

Test No. 7

Topics of The Test

Physics	Vectors + Laws of Motion	
---------	--------------------------	--

Chemistry	Solid state		

Maths	Matrix and determinants, Trigonometry, Sequence and Series.	
-------	---	--

Test No. 7

	[PHYSICS]			
1.	The component of vector $\mathbf{A} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} + a_z \hat{\mathbf{k}}$ along the direction of $\hat{\mathbf{i}} - \hat{\mathbf{j}}$ is (A) $a_x - a_y + a_z$ (B) $a_x - a_y$ (C) $(a_x - a_y)/\sqrt{2}$ (D) $a_x + a_y + a_z$ At what angle must the two forces $(x + y)$ and $(x-y)$ acts so that the resultant may be $\sqrt{(x^2 + y^2)}$? (A) $\cos^{-1}\left[-\frac{x^2 + y^2}{2(x^2 - y^2)}\right]$ (B) $\cos^{-1}\left[\frac{-2(x^2 - y^2)}{x^2 + y^2}\right]$ (C) $\cos^{-1}\left[-\frac{(x^2 + y^2)}{(x^2 - y^2)}\right]$	4. The pose another mathem (A) ∇ ((C) ∇ (5. The sun their differ (A) A = (D) A = (D) A = 6. If the ar value of (A) BA (C) BA	Position vector of a r vector is $\mathbf{A} =$ matical relations is $(\mathbf{A} \cdot \mathbf{R}) = 0$ (B $(\mathbf{A} \cdot \mathbf{R}) = \mathbf{R}$ (D m of two vectors A ference. Then = B = 2B = 2A and B have the sa ngle between the f the product ($\mathbf{B} \times$ $A^2 \cos \theta$ (B $A^2 \sin \theta \cos \theta$ (D	point is $\mathbf{R} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ and $3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$. Which of the scorrect?) $\nabla(\mathbf{A} \cdot \mathbf{R}) = \mathbf{A}$) None of these A and B is at right angles to me direction e vectors A and B is θ , the A) $\cdot \mathbf{A}$ is equal to) $BA^2 \sin \theta$) zero
3.	(D) $\cos^{-1}\left[-\frac{1}{(x^2+y^2)}\right]$ A particle moves in the x-y plane under the influence of a force such that its linear momentum is $\mathbf{p}(t) = A[\hat{\mathbf{i}}\cos(kt) - \hat{\mathbf{j}}\sin(kt)]$ where A and k are constants. The angle between the force and momentum is (A) 0° (B) 30° (C) 45° (D) 90°	 If A × E (A) (A (C) A 8. Vector v (A) bs (C) 5k 	$\mathbf{B} \models \sqrt{3}\mathbf{A} \cdot \mathbf{B}, \text{ then}$ $A^{2} + B^{2} + AB)^{1/2} (B$ $+ B \qquad (D)$ which is perpenditions $\sin\theta \hat{\mathbf{i}} - a\cos\theta \hat{\mathbf{j}} (B)$ $\hat{\mathbf{c}} \qquad (D)$	the value of $ \mathbf{A} + \mathbf{B} $ is) $\left(A^2 + B^2 + \frac{AB}{\sqrt{3}}\right)^{1/2}$ ($A^2 + B^2 + \sqrt{3}AB$) ^{1/2} cular to $a\cos\theta\hat{\mathbf{i}} + b\sin\theta\hat{\mathbf{j}}$ is) $\frac{1}{a}\sin\theta\hat{\mathbf{i}} - \frac{1}{b}\cos\theta\hat{\mathbf{j}}$ () All of these

