
Sı Sı Ti	Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY BA – SEMESTER – 1 - EXAMINATION – SUMMER 2018 abject Code: 1025004 abject Name: Structure – II ime: 10:30 AM TO 012:30 PM Structions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks	-
Q.1	 (a) Define the following terms: (Any Seven) 1. Stress 2. Strain 3. Modulus of Elasticity. 4. Elasticity 5. Principle of superposition 6. Shear Stress 7. Bending Moment 8. Shear Force 	[7]
Q.2	 9. Hook's law (b)Explain trusses and their classification with sketch. (a) Describe the following Terms (any Two – With the help of sketches) I. Enlist the Basic Assumptions for Analyses of Truss II. Enlist of the various Types of Truss as per Stability [with the help of the equation] III. Enlist the Types of the END Support [with the help of Sketches] (b) Draw the Shear force and Bending moment diagram for a Cantilever Beam shown in 	[8] [5]
	5 kN 5 kN 2 kN/m 2 m OR	
Q.2	A 6 m span cantilever beam is shown in figure. Draw shear force and bending moment diagrams.	[10]

Q.3 (a) A brass rod having 2 cm diameter is subjected to axial forces as shown in figure. Find the total elongation of the rod. Take E= 2 x 105 N/mm2.

- (b) Define the following terms. [5]
- 1. Redundant truss
- 2. Deficient truss

OR

- Q.3 (A) Draw the stress v/s strain curve of mild steel and Concrete also Explain all points. [10]
 - (b)Differentiate between truss and frame. [5]
- Q.4 Describe the following body part as a example for type beam, support or load [5]
 - 1. Widen Hand is ______ type of beam.
 - 2. Area of chest to stomach is _____ type of beam.
 - 3. Elbow is _____ type of support.
 - 4. Flooring is example of _____load.
 - 5. Standing pole is example of _____ load.

OR

[5]

Q.4 Explain the equilibrium condition of a beam and the types of beam.