

2

Test No. 8

Topics of The Test

Physics	Laws of Motion, Friction and Circular Motion

Chemistry	Solid state		

HORIZON ACADEMY :- B-3/41 A, YAMUNA VIHAR, WAZIRABAD ROAD, DELHI-53, (M) 9811139323, (O) 22922012

Test-8 (Objective)

2.

Test No. 8

3.

[PHYSICS]

- 1. There equal weights A,B,C of mass 2 kg each are hanging on a string passing over a fixed frictionless pulley as shown in the figure. The tension in the string connecting weights B and C is
 - шициш 60° (A) 30° (B) (C) 90° (D) 120° 4. A man sits on a chair supported by a rope passing over a frictionless fixed pulley. The man who weight B 1000 N exerts a force of 450 N on the chair downwards while pulling the rope on the other side. If the chair weight 250 N, then the acceleration of the chair is (A) 0.45 m/s² (B) zero (D) 9/25 m/s² (C) 2 m/s^2 5. A block slides with a velocity of 10 m/s on a rough (A) zero 13.06 N (B) horizontal surface. It comes to rest after covering a (C) 3.3 N (D) 19.6 N distance of 50 m. If g is 10 m/s², then the coefficient of dynamic friction between the block and the surface is The elevator shown in figure is descending with an (A) 0.1 (B) 1 acceleration of 2 ms⁻². The mass of the block A = (C) 10 (D) 5 0.5kg. The force exerted by block A on block B is 6. A block of mass *m*, lying on a horizontal plane, is $(Take g = 10 m/s^2)$ acted upon by a horizontal force P and another force Q, inclined at an angle θ to the vertical. The block will remain in equilibrium, if the coefficient of friction between it and the surface is: 2 ms⁻² (A) $(P + Q\sin\theta)/(mg + Q\cos\theta)$ $(P\cos\theta + Q)/(mg - Q\sin\theta)$ (B) (A) 2 N (B) 4 N $(P + Q\cos\theta)/(mg + Q\sin\theta)$ (C) (C) 6 N (D) 8 N $(P\sin\theta - Q)/(mg - Q\cos\theta)$ (D)

Space for Rough Work

In the following figure, pulley P_1 is fixed and pulley P_2 is

movable. If $W_1 = W_2 = 100$ N, what is the angle AP_2P_1 ?

3

The pulleys are frictionless.

Test-8 (Objective)

15. A bead of mass *m* is attached to one end of a spring of

natural length R and spring constant $K = \frac{(\sqrt{3} + 1)mg}{P}$.

The other end of the spring is fixed at point A on a smooth vertical ring of radius R as shown in the figure. The normal reaction at B just after it is released to move is

16. Two blocks of masses M_1 and M_2 are connected with a string passing over a pulley as shown in the figure. Block M_1 lies on a horizontal surface. The coefficient of friction between block M_1 and the horizontal surface is μ . The system accelerates. What additional mass *m* should be placed on block M_1 so that the system does not accelerate ?

17. A block of mass *m* is placed on the top of another block of mass M as shown in the figure. The coefficient

Horizon Test Series for Engineering-2016

18. A block of mass 15 kg is resting on a rough inclined plane as shown in the figure. The block is tied by a horizontal string which has a tension of 50 N. The coefficient of friction between the surface of contact is

19. A plumb bob is hung from the ceiling of a train compartment. The train moves on an inclined track of inclination 30° with horizontal. Acceleration of train up the plane is a = g/2. The angle at which the string supporting the bob makes with normal to the ceiling in equilibrium is

)

5

(A) 30° (B) $\tan^{-1}(2/\sqrt{3})$

Space for Rough Work

Test-8 (Objective)

20. Two particles A and B, each of mass m, are kept stationary by applying a horizontal force F = mg on particle B as shown in figure. Then