Space for Rough Work

Tes	t-7 (Objective)	Horizon Test Series for Engineering-2016
9.	The position vector of a particle is	15. A lift is moving down with acceleration <i>a</i> . A man in the
	$\mathbf{r} = (\mathbf{a}\cos\omega t)\hat{\mathbf{i}} + (\mathbf{a}\sin\omega t)\hat{\mathbf{j}}$	lift drops a ball inside the lift. The acceleration of the ball as observed by the man in the lift and a ma
	The velocity vector of the particle is	standing stationary on the ground are respectively
	(A) parallel to position vector	(A) g,g (B) $g-a,g-a$
	 (B) perpendicular to position vector (C) directed towards the origin 	(C) $g - a, g$ (D) a, g
	(D) directed away from the origin	system of particles is zero, then from an inertial fram
10.	When $\mathbf{A} \cdot \mathbf{B} = - \mathbf{A} \cdot \mathbf{B} $, then	one can surely say that
	(A) A and B are perpendicular to each other	(A) linear momentum of the system does not chang in time
	 (B) A and B act in the same direction (C) A and B act in the opposite direction 	(B) kinetic energy of the system does not change
	(D) A and B can act in any direction	time
11.	Two trains are moving with equal speed in opposite	change in time
	is blowing with speed u along the track so that the	(D) potential energy of the system does not chang
	relative velocities of the trains with respect to the wind	17. A player kicks a football of mass 0.5 kg and the footba
	be	begins to move with a velocity of 10 m/s. If the conta
	(A) 3u (B) 2u	between the leg and the football lasts for $\frac{1}{-5}$ the
12	(C) 5u (D) 4u A machine gun fires a bullet of mass 40 g with a velocity	the force acted on the hell should be
12.	1200 ms^{-1} . The man holding it can exert a maximum	(A) 2500 N (B) 1250 N
	force of 144 N on the gun. How many bullets can be	(C) 250 N (D) 625 N
	(A) Only one	18. Consider the following statement. When jumping from
	(B) Three	to rest instead of keeping your legs stiff. Which of th
	(C) Can fire any number of bullets (D) 144×48	following relations can be useful in explaining the
13.	A person is sitting in a lift accelerating upwards.	statement? (A) Ap = Ap (B) $AE = A(BE + KE) = 0$
	Measured weight of person will be	(C) Eat may (D) as a E
	(B) equal to actual weight	19. In the motion of a rocket, physical quantity which
	(C) more than actual weight	conserved is
14.	A monkey climbs up and another monkey climbs down	(A) angular momentum (B) linear momentum
	a rope hanging from a tree with same uniform	(C) force
	acceleration separately. If the respective masses of monkeys are in the ratio 2: 3 the common acceleration	(D) work
	must be	which of the following is conserved ?
	(A) g/5 (B) 6g	(A) Kinetic energy (B) Momentum
	(C) g/2 (D) g	(C) Temperature (D) Velocity

Test-7 (Objective)

Horizon Test Series for Engineering-2016

- 21. When the speed of a moving body is doubled
 - (A) its acceleration is doubled
 - (B) its momentum is doubled
 - (C) its kinetic energy is doubled
 - (D) its potential energy is doubled
- 22. A particle moves in x-y plane under the action of force F and the value of its linear momentum p at a given

time t is $p_x = 2\cos t$, $p_y = 2\sin t$. Then the angle θ between **F** and **p** at a given time *t* is

(A)	$\theta = 30^{\circ}$	(B) $\theta = 180$

(C)
$$\theta = 0^{\circ}$$
 (D) $\theta = 90^{\circ}$

23. A peice of wire is bent in the shape of a parabola

 $y = kx^2$ (y-axis vertical) with a bead of mass *m* on it. The bead can slide on the wire without friction. It stays at the lowest point of the parabola when the wire is at rest. The wire is now accelerated parallel to the x-axis with a constant acceleration a. The distance of the new equilibrium position of the bead, where the bead can stays at rest with respect to the wire, from the y-axis is

(A)	<u>a</u> gk	(B)	a 2gk
(C)	2a gk	(D)	a 4gk

24. The pulleys and strings shown in the figure are smooth and of negligible mass. For the system to remain in equilibrium, the angle θ should be

(C)

25. Two blocks of equal masses m are released from the top of a smooth fixed wedge as shown in the figure. The acceleration of the centre of mass of the two blocks is

26. Two masses A and B of 15 kg and 10 kg are connected with a string passing over a frictionless pulley fixed at the corner of a table (as shown in figure). The coefficient of friction between the table and block is 0.4. The minimum mass of C, that may be placed on A to prevent it from moving is

