEN	ITAL APTITUDE						
81.	In a certain code, BO	ONUS is written as CNC	OTT. How is COAST written in t	hat code language?					
	(A) DBOEJE		(B) DNBRU						
	(C) BPBTS		(D) BBMEHE						
82.	• •	'red', 'red' is called 'wl	` '	'brown' is called 'yellow', 'yellow' is					
	_		nen what is the colour of carro						
	(A) blue		(B) green						
	(C) white		(D) None of these						
83.	Nitin ranks eighteen	th in a class of 36 stud	ents. What is his rank from the	last?					
	(A) 18	(B) 19	(C) 31	(D) 32					
84.	In a group of six chil	ldren T, K, V, O, M and	W, T is fatter than M but not as	fat as W. K is not the fattest nor is W					
	whereas V is the thi	nnest. Who is the fatte	st among them all?						
	(A) O		(B) T						
	(C) M		(D) Data inadequa	te					
85.	Vishal walks 2 km to	owards North. He then t	urns right and walks 3 km. He n	now turns left and walks 5 km. Further,					
	he moves 2 km after	r turning to the left. In w	hich direction is he facing?						
	(A) West	(B) East	(C) North	(D) South					
86.	Pointing to a woman	n in the photograph a n	nan said, "She is the wife of m	y grandmother's only son. How is the					
	woman related to the	e man?							
	(A) Mother		(B) Daughter						
	(C) Sister-in-law		(D) Sister						
87.	How many pairs of le	etters are there in the wo	ord INCHARGE which have the	same number of letters between them					
	as in English alphab	et?							
	(A) Three	(B) Four	(C) Five	(D) Six					
88.	Abha correctly remo	embers that her mothe	er's birthday is before thursday	but after sunday. Her brother Abhay					
	correctly remembers that their mother's birthday is after tuesday while before friday. On which of the following days								
	does their mother's	birthday definitely fall?							
	(A) Tuesday		(B) Wednesday						
	(C) Thursday		(D) Friday						
		sı	pace for Rough Work						

Directions: Find out missing number/letter/number and letter from the following given options/figures. 89. (A) 47 (B) 45 (C) 37 (D) 35 90. (A)70(B) 84 (C)68 (D)66 91. (A)20(B) 40 (C) 60 (D)80 92. -12 -292 (A) - 15(B) - 10(C) - 35(D) - 4093. 18 24 20 (A) 19(B) 22 (C) 26 (D) 28 Space for Rough Work

Page No (19)

			age No (13)	
Direc	ctions (94-95) : In eac	ch of the following questions	, select the related letter/wo	rd/number from the given alternatives.
94.	Radio : Marconi : : A	eroplane: ?		
	(A) Picture tube		(B) Right Brothers	
	(C) Receiver		(D) JL Baird	
95.	Perpetual : Irregular	::Prevent:?		
	(A) Check	(B) Appeal	(C) Stop	(D) Allow
96.	If ÷ means –, – mea	ins ×, × means + and + me	ans ÷, then 32 ÷ 8 – 4 × 12	? + 4 = ?
	(A) 12	(B) 3	(C)40	(D)-14
97.	From the given alter	native, select the one word	which can not be formed us	sing the letters of the given word.
	PRAGMATIC			
	(A) GITAR	(B) AGMAR	(C) GAME	(D) MAGIC
Direc	ctions: Find out the c	orrect alternative of the que	estion 98 based on the Dice	figures.
	$\sqrt{2}$	2		
98.	3	19		
	The number opposit	te side the face having the n	o. 4 will be-	
	(A) 1	(B) 2	(C) 5	(D) 6
Direc	ctions: In question no.	99 four figures are given. O	ne of these figures does no	t fit with the rest of the figures. Find out
	that correct serial nu	ımber.		
	gentalment visit on a state of the state of			
99.		1		
		(B)	(C)	
	(A)	(B)	(0)	(D)
	(A) A	(B) B	(C) C	(D) D
100.	-		a circle. B is between F an	d C, A is between E and D, F is to the
	left of D Who is betv			
	(A) B	(B) C	(C) D	(D) E
		_		
		Space	for Rough Work	

	ANSWER KEY (CLASS 12TH)																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
В	D	В	Α	D	Α	С	С	D	В	D	В	В	D	D	С	С	В	С	Α
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
С	Α	Α	Α	С	В	С	С	В	Α	С	С	D	В	Α	С	С	D	С	В
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Α	Α	D	Α	С	D	В	В	С	В	Α	В	С	Α	D	D	Α	D	D	В
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
В	D	В	Α	В	С	D	C	В	С	С	Α	D	Α	D	В	В	D	Α	В
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
В	С	В	Α	Α	Α	Α	С	С	Α	Α	В	D	В	D	В	С	В	D	D