- (A) $2\tan\beta = \tan\alpha$ (B) $\sqrt{2}T_1 = \sqrt{5}T_2$
- (C) $T_1 = T_2$ (D) None of these
- 21. Same spring is attached with 2 kg, 3 kg and 1 kg blocks in three different cases as shown in figure. If x_1, x_2 and x_3 be the extensions of the spring in these

cases, then

(A)
$$x_1 = 0, x_3 > x_2$$
 (B) $x_2 > x_1 > x_3$
(C) $x_3 > x_1 > x_2$ (D) $x_1 > x_2 > x_3$

For Problmes 22-23

A block of mass 10 kg is kept on a rough floor. Coefficient of friction between floor and block are $\mu_s = 0.4$ and $\mu_k = 0.3$. Forces $F_1 = 5$ N and $F_2 = 4$ N are applied on the block as shown in the figure.

- 22. Determine the magnitude of friction force.
 - (A) $\sqrt{31}$ N (B) $\sqrt{26}$ N (C) $\sqrt{41}$ N (D) $\sqrt{36}$ N

(C) $\frac{9\sqrt{2}}{22}$

)
$$\frac{9\sqrt{2}}{28}$$
 (D) $\frac{5\sqrt{3}}{18}$

For Problems 25-26

5√2

A sphere of mass 500 g is attached to a string of length $\sqrt{2m}$, whose other end is fixed to a ceiling. The sphere is made to describe a circle of radius 1 m in a horizontal plane.

9√3

53

25. Find the period of revolution for the sphere

(A)	$\pi\sqrt{10}$ s	(B)	$\pi\sqrt{5}$ s	
(C)	$2\pi\sqrt{10}$ s	(D)	$\pi/\sqrt{5}$ s	

Space for Rough Work

Horizon Test Series for Engineering-2016

23. If $F_1 = 5$ N and $F_2 = a$ N, for what maximum value of a, the motion of block impends ?

(A)	√1575 N	(B)	√1225 N
<i>(</i> -)		(-)	<u> </u>

(C) √ <u>1664</u> N	(D)	√875 N
---------------------	-----	--------

For Problem 24

Block A has mass 40 kg and B 15 kg, and F is 500 N parallel to the smooth inclined plane. The system is moving together.

24. The least coefficient of friction between A and B is

(B)

Test-8 (Objective)

26. Find the tension in the string.

(A)	5√2 N	(B)	10√2 N
(C)	5√ <u>3</u> N	(D)	10√ <u>3</u> N

For Problem 27

A pail of water is whirled in a circle of radius *r*. At the topmost point the speed of the pail is v_t .

27. Determine the force exerted on water by the pail at the top of the circle.

(A)
$$\frac{mv^2}{r} + mg$$
 (B) $\frac{mv^2_t}{r} - mg$
(C) $\frac{2mv^2_t}{r} + mg$ (D) $\frac{mv^2_t}{2r} - mg$

28. What is the maximum value of the force F such that the block shown in the arrangement does not move?

29. Two fixed frictionless inclined planes making angles 30° and 60° with the vertical are showin in the figure. Two blocks A and B are placed on the two planes. What is the relative vertical acceleration of A with respect to B ?

- (A) 4.9 m/s² in horizontal direction
- (B) 9.8 m/s² in vertical direction
- (C) zero
- (D) 4.9 m/s^2 in vertical direction

- Horizon Test Series for Engineering-2016
- 30. A particle of mass *m* is at rest at the origin at time t = 0. It is subjected to a force $F(t) = F_0 e^{-bt}$ in the *x* direction. Its speed v(t) is depicted by which of the following curves ?