Space for Rough Work

Test-7 (Objective)					orizon Test S	Series for Enair	neering-2016
47.	Hov	v many tetrahedra	al holes are occupied in diamond.	54. An all	loy of copper a	and gold crystallize	es in cubic lattice
48.	(A) (C) A s	25% 75% olid XY has Na	(b) 50% (d) 100% Cl structure. If radius of X ⁺ is	face.	rs of cube and (The formula of	Cu-atoms occupy the fail Cu-atoms occupy f f this alloy is :	the centre of each
49.	100 (A) (C) The is 6 pred	pm. What is the 120 pm 136.6 pm density of KBr is 54 pm. K = 39, Br dicted nature of th	radius of Y ⁻ ion : (B) 136.6 to 241.6 pm (D) 241.6 pm 2.75 g cm ⁻³ length of the unit cell r = 80, then what is true about the lie solid :	(A) A (C) A 55. The c The d (A) 2 (B) 1	AuCu AuCu ₃ crystal structure listance betwee 286 pm	(B) AuC (D) Au ₃ C e adopted by iron en the nearest iron	u ₂ Cu n is shown below. n atoms is :
	(A) (B) (C)	Solid has face ordination numb Solid has simple number = 4 Solid has face co-ordination num	centred cubic system with co- er = 6 e cubic system with co-ordination e centred cubic system with mber = 1	(C) 1 (D) 2 56. Whicl of an	143 pm 247.6 pm h of the followir octahedral site	ng figure represent	t the cross section
50.	(D) In a who ator from com	None of these face centred cub ose A atoms are a ms at the face cen n one corner in u npound is :	tic arrangement of A and B atoms to the corner of the unit cell and B tred. One of the A atom is missing unit cell. The simplest formula of	(a) (c)		(b) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	
51.	 (A) (C) The cen (A) (C) 	A_7B_3 A_7B_{24} e number of atoms tred cube and box 1, 4, 2 8, 14, 9	(B) AB_3 (D) $A_{7/8}B_3$ per unit cell in a simple cube, face dy centred cube are respectively : (B) 1, 2, 4 (D) 8, 4, 2	57. The C at fcc (A) C (B) T	Ca ²⁺ and F ⁻ ions attice points a Octahedral void	s located in CaF_2 cr and in : ds	rystal respectively
52.	A m (A) (B) (C) (D)	atch box exhibits Cubic geometry Monoclinic geom Orthorhombic ge Tetragonal geom	netry ometry etry	(C) F (D) F 58. CsBr unit cr of Cs numb	Half of octahedr Half of tetrahedr crystallises in ell length is 436 = 133 amu ar per being 6.02 >	ral voids ral voids a body centred 6.6 pm. Given that nd of Br = 80 amu × 10 ²³ mol ⁻¹ , the d	cubic lattice. The t the atomic mass and Avogadro's ensity of CsBr is :
53.	Wh (a) (c)	ich arrangement of ↑↑↑↑↑ ↑↑↑↓↓	 electrons leads to ferromagnetism: (b) ↓↑↓↑ (d) None of these 	(A) 8 (C) 4	3.50 g/cm ³ 42.5 g/cm ³	(B) 4.25 (D) 0.42	i g/cm ³ 25 g/cm ³