[CHEMISTRY]

- 31. Out of V_2O_5 and CoO,
 - (A) V_2O_5 forms n-type and CoO forms p-type semiconductor
 - (B) V_2O_5 forms p-type and CoO forms n-type semiconductor
 - (C) Both form n-type semiconductor
 - (D) Both form p-type semiconductor
- Gold crystallises in a cubic closest packed structure (fcc) and has a density 19.3 g cm⁻³. Thus, radius of gold atom is (Au = 197 g mol⁻¹)
 - (A) 144 pm (B) 288 pm
 - (C) 72 pm (D) 408 pm
- 33. Radius of the triangular hole shown in the following figure in terms of radius R of the circle is

Space for Rough Work

Tes	t-8 (Objective)		Horizon Test Series for Engineering-2016
34.	Consider the following transition of iron at 1200 K. $Fe(\alpha - \text{form}) \xrightarrow{1200K} Fe(\gamma - \text{form})$	37.	Sodium metal crystallises in a body centred cubic lattice with a unit cell edge of 4.29Å. The radius of sodium atom is approximately
35.	Distance between the nearest neighbours is same in the two forms at the transition temperature 1200 K. Thus, ratio of the densities of the two forms at 1200 K is (A) 1.09 (B) 1.00 (C) 0.92 (D) 2.18 The cation/anion radius ratio for a triangular arrangement of anions in which the cation is in contact with the anions (but does not push them apart) as shown in the figure is	38.	(A) 0.93Å (B) 1.86Å (C) 3.22Å (D) 5.72Å CsCl crystallises in body-centred cubic lattice. If 'a' its edge length, then which of the following expressions is correct ? (A) $r_{cs^+} + r_{cl^-} = 3a$ (B) $r_{cs^+} + r_{cl^-} = \frac{3a}{2}$
			(C) $r_{cs^+} + r_{cl^-} = \frac{\sqrt{3}}{2}a$ (D) $r_{cs^+} + r_{cl^-} = \sqrt{3}a$
	(A) 0.866 (B) 0.414	39.	Which of the following exists as covalent crystals in the solid state ?(A) lodine(B) Silicon
36.	(C) 0.155 (D) 0.500 For a cubic unit cell, the distance d_{hkl} between planes	40.	(C) Sulphur (D) Phosphorus Experimentally, it was found that a metal oxide has formula $M_{0.06}$ O. Metal M , present as M^{2+} and M^{3+} in
	with Miller indices <i>hkl</i> is given by $d_{hkl}^{2} = \frac{a^{2}}{b^{2} - b^{2} - b^{2}}$		its oxide. Fraction of the metal which exists as M^{3+} would be
	where, <i>a</i> is the length of the cubic unit cell.		 (A) 7.01% (B) 4.08% (C) 6.05% (D) 5.08%
	, k	41.	Lithium forms body-centred cubic structure. The length of the side of its unit cell is 351 pm. Atomic radius of the lithium will be (A) 75 pm (B) 300 pm
	X X		(C) 240 pm (D) 152 pm
		42.	In a face-centred cubic lattice, atom A occupies the
	d_{111} spacing for crystalline K is 0.3080 nm. A wavelength of 0.533 nm falls on this plane. The value of $\sin \theta$ for		corner positions and atom B occupies the face centred positions. If one atom of B is missing from one of the face centred points, the formula of the compound is
	first order reflection in Bragg's diffraction is $(A) = 1.00$		(A) A_2B (B) AB_2
	(C) 0.87 (D) 0.71		(C) A_2B_2 (D) A_2B_5

Test-8 (Objective)						Но	orizon Test	Serie	s for	Engineering	g-2016
43.	Cop of 36	per crystallises ir 31 pm. The radius	fcc la of co	attice with a unit cell edge opper atom is	49.	What show	at type of crys wn below ?	stal de	fect is	indicated in the	diagram
	(A)	181 pm	(B)	108 pm			.diffic.		atito.		
	(C)	128 pm	(D)	157 pm			Na ⁺	CL	Na ⁺	CF	
44.	The subs pm,	edge length of a fa stance is 508 pm. the radius of the s	ace-ce If the anion	entred cubic cell of an ionic radius of the cation is 110 is				Na ⁺	C	Na ⁺ CΓ	
	(A)	288 pm	(B)	398 pm				alitik.			
	(C)	618 pm	(D)	144 pm			CI	Na.	U	Na	
45.	Perc strue resp	centage of free cture and in bo ectively are	space dy-ce	e in cubic close packed entred packed structure		(A) (B)	Frenkel defe Schottky de	ect efect			
	(A)	30% and 26%	(B)	26% and 32%		(C) (D)	Frenkel and	l Scho	ttkv d	efects	
46	(C) In a	(C) 32% and 48% (D) 48% and 26%	50.	(D) Hov idea	v many unit of N	cells a	are pr	esent in a cube	e shaped		
40.	and those of element > voids. The formula of the		t X oc the co	X occupy 2/3rd of tetrahedral ne compound will be		(Atc	mic masses 2.57×10^{21}	of Na	= 23,	CI = 35.5) 5 14×10 ²¹	
	(A)	X_4Y_3	(B)	X_2Y_3		(C)	1 28×10 ²¹		(D)	1 71×10 ²¹	
	(C)	X ₂ Y	(D)	X ₃ Y ₄	51.	Nun	nber of atoms	in the	unit c	ell of Na (bcc typ	e crystal)
47.	Tota unit	l volume of atoms cell of a metal is	pres (<i>r</i> is a	ent in a face-centred cubic tomic radius)		(A)	4,4	oryote	(B) 4	4,2	
	(A)	$\frac{20}{\pi}\pi^3$	(B)	$\frac{24}{\pi r^3}$	52	(C)	2,4	t of Y ⁻ i	(D)	1,1	
	()	3	(-)	3	52.	give	en in the figure	e (not	drawr	to scale). If the	radius of
	(C)	$\frac{12}{3}\pi r^3$	(D)	$\frac{16}{3}\pi r^3$		X ⁻ is	250 pm, the		s of A	ris	
48.	An io at th the f com	onic compound ha e corners of a cu faces of the cube pound would be	as a u be an . The	nit cell consisting of A ions d B ions on the centres of empirical formula for this			ć		5		
	(A)	A ₃ B	(B)	AB ₃		(A)	104 pm		(B)	125 pm	
	(C)	A_2B	(D)	AB		(C)	183 pm		(D)	57 pm	