Te	st-7 (C	Objective)				Но	rizon	Test Serie	əs fo	or Eng	gineering	-2016
59.	The ap halide	opearance of colo s is generally due	ur in : to :	solid state of alkali metal	64.	lf y	= 1+ <i>x</i> -	$+X^2+X^3+$, th	en x is	s equal to	
	(A) Fr (C) F-	renkel defect -centres	(B) Interstital positionsD) Schottky defect		(A)	$\frac{y-1}{y}$		(B)	<u>1-y</u> y	<u>/</u>	
6 0 .	If a sta simple then the will be	ands for the edge cubic, body centre ne ratio of radii of respectively.	lengt ed cub the s	th of the cubic systems : bic and face centred cubic, pheres in these systems		(C)	y a−y		(D)	Non	e of these	
	(A) $\frac{a}{2}$	$::\frac{a\sqrt{3}}{2}:\frac{a\sqrt{2}}{2}$	(B) 1a:√3a:√2a	65.	If x, equa (A)	y,z are al to log(x	e in HP, the - <i>z</i>)	n log (B)	(<i>x</i> + <i>z</i> 2log	$(x - 2) + \log(x - 2)$:y+z) is
	(C) $\frac{a}{2}$	$\frac{a\sqrt{3}}{4}:\frac{a}{2\sqrt{2}}$	(D) $\frac{a}{2}:\sqrt{3}a:\frac{a}{\sqrt{2}}$		(C)	3log(2	x – z)	(D)	4100	g(x-z)	
		[MATHE	MA	TICS]	66.	lf a, a,g ₁	a ₁ ,a ₂ , ,g ₂ ,,g	$a_{2n}, b are$	in ar geor	ithme netric	tic progress	sion and nand <i>h</i> is
61.	If the sum	e sum of first <i>n</i> te of squares of the	rms c se <i>n</i> t	of an AP is <i>cn</i> ² , then the erms is		the h	narmon	iic mean of	a an	d <i>b</i> , th	nen	
	(A)	$\frac{n(4n^2-1)c^2}{6}$	(B)	$\frac{n(4n^2+1)c^2}{3}$		$\frac{a_{1}}{g_{1}}$	$\frac{a_{2n}}{a_{2n}} + \frac{a_{2n}}{a_{2n}}$	$\frac{g_2 + a_{2n-1}}{g_2 g_{2n-1}} + \dots$	$+\frac{a_n}{g}$	$+a_{n+1}$	⁻is equal to	
	(C)	$\frac{n(4n^2-1)c^2}{3}$	(D)	$\frac{n(4n^2+1)c^2}{6}$		(A)	2nh		(B)	n h		
62.	lf <i>a,l</i> is no	b and c are in AP, t ot true ?	hen v	which one of the following		(C)	nh		(D)	2n h		
	(A)	$\frac{k}{a}, \frac{k}{b}$ and $\frac{k}{c}$ are in	n HP		67.	$1 + \frac{2}{5}$	$\frac{4}{5} + \frac{7}{5^2} + \frac{7}{5^2}$	$-\frac{10}{5^3}+$ to	∞ is			
	(B)	a+k,b+k and c	+	re in AP		<i>.</i>	16			11		
	(C) (D)	ka, kb and kc are	n AP	5		(A)	35		(B)	8		
63.	(D)	m of an infinite get	ometi	ic series is $\frac{4}{2}$ and its first		(C)	<u>35</u> 16		(D)	7 16		
	term	is $\frac{3}{4}$, then its cor	mmor	n ratio is	68.	Sun 1³ +	n of 3 ³ + 5 ³	n terms +7 ³ + is	of	the	following	series
	(A)	<u>7</u> 16	(B)	<u>9</u> 16		(A) (C)	n²(2n n³ + 8	² – 1) n + 4	(B) (D)	n³(n 2n⁴	n – 1) + 3n²	
	(C)	<u>1</u> 9	(D)	7 9								