Tes	t-8 (Objective)	Horizon Test Series for Engineering-2016
63.	The equations of the circle which pass through the origin and makes intercepts of lengths 4 and 8 on the x and y-axes respectively are (A) $x^2 + y^2 \pm 4x \pm 8y = 0$ (B) $x^2 + y^2 \pm 2x \pm 4y = 0$ (C) $x^2 + y^2 \pm 8x \pm 16y = 0$	68. The equation of the circle concentric to the circle $2x^2 + 2y^2 - 3x + 6y + 2 = 0$ and having area double the area of this circle, is (A) $8x^2 + 8y^2 - 24x + 48y - 13 = 0$ (B) $16x^2 + 16y^2 + 24x - 48y - 13 = 0$
64.	(D) $x^2 + y^2 \pm x \pm y = 0$ If (3,-2) is the centre of a circle and $4x + 3y + 19 = 0$ is a tangent to the circle, then the equation of the circle is (A) $x^2 + y^2 - 6x + 4y + 25 = 0$ (B) $x^2 + y^2 - 6x + 4y + 12 = 0$ (C) $x^2 + y^2 - 6x + 4y - 12 = 0$ (D) $x^2 + y^2 - 6x + 4y + 9 = 0$ Centre of circle whose normals are	(C) $16x^2 + 16y^2 - 24x + 48y - 13 = 0$ (D) $8x^2 + 8y^2 + 24x - 48y - 13 = 0$ 69. The equation of the circle passing through (4,5) and having the centre (2,2), is (A) $x^2 + y^2 + 4x + 4y - 5 = 0$ (B) $x^2 + y^2 - 4x - 4y - 5 = 0$ (C) $x^2 + y^2 - 4x - 4y - 5 = 0$ (D) $x^2 + y^2 - 4x - 4y + 5 = 0$
	$x^{2}-2xy-3x+6y=0, \text{ is}$ (A) $\left(3,\frac{3}{2}\right)$ (B) $\left(3,-\frac{3}{2}\right)$ (C) $\left(\frac{3}{2},3\right)$ (D) None of these	70. If the lines $2x + 3y + 1 = 0$ and $3x - y - 4 = 0$ lie along diameters of a circle of circumference 10π , then the equation of the circle is (A) $x^2 + y^2 - 2x + 2y - 23 = 0$
66. 67.	The other end of the diameter through the point (-1,1) on the circle $x^2 + y^2 - 6x + 4y - 12 = 0$ is (A) (-7,5) (B) (-7,-5) (C) (7,-5) (D) (7,5) If the lines $3x - 4y - 7 = 0$ and $2x - 3y - 5 = 0$ are two diameters of a circle of area 49π sq unit, the equation of the circle is (A) $x^2 + y^2 + 2x - 2y - 62 = 0$ (B) $x^2 + y^2 - 2x + 2y - 62 = 0$	(B) $x^{2} + y^{2} - 2x - 2y - 23 = 0$ (C) $x^{2} + y^{2} + 2x + 2y - 23 = 0$ (D) $x^{2} + y^{2} + 2x - 2y - 23 = 0$ 71. A circle of radius 5 touches another circle $x^{2} + y^{2} - 2x - 4y - 20 = 0$ at (5,5), then its equation is (A) $x^{2} + y^{2} + 18x + 16y + 120 = 0$ (B) $x^{2} + y^{2} - 18x - 16y + 120 = 0$ (C) $x^{2} + y^{2} - 18x + 16y + 120 = 0$
	(C) $x^{2} + y^{2} - 2x + 2y - 47 = 0$ (D) $x^{2} + y^{2} + 2x - 2y - 47 = 0$	(D) None of these (D) None of these

Tes	t-8 (Objective)	Horizon Test Series for Engineering-2016			
72.	The locus of the centre of a circle of radius 2 which rolls on the outside of the circle, is $x^{2} + y^{2} + 3x - 6y - 9 = 0$ is (A) $x^{2} + y^{2} + 3x - 6y + 5 = 0$ (B) $x^{2} + y^{2} + 3x - 6y - 31 = 0$ (C) $x^{2} + y^{2} + 3x - 6y + \frac{29}{4} = 0$	76. 77.	If $\frac{x}{\alpha} + \frac{y}{\beta} = 1$ touches the circle $x^2 + y^2 = a^2$, then point (1/ α , 1/ β) lies on a/an (A) straight line (B) circle (C) parabola (D) ellipse If P is a point such that the ratio of the square of the lengths of the tangents from P to the circles $x^2 + y^2 + 2x - 4y - 20 = 0$ and $x^2 + y^2 - 4x + 2y - 44 = 0$ is 2:3, then the locus of P is a circle with centre		
73.	(D) None of the above The equation of normal of $x^2 + y^2 - 2x + 4y - 5 = 0$ at (2,1) is (A) $y = 3x - 5$ (B) $2y = 3x - 4$ (C) $y = 3x + 4$ (D) $y = x + 1$	78.	(A) $(7,-8)$ (B) $(-7,8)$ (C) $(7,8)$ (D) $(-7,-8)$ The radius of the circle, which is touched by the line $y = x$ and has its centre on the positive direction of x-axis and also cuts-off a chord of length 2 unit along the line $\sqrt{3}y - x = 0$, is		
74.	The equations of the tangents to the circle $x^2 + y^2 = 13$ at the points whose abscissa is 2, are (A) $2x + 3y = 13, 2x - 3y = 13$ (B) $3x + 2y = 13, 2x - 3y = 13$ (C) $2x + 3y = 13, 3x - 2y = 13$ (D) None of the above	79.	(A) $\sqrt{5}$ (B) $\sqrt{3}$ (C) $\sqrt{2}$ (D) 1 The length of the common chord of the circles $x^2 + y^2 + 2x + 3y + 1 = 0$ and $x^2 + y^2 + 4x + 3y + 2 = 0$ is (A) $\frac{9}{2}$ (B) $2\sqrt{2}$		
75.	From the point P(16,17) tangents PQ and PR are drawn to the cirle $x^2 + y^2 - 2x - 4y - 20 = 0$. If C be the centre of the circle, then area of quadrilateral PQCR is (A) 450 sq units (B) 15 sq units (C) 50 sq units (D) 75 sq units	80.	(C) $3\sqrt{2}$ (D) $\frac{3}{2}$ Which of the following is a point on the common chord of the circle $x^2 + y^2 + 2x - 3y + 6 = 0$ and $x^2 + y^2 + x - 8y - 13 = 0$? (A) $(1,-2)$ (B) $(1,4)$ (C) $(1,2)$ (D) $(1,-4)$		