69. The sum of infinite terms of the series $\frac{1}{(1+a)(2+a)} + \frac{1}{(2+a)(3+a)} + \frac{1}{(3+a)(4+a)} + \dots + eq$	$f(x) = x^2 - 5x$ and $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, then $f(A)$ is yual to
to ∞ , where <i>a</i> is a constant, is (A) (A) (A)	$) \begin{bmatrix} 0 & -7 \end{bmatrix} \qquad (B) \begin{bmatrix} 0 & 1 \\ -7 & 0 \end{bmatrix}$
(C) ∞ (D) None of these (C)	$\begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} \qquad (D) \begin{bmatrix} 0 & 7 \\ 7 & 0 \end{bmatrix}$
70. If x, y, z are three consecutive integers, then $\log_e \sqrt{x} + \log_e \sqrt{z} + \left(\frac{1}{2xz+1}\right) + \frac{1}{3} \left(\frac{1}{2xz+1}\right)^3$ 74. If equations of the equation o	$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}, \text{ then } AB \text{ is }$ qual to
$+\frac{1}{5}\left(\frac{1}{2xz+1}\right)^{\circ} + \dots \text{ is}$ (A) $\log_e \sqrt{y}$ (B) $\log_e y$ (A)	$ \begin{pmatrix} 5 & 1 & -3 \\ 3 & 2 & 6 \\ 14 & 5 & 0 \end{bmatrix} $ (B) $ \begin{bmatrix} 11 & 4 & 3 \\ 1 & 2 & 3 \\ 0 & 3 & 3 \end{bmatrix} $
(C) $\log_e y^2$ (D) None of these 71. The coefficient of x^n in the expansion of $\frac{(a - bx)}{e^x}$ is (C)	$ \begin{pmatrix} 1 & 8 & 4 \\ 2 & 9 & 6 \\ 0 & 2 & 0 \end{bmatrix} $ (D) $ \begin{pmatrix} 0 & 1 & 2 \\ 5 & 4 & 3 \\ 1 & 8 & 2 \end{bmatrix} $
(A) $\frac{(-1)^n}{n!}(a+bn)$ (B) $\frac{(-1)^n}{n!}(b+an)$ 75. Let	et a, b, c be such that $(b + c) \neq 0$ and $a + 1 + a + 1 = (b + 1) + (b + 1) = (b + 1)^{1}$
(C) $\frac{(-1)^{n+1}}{n!}(a+bn)$ (D) None of the above 72. If $A = [a, 1]$, where $a_i = i + i$ then A is equal to	$\begin{vmatrix} a + 1 & a + 1 \\ b & b + 1 & b - 1 \\ c & c - 1 & c + 1 \end{vmatrix} + \begin{vmatrix} a + 1 & b + 1 & c - 1 \\ a - 1 & b - 1 & c + 1 \\ (-1)^{n+2}a & (-1)^{n+1}b & (-1)^n c \end{vmatrix} = 0$
The there $a_{ij} = i + j$, then this equal to Th	he the value of <i>n</i> is
(A) $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$ (A) (A) (C)) zero (B) any even integer) any odd integer (D) any integer
$(C) \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad (D) \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix} \qquad \qquad \begin{array}{c} 76. & \text{In} \\ a & a \\ e \text{le} \\ (A) \end{array}$	the sum of the products of the elements of any row of determinant A with the cofactors of the corresponding ements is equal to
(C)	(D) $ A $ (D) $\frac{1}{2} A $

Test-7 (Objective)

Horizon Test Series for Engineering-2016

77.	If x, y, z are different from zero and $\Delta = \begin{vmatrix} a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c \end{vmatrix} = 0$, then the value of the	81.	If $A = \begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix}$, then $(A^{-1})^3$ is equal to (A) $\frac{1}{27} \begin{bmatrix} 1 & -26 \\ 0 & 27 \end{bmatrix}$ (B) $\frac{1}{27} \begin{bmatrix} -1 & 26 \\ 0 & 27 \end{bmatrix}$
	expression $\frac{a}{x} + \frac{b}{y} + \frac{c}{z}$ is (A) 0 (B) -1 (C) 1 (D) 2	82.	(C) $\frac{1}{27}\begin{bmatrix} 0 & -26\\ 0 & -27 \end{bmatrix}$ (D) $\frac{1}{27}\begin{bmatrix} -1 & -26\\ 0 & -27 \end{bmatrix}$ Consider the system of equations in <i>x</i> , <i>y</i> , <i>z</i> as
78.	(b) $r = \begin{vmatrix} r & 1 & \frac{n(n+1)}{2} \\ 2r - 1 & 4 & n^2 \\ 2^{r-1} & 5 & 2^n - 1 \end{vmatrix}$, then the value of $\sum_{r=0}^{n} D_r$ is		$x \sin 3\theta - y + 2 = 0$ $x \cos 2\theta + 4y + 3z = 0$ and $2x + 7y + 7z = 0$ If this system has a non-trivial solution, then for integer <i>n</i> , values of θ are given by
70	(A) 0 (B) 1 (C) $\frac{n(n+1)(2n+1)}{6}$ (D) None of these		(A) $\pi \left(n + \frac{(-1)^n}{3} \right)$ (B) $\pi \left(n + \frac{(-1)^n}{4} \right)$ (C) $\pi \left(n + \frac{(-1)^n}{6} \right)$ (D) $\frac{n\pi}{2}$
73.	the determinant $\Delta = \begin{vmatrix} \log a_n & \log a_{n+2} & \log a_{n+4} \\ \log a_{n+6} & \log a_{n+8} & \log a_{n+10} \\ \log a_{n+12} & \log a_{n+14} & \log a_{n+16} \end{vmatrix}$ is equal to (A) 0 (B) 1	83. 84.	If the system of equations $x + ay = 0$, $az + y = 0$ and $ax + z = 0$ has infinite solutions, then the value of <i>a</i> is (A) -1 (B) 1 (C) 0 (D) No real values $sin^2 17.5^\circ + sin^2 72.5^\circ$ is equal to
80.	(C) 2 (D) n Let $A = \begin{bmatrix} 1 & 2 \\ -5 & 1 \end{bmatrix}$ and $A^{-1} = xA + yI$, then the value of x and y are	85.	(A) $\cos^2 90^\circ$ (B) $\tan^2 45^\circ$ (C) $\cos^2 30^\circ$ (D) $\sin^2 45^\circ$ $\left(1 + \cos\frac{\pi}{8}\right) \left(1 + \cos\frac{3\pi}{8}\right) \left(1 + \cos\frac{5\pi}{8}\right) \left(1 + \frac{7\pi}{8}\right)$ is equal to
	(A) $x = \frac{-1}{11}, y = \frac{2}{11}$ (B) $x = \frac{-1}{11}, y = \frac{-2}{11}$ (C) $x = \frac{1}{11}, y = \frac{2}{11}$ (D) $x = \frac{1}{11}, y = \frac{-2}{11}$		(A) $\frac{1}{2}$ (B) $\cos \frac{\pi}{8}$ (C) $\frac{1}{8}$ (D) $\frac{1+\sqrt{2}}{2\sqrt{2}}$

Space for Rough Work

Test-7 (Objective)

86.

87.

88.

Horizon Test Series for Engineering-2016

(C) $\frac{7}{12}$ (D) $\frac{1}{6}$ If $\cos\theta = \frac{8}{17}$ and θ lies in the 1st quadrant, then the value of $\cos(30^\circ + \theta) + \cos(45^\circ - \theta) + \cos(120^\circ - \theta)$ is $\sinh^{-1} 2 + \sinh^{-1} 3 = x \implies \cosh x$ is equal to 89. (A) $\frac{23}{17}\left(\frac{\sqrt{3}-1}{2}+\frac{1}{\sqrt{2}}\right)$ (B) $\frac{23}{17}\left(\frac{\sqrt{3}+1}{2}+\frac{1}{\sqrt{2}}\right)$ (A) $\frac{1}{2}(3\sqrt{5}+2\sqrt{10})$ (B) $\frac{1}{2}(3\sqrt{5}-2\sqrt{10})$ (C) $\frac{23}{17} \left(\frac{\sqrt{3}-1}{2} - \frac{1}{\sqrt{2}} \right)$ (D) $\frac{23}{17} \left(\frac{\sqrt{3}+1}{2} - \frac{1}{\sqrt{2}} \right)$ (C) $\frac{1}{2}(12+2\sqrt{50})$ (D) $\frac{1}{2}(12-2\sqrt{50})$ 90. The set of values of θ satisfying the inequation If $5\cos 2\theta + 2\cos^2 \frac{\theta}{2} + 1 = 0, -\pi < \theta < \pi$, then θ is $2\sin^2\theta - 5\sin\theta + 2 > 0$, where $0 < \theta < 2\pi$, is equal to (A) $\left(0,\frac{\pi}{6}\right)\cup\left(\frac{5\pi}{6},2\pi\right)$ (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{3}$, $\cos^{-1}\left(\frac{3}{5}\right)$ (C) $\cos^{-1}\left(\frac{3}{5}\right)$ (D) $\frac{\pi}{3}, \pi - \cos^{-1}\left(\frac{3}{5}\right)$ (B) $\left[0,\frac{\pi}{6}\right] \cup \left[\frac{5\pi}{6},2\pi\right]$ Minimum value of $\frac{1}{2\sin\theta - 4\cos\theta + 7}$ is (C) $\left[0,\frac{\pi}{3}\right] \cup \left[\frac{2\pi}{3},2\pi\right]$ (B) $\frac{5}{12}$ (A) $\frac{1}{12}$ (D) None of these Space for Rough Work