Tes	t-8 (Objective)		Horizon Test Series for Engineering-2016
81.	The equation of the circle whose diameter is the common chord of the circles	84.	If P and Q are the points of intersection of the circles $x^{2} + y^{2} + 3x + 7y + 2p - 5 = 0$
	$x^{2} + y^{2} + 2x + 3y + 2 = 0$ and $x^{2} + y^{2} + 2x - 3y - 4 = 0$		$x^2 + y^2 + 2x + 2y - p^2 = 0$, then there is a circle passing through P,Q and (1,1) for
	(A) $x^2 + y^2 + 2x + 2y + 2 = 0$ (B) $x^2 + y^2 + 2x + 2y - 1 = 0$		 (A) all values of p (B) all except one value of p (C) all except two values of p
	(C) $x^{2} + y^{2} + 2x + 2y + 1 = 0$ (D) $x^{2} + y^{2} + 2x + 2y + 3 = 0$	85.	(D) exactly one value of <i>p</i> The equation of the circle which cuts orthogonally the circle $x^2 + y^2 - 6x + 4y - 3 = 0$, passes through (3,0)
82.	The equation of the chord of the circle, $x^2 + y^2 = a^2$ having (x_1, y_1) as its mid point, is		and touches the axis of y is (A) $x^2 + y^2 + 6x - 6y + 9 = 0$
	(A) $xy_1 + yx_1 = a^2$		(B) $x^2 + y^2 - 6x + 6y - 9 = 0$ (C) $x^2 + y^2 - 6x - 6y + 0 = 0$
	(B) $x_1 + y_1 = a$ (C) $xx_1 + yy_1 = x_1^2 + y_1^2$	86.	 (C) x + y - 6x - 6y + 9 = 0 (D) None of the above The equation of the circle which passes through the
	(D) $xx_1 + yy_1 = a^2$		points of intersection of the circles $x^2 + y^2 - 6x = 0$
83.	Tangents drawn from the point P(1,8) to the circle $x^2 + y^2 - 6x - 4y - 11 = 0$ touch the circle at the points A and B. The equation of the circumcircle of the triangle PAB is (A) $x^2 + y^2 + 4x - 6y + 19 = 0$ (B) $x^2 + y^2 - 4x - 10y + 19 = 0$ (C) $x^2 + y^2 - 2x + 6y - 29 = 0$ (D) $x^2 + y^2 - 6x - 4y + 19 = 0$		and $x^{2} + y^{2} - 6y = 0$ and has its centre at $\left(\frac{3}{2}, \frac{3}{2}\right)$ is (A) $x^{2} + y^{2} + 3x + 3y + 9 = 0$ (B) $x^{2} + y^{2} + 3x + 3y = 0$ (C) $x^{2} + y^{2} - 3x - 3y = 0$ (D) $x^{2} + y^{2} - 3x - 3y + 9 = 0$

